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Abstract

Partially observable Markov decision processes (POMDPs) are a natural model for many
applications where one has to deal with incomplete knowledge and random phenomena,
including, but not limited to, robotics and motion planning. However, many interesting
properties of POMDPs are undecidable or otherwise very expensive to decide in terms of
both runtime and memory usage. In our work, we develop abstraction-based methods that
can deliver safe bounds and good approximations for certain classes of properties.

1 Challenge

In offline motion planning, we aim to find a strategy for an agent that ensures certain desired
behavior, even in the presence of dynamical obstacles and uncertainties [2]. If random phenomena
like uncertainty in the outcome of an action or in the movement of dynamic obstacles need
to be taken into account, the natural model for such scenarios are Markov decision processes
(MDPs). MDPs are are non-deterministic models which allow the agent to perform actions
under full knowledge of the current state of the agent and the surrounding environment. In
many applications, though, full knowledge cannot be assumed, and we have to deal with partial
observability [3]. For such scenarios, MDPs are generalized to partially observable Markov
decision processes (POMDPs). In a POMDP, the agent does not know the exact state of the
environment, but only an observation that can be shared between multiple states. Additional
information about the likelihood of being in a certain state can be gained by tracking the
observations over time. This likelihood is called the belief state. Using an update function
mapping a belief state and an action as well as the newly obtained observation to a new belief
state, one can construct a (typically infinite) MDP, commonly known as the belief MDP.

While model checking and strategy synthesis for MDPs are, in general, well-manageable
problems, POMDPs are much harder to handle and, due to the potentially infinite belief space,
many problems are actually undecidable [1]. Our aim is to apply different abstraction and
abstraction refinement techniques to POMDPs in order to get good and safe approximative
results for different types of properties.
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2 Approach

As a case study, we work with a scenario featuring a controllable agent. Within a certain area,
the agent needs to traverse a room while avoiding both static obstacles and randomly moving
opponents. Only the positions of the opponents cannot always be observed. The area is modeled
as a grid, the static obstacles as grid cells that may not be entered. Our detailed assumption for
this scenario is that the agent always knows its own position, but the positions of an opponent
is only known if its distance from the agent is below a given threshold and if the opponent is
not hidden behind a static obstacle. We assume that the opponents move probabilistically. This
directly leads to a POMDP model for our case study. For simplification purposes, we are only
dealing with one opponent right now, although the same approach would work with an arbitrary
number of opponents as well.

The goal is to find a strategy which maximizes the probability to navigate through the grid
from an initial to a target location without collision. For a grid size of n × n cells and one
opponent, the number of states in the POMDP is in O(n4), i. e., the state space grows rapidly
with increasing grid size. In order to handle non-trivial grids, we propose an approach using
game-based abstraction [4].

Intuitively, we lump together all states that induce the same observation; so we can still
distinguish between all states in which the opponent’s position is known, but states in which the
position is not known are merged into one far away state [6]. In order to get a safe approximation
of the possible behavior of the opponent, for all of these lumped states we add a non-deterministic
choice over the potential positions of the opponent. We formalize this as a 2-player probabilistic
game [4], in which one player controls the actions of the agent, and the other player controls the
non-determinism added by the abstraction. This allows both players to optimize according to
different goals. The abstraction player can create a worst-case scenario to over-approximate the
realistic behavior, thus ensuring that the obtained bounds are safe and the resulting strategy
cannot perform worse when mapped back to the original scenario.

A comparison with the state-of-the-art POMDP model checker PRISM-pomdp [5] indicates
that we can handle grids that are considerably larger than what PRISM-pomdp can handle,
while still getting schedulers that induce values which are close to the optimum. Table 1 shows
a few of our results for verifying a reach-avoid property on a grid without obstacles. As one
can see, the abstraction approach is faster by orders of magnitude than solving the POMDP
directly, and the game model also is much smaller for large grids while still getting very good
approximations for the actual probabilities. The strategies induce even better values when they
are mapped back to the original POMDP. Note that this lifting of strategies can currently only
be performed for small benchmarks due to technical limitations of the PRISM tool we use.

While being sound, our approach is still targeting an undecidable problem and as such not
complete in the sense that in general no strategy with maximum probability for success can
be deduced. In particular for cases with few paths to the goal location, the gap between the
obtained bounds and the actual maximum can become large. For those cases, we define a
scheme to refine the abstraction, which leads to larger games and accordingly longer computation
times, but also to better results. In Table 2 we have demonstrated a first, very coarse step of
this refinement. We use a benchmark representing a long, narrow tunnel, in which the agent
has to pass the opponent once, but, due to the nature of the abstraction, can actually run
into him several times. With longer tunnels, the probability to safely arrive in a goal state
diminishes. Adding a refinement which remembers the last known position of the opponent
and thus restricting the non-deterministic movement keeps the probability steady for arbitrary
tunnel length.

2



Abstraction-based Model Checking for POMDPs in Motion Planning L. Winterer et al.

Table 1: Comparing the POMDP solution using PRISM-pomdp with the solution of the PG abstraction
using PRISM-games on different sized grids without obstacles for a reach-avoid property. The MDP
result is the hard upper limit for the probability. All times are given in seconds.

POMDP solution PG solution Lifting MDP
Grid size States Result Model Time Sol. Time States Result Model Time Sol. Time Result

3 × 3 299 0.8323 0.063 0.26 400 0.8323 0.142 0.036 0.8323 0.8323

4 × 4 983 0.9556 0.099 1.81 1348 0.9556 0.353 0.080 0.9556 0.9556

5 × 5 2835 0.9882 0.144 175.94 6124 0.9740 0.188 0.649 0.9825 0.9882

5 × 6 4390 0.9945 0.228 4215.056 8058 0.9785 0.242 0.518 0.9893 0.9945

6 × 6 6705 ?? 0.377 – MO – 10592 0.9830 0.322 1.872 0.9933 0.9970

8 × 8 24893 ?? 1.735 – MO – 23128 0.9897 0.527 6.349 0.9992 0.9998

10 × 10 66297 ?? 9.086 – MO – 40464 0.9914 0.904 6.882 0.9999 0.9999

20 × 20 – Time out during model construction – 199144 0.9921 8.580 122.835 0.9999 0.9999

30 × 30 – Time out during model construction – 477824 0.9921 41.766 303.250 ?? 0.9999

40 × 40 – Time out during model construction – 876504 0.9921 125.737 1480.907 ?? 0.9999

50 × 50 – Time out during model construction – 1395184 0.9921 280.079 3129.577 ?? – MO –

Table 2: Results of the game-based abstraction for benchmarks describing a long, narrow corridor, with
and without rudimentary refinement. All times are given in seconds.

Grid States Choices Trans. Result Time

n
o

re
f.

4 × 40 50880 93734 170974 0.9228 19

4 × 60 77560 143254 261534 0.8923 67

4 × 80 104240 192774 352094 0.8628 115

4 × 100 130920 242294 442654 0.8343 164

w
it

h
re

f. 4 × 40 55300 120848 198088 0.9799 63

4 × 60 83820 182368 300648 0.9799 220

4 × 80 112340 243888 403208 0.9799 265

4 × 100 140860 305408 505768 0.9799 746

3 Conclusion and Further Research

Game-based abstraction has turned out to be a viable way to obtain safe – and in many cases
rather tight – bounds on maximal reach-avoid probabilities in our motion planning scenario.
It scales much better than the standard analysis algorithms for POMDPs, which are typically
based on discretizing the corresponding belief MDP [5].

Currently, our approach is limited to a restricted class of POMDPs based on an agent and
its opponents moving inside a connected graph, but we have reason to believe that game-based
abstraction is also beneficial for arbitrary POMDPs. We are also going to investigate other
classes of properties involving costs and the long-term behavior of agents.
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