
Counterexample Generation for Discrete-time
Markov Chains using Bounded Model Checking?

Ralf Wimmer, Bettina Braitling, and Bernd Becker

Chair of Computer Architecture
Albert-Ludwigs-University Freiburg im Breisgau, Germany
{wimmer,braitlin,becker}@informatik.uni-freiburg.de

Abstract. Since its introduction in 1999, bounded model checking has
gained industrial relevance for detecting errors in digital and hybrid sys-
tems. One of the main reasons for this is that it always provides a coun-
terexample when an erroneous execution trace is found. Such a coun-
terexample can guide the designer while debugging the system.
In this paper we are investigating how bounded model checking can
be applied to generate counterexamples for a different kind of model—
namely discrete-time Markov chains. Since in this case counterexamples
in general do not consist of a single path to a safety-critical state, but of
a potentially large set of paths, novel optimization techniques like loop-
detection are applied not only to speed-up the counterexample compu-
tation, but also to reduce the size of the counterexamples significantly.
We report on some experiments which demonstrate the practical appli-
cability of our method.

1 Introduction

Nowadays, formal verification plays a crucial role in the design process of digital
circuits. In particular model checking, i. e., the proof that a system exhibits a set
of properties, which are part of the specification, has gained great importance in
industry. The reasons for its success are that it can be performed automatically
and—in case a property is violated—that it is often able to generate a coun-
terexample, which guides the designer when debugging the system. By using
symbolic methods (e. g. ordered binary decision diagrams, OBDDs [1]) model
checking can be applied to fairly large systems. Nevertheless, there are many
practically important systems which cannot be verified using OBDDs (e. g., if
they contain multipliers), because the size of the OBDD representations may
explode.

To overcome this problem, Clarke et al. [2] suggested a method called Bounded
Model Checking (BMC). It aims at the refutation of invariant properties. The

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.



reachability of a state within a fixed number of steps which violates an invari-
ant is thereby formulated as a satisfiability problem in conjunctive normal form
(CNF). The advantage is that the size of this CNF is linear in the number of
gates of the digital circuit. Due to the enormous improvements in solving such
satisfiability problems during the last two decades, BMC has successfully been
applied to industrial systems.

On the other hand, on a higher modelling level, the designer often has to
cope with uncertainties. They can result from unpredictable behavior of the en-
vironment, component failures, user interaction, . . . One of the most common
models for this scenario are discrete-time Markov chains (DTMCs). Model check-
ing, which has been extended to DTMCs, is not as successful as model checking
for digital circuits for three reasons: (1) The size of the systems which can be
handled by state-of-the-art tools is still quite limited compared to the size of
verifiable circuits, (2) all state-of-the-art model checkers use inexact arithmetic
for efficiency reasons (i. e., using IEEE 754 floating point arithmetic and iterative
solution methods for linear equation systems). This can cause numerical insta-
bilities which themselves may lead to wrong results [3]. (3) The model checker is
not able to provide a counterexample for violated properties, since the check is
done by solving a linear equation system and not by traversing the state space.

In this paper we tackle the latter two problems. We propose an extension to
bounded model checking such that we can use it to certify that invariant prop-
erties of the form “The probability to reach a state which violates the invariant
is at most p” do not hold. For this purpose we provide counterexamples which
can be checked easily for correctness by using exact arithmetic.

Related work. The generation of counterexamples for various kinds of properties
has been studied extensively for non-stochastic models (see e. g. [4–7]). How-
ever, little research has been done on counterexamples for stochastic models.
Aljazzar et al. [8, 9] apply informed search methods like Best First Search or A*
to generate counterexamples for continuous-time Markov chains, whereas Han
and Katoen [10] propose a different method to obtain counterexamples: They
apply a k-shortest-paths algorithm to a Markov chain. Therewith they compute
a counterexample consisting of a minimal number of paths. Although Han and
Katoen do not provide any experimental results in their paper, we suppose that
their method—as well as the method by Aljazzar et al.—does not scale well to
large systems due to the explicit state representation it relies on. Further on both
approaches do not apply any method to reduce the size of the counterexamples.
As our experiments will show, it is crucial to reduce the size of the counterexam-
ples in order to get useful counterexamples in reasonable time. We will overcome
both problems by using a symbolic representation and effective techniques to
reduce the size of counterexamples via loop detection.

The necessity of reducing the size of counterexamples has also been recog-
nized by Damman et al. [11]. They compute regular expressions describing a
sufficiently large set of paths from the initial state to a target state. This can
be considered as a generalization of the loop-detection technique we will present
later, but is restricted to explicitly represented state spaces.



In the paper [12] by Andrés et al. abstract away the details of strongly con-
nected components of Markov chains by replacing the SCCs by edges that are
labeled with the probability to walk through the SCC. On the resulting acyclic
Markov chain, counterexamples are computed which are more compact by col-
lapsing the SCCs, but lack the details how the SCCs can be traversed.

Recently, Hermanns et al. extended counterexample-guided abstraction re-
finement (CEGAR) to Markov decision processes (MDPs) [13]. In this scenario
a counterexample is an adversary which resolves the nondeterminism in each
state, such that the probability of reaching a set of states exceeds some bound.
For the computation of counterexamples in the abstract system, they apply the
shortest-paths algorithm of [10], but they could also use our method.

Organization of this paper. In the next section, we will briefly review the founda-
tions of discrete-time Markov chains and bounded model checking. In Section 3
we will show how to bring together DTMCs and BMC. Its practical applica-
bility will be demonstrated experimentally in Section 4, before we conclude in
Section 5.

2 Foundations

In this section we will briefly review the basics of discrete-time Markov chains
and bounded model checking for digital systems.

2.1 Discrete-time Markov Chains and Reachability Properties

Definition 1. Let AP be a set of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, sI , P, L) such that S is a finite, non-empty set
of states; sI ∈ S, the initial state; P : S × S → [0, 1], the matrix of the one-step
transition probabilities; and L : S → 2AP , a labeling function that assigns each
state the set of atomic propositions which hold in that state.

We require the matrix P to be a stochastic matrix, i. e.,
∑
s′∈S P (s, s′) = 1 for

all s ∈ S. A path π is a (finite or infinite) sequence π = s0s1 . . . of states such
that P (si, si+1) > 0 for all i ≥ 0. For a finite path π = s0s1 . . . sn, |π| = n
denotes its length. The ith state of π is denoted by πi, i. e., πi = si. Furthermore
let π↑i be the ith prefix of π (π↑i= s0s1 . . . si). The set of infinite paths starting
in state s is denoted by Paths.

Definition 2. Let M = (S, sI , P, L) be a DTMC and s ∈ S. We define a prob-
ability space Ψs = (Paths, ∆s,Prs) such that

– ∆s is the smallest σ-algebra generated by Paths and the basic cylinders that
are subsets of Paths. Thereby, for a finite path π, the basic cylinder over π
is defined as ∆(π) = {π′ ∈ Paths |π′ ↑|π|= π}.

– Prs is the uniquely defined probability measure that satisfies the following
constraints: Prs(Paths) = 1 and for all basic cylinders ∆(ss1s2 . . . sn) over
S:

Prs(∆(ss1s2 . . . sn)) = P (s, s1) · P (s1, s2) · · · · · P (sn−1, sn).



Many investigations can be carried out on even simpler systems, namely
Kripke structures, which are obtained by omitting the transition probabilities of
the Markov chain:

Definition 3. Let M = (S, sI , P, L) be a discrete-time Markov chain. The un-
derlying Kripke structure is a labeled graph G = (S, sI , T, L) such that (s, s′) ∈ T
iff P (s, s′) > 0.

The properties we are considering are PCTL formulae [14] of the form P≤p(aUb)
with a, b ∈ AP , meaning that the probability to walk along a path from the ini-
tial state to a state which satisfies b, passing only states in which a holds, is less
or equal p. More formally:

Definition 4. Let π be a path in a Markov chain M = (S, sI , P, L). It satisfies
the formula aUb (written π � aUb) iff

∃i ≥ 0 :
(
b ∈ L(πi) ∧ ∀ 0 ≤ j < i : a ∈ L(πj)

)
.

A state s satisfies the formula P≤p(aUb) (written s � P≤p(aUb)) iff

Prs
(
{π ∈ Paths |π � aUb}

)
≤ p.

If such a property is violated in the initial state sI , i. e., if the actual prob-
ability is greater than p, there is a finite set of finite paths, starting in sI and
satisfying aUb, whose probability measure is greater than p [10].

Definition 5. Let M = (S, sI , P, L) be a discrete-time Markov chain for which
the property P≤p(aUb) is violated in state sI . A counterexample is a set C of
paths which start in sI and satisfy aUb, such that PrsI

(C) > p.

Our goal is to provide the user with such a set of paths which testifies that
the probability indeed exceeds the bound p.

2.2 Bounded Model Checking for Digital Systems

Bounded model checking [2] is an automatic technique to prove that some in-
variant is violated in a transition system, i. e., that a state in which the invariant
does not hold is reachable from the initial state of the system. The reachability of
such a state in a fixed number k of steps is thereby formulated as a satisfiability
problem.

Let I(s) be a predicate which is true if s is the initial state and false otherwise.
Accordingly, let P (s) be a predicate for the states violating the invariant. The
transition relation is encoded by a predicate T (s, t) which is true iff there is a
transition from s to t. The existence of a run of length k starting in an initial
state and ending in a state in which the invariant does not hold can then be
described by the following formula:

BMC (k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ P (sk). (1)



If this formula is unsatisfiable for the current unrolling depth k, there is no
path of length k from an initial state to a safety-critical state. Otherwise we get
a satisfying assignment which directly corresponds to a run of the system. It can
be considered a counterexample for the invariant property.

The predicates are constructed in conjunctive normal form (CNF) from a
digital circuit by applying Tseitin transformation [15]. It works by introducing
auxiliary variables for internal signals. Then only local operations are necessary
to get a satisfiability equivalent CNF: If G is an AND gate with inputs a, b
and output c, then we construct the formula c ↔ (a ∧ b), which is equivalent
to (¬c ∨ a) ∧ (¬c ∨ b) ∧ (c ∨ ¬a ∨ ¬b). A CNF for the whole circuit is given by
the conjunction over the equivalences for each gate. Since this CNF is satisfied
for an assignment iff it assigns consistent values to the signals in the circuit, we
have to add a unit clause which sets the value of the output signal to true.

The advantage of applying Tseitin transformation is that the size of the
predicates is linear in the size of the circuit. In contrast to that, the size, e. g., of
OBDD representations, which are often used for symbolic model checking, might
explode during the model checking process.

3 Bounded Model Checking for DTMCs

In this section we will turn our attention to how bounded model checking can
be applied to discrete-time Markov chains in order to compute counterexamples
for violated safety properties.

The differences to traditional bounded model checking are the following:
(1) In general, it is not sufficient to compute a single path to a state which
violates the invariant. Even the probability of the most probable path may be
too small to exceed the bound p. Instead, we need a potentially large set of paths
whose probability measure exceeds the given bound. (2) We normally cannot
start from a circuit description of the system. Stochastic systems are usually
modelled using a process algebraic description language from which the state
space and the transition probabilities can be computed using techniques like
parallel composition. An example for this formalism is the input language of the
stochastic model checker PRISM [16], which we will later use for our experiments.
Among other tools, PRISM is able to generate symbolic representations of the
Markov chains. In particular, the transition probabilities are represented using
Multi-terminal binary decision diagrams (MTBDDs) [17].

Since the matrix is normally sparse and well-structured, the symbolic MTBDD
representation is in many cases much more compact than explicit representa-
tions. For this reason, we start with an MTBDD P(s, t) for the transition prob-
ability matrix, an OBDD I(s) for the initial state and an OBDD La(s) for each
atomic proposition a ∈ AP such that La(s) = 1 iff a ∈ L(s).

In the following, we will first describe some preprocessing steps, before we con-
tinue with the formula generation from OBDDs and the bounded model checking
itself.



3.1 Preprocessing

Before we start the bounded model checking process, we reduce the computation
of paths satisfying aUb to computing arbitrary paths ending in a b-state. Since we
do not need the probabilities for the path computation, we can use the associated
Kripke structure for this operation. The OBDD-representation1 T (s, t) of its
transition relation can be obtained from the transition probability matrix P(s, t)
by a threshold operation, i. e., T (s, t) = 1 iff P(s, t) > 0.

Removing edges. We have to ensure that we will never find a path of which
a proper prefix satisfies the path formula aUb. This can be guaranteed if the
b-states do not have any out-going edges. Furthermore we remove all out-going
edges from states in which neither a nor b hold. This makes sure that all paths
ending in a b state satisfy aUb. Therefore we will call the b-states the target states
of the system.

Often we can cut even more edges of the resulting graph: Only those a-
(and target) states are relevant which can be reached from the initial state and
from which a target state can be reached. These states can be determined using
well-known symbolic graph traversal algorithms.

While the first edge cutting is mandatory for the correctness of the stochastic
BMC algorithm, the latter is only an optimization. It may be skipped if the time
or memory consumption of the reachability analysis is too high or if the resulting
OBDD of the transition relation is considerably larger than the original one.

3.2 CNF generation

From the OBDD representations I(s), T (s, t), and Lb(s), we have to generate
the predicates in conjunctive normal form (CNF). They will be denoted by I(s),
T (s, t), and Lb(s). Since OBDDs can be considered as a special form of circuits
such that each node corresponds to a multiplexer, we can apply Tseitin transfor-
mation to obtain a CNF as already described in Section 2.2. The transformation
results in (at most) four clauses per OBDD-node. Our experiments have shown
that it is beneficial to reduce the size of the CNFs as much as efficiently possible.
We apply the following ideas:

– To avoid unnecessary auxiliary variables when both successor nodes are
leaves. This situation results in equivalences of the form (n1 ↔ x), where n1

is the auxiliary variable associated with an internal signal and x the label of
an OBDD node. Then every occurrence of n1 can be replaced by x.

– To use reordering (e. g., sifting [18]) to reduce the size of the OBDD for the
transition relation.

1 In the following, we use calligraphic letters L,P, T , . . . for OBDDs and MTBDDs.



3.3 Bounded Model Checking

Recall that for a given unrolling depth k the formula describing paths starting
in the initial state sI and ending in a target state is given by (cf. Eq. (1)):

BMC(k) = I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ Lb(sk).

We feed it into a SAT-solver and try to find a satisfying solution. If the
formula is unsatisfiable, there is no path of length k from the initial state to a
target state. Otherwise, the satisfying assignment we get from the SAT-solver
corresponds to a path in the original Markov chain which satisfies aUb.

In contrast to model checking for digital or hybrid systems, we cannot stop
once we have found a satisfying solution. Instead we have to continue until we
have found enough paths such that their probability measure exceeds the given
bound p.

For a boolean variable a, let a1 denote the positive literal a and a0 the
negative literal ¬a. Let si,0, . . . , si,n be the variables of the state visited at time
step i, and vi,0, . . . , vi,n their values assigned by the SAT-solver. To prevent the
solver from finding the same solution again, we add the following clause to its
clause database:  k∨

i=1

n∨
j=0

s
1−vi,j

i,j

 (2)

Thereby, we can ignore the auxiliary variables introduced by the Tseitin trans-
formation, because their values are implied by the values of the original state
variables. Furthermore we may start with step i = 1 instead of 0. Since the CNF
contains unit literals which enforce that all solutions start in the initial state,
the literals in the exclusion clause (2) which correspond to step 0 would be false
and can therefore be left out completely. The same applies to step k if there is
a unique target state.

We iterate the solution process until we have either found enough paths or
the formula becomes unsatisfiable. If the latter is the case before we have found
enough paths, we increase the unrolling depth k by one and continue.

Theorem 1. If sI 6� P≤p(aUb), the algorithm described above terminates and
returns a set of paths whose probability measure is greater than p.

Proof. (1) All paths which are found by the SAT-solver satisfy aUb: Since all
states which satisfy neither a nor b do not have any out-going edges anymore,
the target state cannot be reached from such a state.
(2) The algorithm terminates after a finite number of steps: If P≤p(aUb) is
violated, there is a finite counterexample C (see [10]). This is found after at
most k = max

{
|π|
∣∣π ∈ C

}
iterations. Since there is only a finite number of

paths with length ≤ k, the SAT-solver is only called a finite number of times.
(3) The probabilities are computed correctly: In our counterexample, no path is a
prefix of another path. Hence the total probability is the sum of the probabilities
of the single paths. ut



3.4 Optimizing the BMC process

Having all the paths computed by a SAT-solver is a time-consuming task, in par-
ticular when the counterexample consists of a large number of paths. Therefore
we need to reduce the number of calls to the SAT-solver.

Minimal distance initial state → target state. We would like to avoid
unnecessary calls to the SAT-solver of which we can know in advance that they
return UNSAT. This is the case if the current unrolling depth k is smaller than
the length of the shortest path from the initial state to a target state. We there-
fore compute the minimal distance from sI to a target state using the OBDD
representation.

Algorithm 3.1: MinDist
(
Initial state I(s), Target states Lb(s)

)
Begin

R(s)← I(s), old(s)← ∅, dist← 0 (1)

While R(s) 6= old(s) And Lb(s) ∧R(s) = ∅ Do (2)

old(s)← R(s) (3)

R(s)← R(s) ∨ renameVariables
(
t→ s in ∃s : R(s) ∧ T (s, t)

)
(4)

dist← dist+ 1 (5)

End While (6)

If Lb(s) ∧R(s) 6= ∅ Then Return dist (7)

Else Return ∞ (8)

End

Later we will start with the minimal distance as the initial unrolling depth
of the bounded model checking process.

Incomplete Assignments. Modern SAT-solvers detect satisfiability when all
variables have been assigned a boolean value without resulting in a conflict.
But often all clauses are satisfied before the solver has assigned each variable a
boolean value.

If we are able to obtain a partial satisfying assignment in which n state
variables are unassigned, this assignment corresponds to 2n different paths. Fur-
thermore, to exclude all these paths from the solution space only a single clause
is necessary, which is shorter than a clause only excluding a single path.

Loop Detection. Let us assume we have found a path on which a state occurs
twice, e. g., π = sI

p1−→ s1
p2−→ s2

p3−→ s3
p4−→ s2

p5−→ s4; sI is the initial state, s4 a
target state. We can easily detect that there is a loop s2

p3−→ s3
p4−→ s2. This loop

can be taken arbitrarily often. Instead of returning a set of “flat” paths—one
path for each unrolling of the loop—we construct counterexamples which consist
of acyclic paths whose states may be annotated with loops (see Fig. 1).

Definition 6. Let L be a set of loops, i. e., of paths σ such that σ(0) = σ(|σ|)
and for all 0 < i < |σ|: σ(i) 6= σ(0). An annotated path π̂ is a pair π̂ = (π, l)



p4p3

p5p2p1

s3

s2s1 s4sI

Fig. 1. A Path that is annotated with a loop.

such that π is an acyclic path and l : {0, . . . , |π|} → 2L assigns each position on
the path a set of loops with ∀i ∈ {0, . . . , |π|} ∀σ ∈ l(i) : π(i) = σ(0) = σ(|σ|).

Such an annotated path π̂ represents an infinite set of “flat” paths. For
instance, the probability measure of the annotated path in Fig. 1 is

Prs0(π̂) =
∞∑
i=0

p1 · p2 · (p3 · p4)i · p5 = p1 · p2 ·
1

1− (p3 · p4)
· p5.

We have to take into account that this probability includes the probability of
the path with 0 unrollings of the loop. This acyclic path has been found by the
SAT-solver in one of the previous iterations.

If we have attached m different loops with probabilities p1, p2, . . . , pm to the
same state, we can increase the probability of the underlying acyclic path by the
following factor:

p = 1 + (p1 + p2 + · · · pm) + (p2
1 + p1p2 + p2p1 + p2

2 + p1p3 + · · ·+ p2
m) + · · ·

=
∞∑
n=0

∑
i1,i2,...,im∈N

i1+i2+···+im=n

(
n

i1 i2 · · · im

)
pi11 p

i2
2 · · · pimm

=
∞∑
n=0

(p1 + p2 + · · ·+ pm)n =
1

1− (p1 + p2 + · · ·+ pm)
.

(3)

The advantages of generating sets of annotated paths are: (1) The user learns
more about the structure of the system. This makes the diagnosis of faults easier.
(2) The size of the counterexample can become considerably smaller since an
infinite number of paths is represented by one annotated path. (3) The number
of calls to the SAT-solver is reduced and thereby also the runtime of the bounded
model checking process.

Path exclusion. Before calling the SAT-solver, we have to exclude all those paths
from the solution space of the SAT-problem which originate from unrolling an-
notated paths we have already found in previous iterations and whose length is
identical to the current unrolling depth k.

Assume, we have an annotated path π̂ = (π, l), which is annotated with loops
π1, . . . , πp. We have to decide how often we have to unroll which loop in order



to obtain a path of total length k. These unrollings correspond to the solutions
of the following constraint with r1, . . . , rp ∈ N:

|π|+ |π1| · r1 + |π2| · r2 + · · ·+ |πp| · rp = k. (4)

We solve this constraint system using a simple enumeration algorithm. More
sophisticated methods are certainly available.

If there are several loops attached to the same state, we need to exclude them
in all possible orders. This can result in a large number of long clauses which need
to be added to the SAT-solver’s clause database. All paths generated by a single
solution have the literals corresponding to the acyclic base path in common. The
remaining literals can be grouped according to the state of the base path their
loop corresponds to. Let Π be the set of paths corresponding to a single solution
of Eq. 4. They all have the acyclic base path s0s1 . . . sn−1 in common, and the
states si occur at the same positions for all π ∈ Π. Each clause which excludes
a path π ∈ Π can therefore be split into Cbase—the literals to exclude the base
path—and Csi

π for i = 0, . . . , n− 2—the sets of literals to exclude the unrolling
of the loops attached to si. Using the naive approach, the clauses to exclude the
paths in Π are given by {Cbase} × {Cs0π |π ∈ Π} × · · · × {C

sn−2
π |π ∈ Π}.

By introducing auxiliary variables, this set can be reduced using the following
observation: Assume we have two clauses (C ∨ S1) ∧ (C ∨ S2), whereby C, S1,
and S2 are disjunctions of literals and C are the literals which both clauses have
in common. We introduce a new auxiliary variable a and replace the two clauses
by (C ∨ a) ∧ (¬a ∨ S1) ∧ (¬a ∨ S2). Applied to our path exclusion problem this
leads to the following set of clauses:{

Cbase ∪̇ {as0 , . . . , asn−2}
}
∪̇
n−2⋃
i=0

{
Csi
π ∪̇ {¬asi

} |π ∈ Π
}
. (5)

The variables asi
are the auxiliary variables used to split off the loop unrolling

at state si of the base path. The following lemma counts the number of clauses
and literals for both approaches:

Lemma 1. Let L be a set of loops; π̂ = (π, l), an annotated path over L; π =
s0s1 . . . , sn−1; and k, the current unrolling depth. Furthermore let u : L→ N be a
solution of Eq. (4). Let u(L′) =

∑
l′∈L′ u(l′) for L′ ⊆ L and l(si) = {li1, . . . , lini

}
the loops attached to state si. The number of clauses of the naive path exclusion
vs. the optimized path exclusion is given by

#naive
c =

n−2∏
i=0

(
u(l(si))

u(li1) · · ·u(lini
)

)
vs. #opt

c ≤ 1 +
n−2∑
i=0

(
u(l(si))

u(li1) · · ·u(lini
)

)
.

If bps denotes the number of bits per state, the total number of literals for both
approaches is

#naive
l = #naive

c · (k + 1) · bps

#opt
l ≤ (|π|+ 1) · bps+ |π|+

n−2∑
i=0

( u(l(si))
u(li1) · · ·u(lini

)

)
·
(

1 + bps ·
∑

l′∈l(si)

|l′| · u(l′)
) .



p4

p2
p1

p3
s0 s1 s2 s3

(a) A path with only one
loop . . .

p2 p2

p4p2p1

s2 s1

s0 s1 s2 s3

p3 p3

(b) . . . but we might detect
two loops if we are not care-
ful enough.

Fig. 2. A Path with an embedded loop.

Correctness issues. We have to guarantee that we do not count the same path
twice when we compute the probability measure of the set of annotated paths.
This happens if the same path can be generated by unrolling loops in different
ways.

Example 1. Let us assume the SAT-solver returns the path s0
p1−→ s1

p2−→ s2
p3−→

s1
p2−→ s2

p4−→ s3. In principle, we could detect two loops: s1 → s2 → s1 and s2 →
s1 → s2, which would result in the annotated path depicted in Fig. 2(b). One
might think the probability of this annotated path was p1 · 1

1−(p2·p3) ·p2 · 1
1−(p3·p2) ·

p4, but this is not correct. The reason is that the same paths are generated by
unrolling the first loop as by the second loop. The correct probability is therefore
only p1 · 1

1−(p2·p3) · p2 · p4. ut

We can avoid to over-estimate the probability measure with the following two
observations:

(1) On each path returned by the SAT-solver, there can be at most one loop
which we may attach to a state of the underlying acyclic path. If it was a path
with two loops, the solver would have returned two shorter paths—each with
only one of the loops—in previous iterations. But then, we would have excluded
the path with both loops in advance. If the path contains more than one state
twice, this means that either the loop itself consists of sub-loops or that we have
the situation depicted in Fig. 2(a). Both problems can be solved if we attach the
loop to the first state which occurs twice on the path.

(2) We only attach loops to that position on the current path where the loop
has been found by the SAT-solver. If the SAT-solver returns a path with a loop
we can conclude that this path cannot be generated by unrolling any existing
annotated path in our collection. So we may attach the loop to the corresponding
basic path without over-estimating the correct probability measure.

The pseudocode of the optimized algorithm with loop detection is sketched in
Algorithm 3.2. Starting with the minimal distance from the initial state to a
target state, we iterate lines 1–14 until either the counterexample exceeds the
probability bound p or the maximal unrolling depth has been finished. First, we
generate the CNF for the current unrolling depth k (line 2), then we exclude all
paths of length k, which originate from unrolling loops (line 3).



Algorithm 3.2: StochBMC
`
CNF I, CNF T , CNF Lb, Probability p

´
Begin

For k ← minDist To maxDist Do (1)
φ← CreateCNF(I, T, Lb, k) (2)
φ← φ ∧ ExcludePrecomputedPaths(C, k) (3)
While φ is satisfiable Do (4)

π ← Solution2Path(φ) (5)
φ← φ ∧ ExcludePath(π) (6)
If π contains a cycle Then (7)

(πbase, πloop)← split(π) (8)
b← findBasePath(C, πbase) (9)
C ←

`
C \ {b}

´
∪̇

˘
attachLoop(b, πloop)

¯
(10)

Else C ← C ∪ {π} (11)
If PrsI (C) > p Then Return C (12)

End While (13)
End For (14)
Return “I could not generate a counterexample!” (15)

End

As long as the resulting formula is satisfiable, we exclude the newly found
path from the solution space of the CNF. Furthermore we test if the path that
corresponds to the satisfying assignment contains a cycle. If this is the case, split
the path into the acyclic base path and the loop which we attach to the base
path that is already contained in the counterexample (lines 8–10). Otherwise
we insert the (acyclic) path into the counterexample (line 11). The algorithm
terminates as soon as the probability measure of C is larger than p.

4 Experiments

We have implemented the BMC algorithm in C++ with the optimizations that
were presented above. We use Cudd [19] for the OBDDs and Minisat [20] as
state-of-the-art SAT-solver. We ran all our experiments on a Dual Core AMD
OpteronTM processor with 2.4 GHz and 4 GB of main memory. For all exper-
iments we set a time limit of 2 hours and a memory limit of 1 GB. The results
of the experiments are listed in Table 1. Experiments which were aborted due
to the time limit are marked with “— TL —”. We used the probabilistic model
checker PRISM [16] to generate symbolic representations for benchmarks, all of
which are available from the PRISM website http://prismmodelchecker.org.

The first benchmark we used is the synchronous leader election protocol by
Itai and Rodeh [21]. It models a ring of N processors with a common clock.
The goal is to elect a leader, i. e. a uniquely designated processor, by sending
messages around the ring. The protocol proceeds in rounds. During each round
the processors draw a random number from the range {1, . . . ,K} as an id. If
there is a unique maximal id, the processor with this id becomes the leader.
Otherwise a new round is initiated. The Markov chains consist of a few hundred
(for N = 3) up to 12 500 states (for N = 5, K = 5). We checked the property
that finally a leader is elected. Since this happens with probability 1.0 when



Table 1. Experimental results for the leader election protocol

without loop detection with loop detection
N K bound paths depth SAT-calls time [s] paths loops depth SAT-calls time [s]

3 2 0.99 66 16 79 0.15 6 12 8 23 0.05
3 3 0.99 143 12 152 0.39 24 66 8 95 0.20
3 4 0.99 276 8 281 0.72 60 202 8 267 0.51
3 5 0.99 589 8 594 3.08 120 451 8 576 2.41
3 6 0.99 1040 8 1045 3.97 210 808 8 1023 3.76
3 8 0.99 1979 8 1984 8.31 504 1455 8 1964 5.42
3 10 0.99 990 4 991 5.63 990 0 4 991 5.16
3 12 0.99 1711 4 1712 8.82 1711 0 4 1712 8.20
4 2 0.99 — TL — 8 64 10 78 0.23
4 3 0.99 — TL — 60 1215 10 1281 9.22
4 4 0.90 3903 12 3909 79.52 216 3223 10 3445 61.84
4 5 0.90 2123 10 2129 99.01 560 1483 10 2049 85.45
4 6 0.90 1167 5 1168 30.80 1167 0 5 1168 28.13
4 8 0.90 3687 5 3688 113.95 3687 0 5 3688 102.58
5 2 0.90 — TL — 10 204 12 221 1.06
5 3 0.90 9585 12 9592 382.00 180 7508 12 7695 272.06
5 4 0.90 23019 12 23026 2948.00 900 20270 12 21177 2438.50
5 5 0.90 2813 6 2814 1102.67 2813 0 6 2814 1044.63
6 2 0.90 — TL — 12 606 14 626 6.56
7 2 0.90 — TL — 14 1571 16 1594 31.46
8 2 0.90 — TL — 16 3796 18 3822 137.46

starting in the initial state, we generated paths to provide a certificate that the
given bounds (0.99 and 0.90, respectively) are indeed exceeded.

One can see that the version with loop detection always performs better
than the version without. In those cases where the counterexample does not
contain any loops, both versions of the algorithm perform similarly. For other
instances loop detection turns out to be essential for counterexample generation.
E. g., for the leader-benchmark with N = 4 and K = 2, the algorithm without
loop detection found 239 138 paths (maximal length: 29) with a total probability
measure of 0.980 077 2 before the time limit was exceeded. In contrast to this,
the optimized algorithm only needed 8 paths with 64 loops and an unrolling
depth of 10 to reach the probability bound of 0.99.

In addition to the leader election protocol, we applied BMC to a contract signing
protocol [22, 23]. Its purpose is to exchange pieces of information (e. g. digital
signatures) between two parties A and B over a network. One important prop-
erty that such a protocol should exhibit is fairness. This means, whenever B has
obtained A’s commitment, B cannot prevent A from getting B’s commitment.
For the variant of the protocol we used, the actual probability to reach an unfair
state is slightly larger than 0.5. The violated property for which we generated
counterexamples is P< 1

2
(true U unfair). Since the optimized algorithm did not

find any loops before reaching the probability bound and since the results for
both variants do not differ substantially, we only show the results of the algo-
rithm without loop detection in Table 2. N denotes the number of data pairs to
exchange; and L, the size of each piece of data.



Table 2. Experimental results for the contract signing protocol

N L states prob. bound SAT-calls paths depth time [s]

5 3 53041 0.515625 0.50 513 512 31 49.67
5 4 73211 ” ” 513 512 41 158.53
5 5 93381 ” ” 513 512 51 278.90
5 6 115710 ” ” 513 512 61 441.64
6 2 159742 0.5078125 0.50 2049 2048 25 127.12
6 3 258046 ” ” 2049 2048 37 293.14
6 4 356350 ” ” 2049 2048 49 758.91
6 5 454654 ” ” 2049 2048 61 1778.75
7 2 737278 0.50390625 0.50 8193 8192 29 668.51
7 3 1196030 ” ” 8193 8192 43 2231.64

The results for the contract signing protocol show that we are able to handle
quite large Markov chains with more than 106 states. More states are possible if
we decrease the probability bound for the counterexample.

5 Conclusion

In the previous sections we have shown how bounded model checking can suc-
cessfully be applied to generate counterexamples when invariant properties of
Markov chains are violated. By returning not simply “flat” paths, but paths
which are annotated with loops, we make not only the algorithm more efficient,
but also the counterexamples more useful for the designer: (1) In many cases
fewer paths are needed such that the given probability bound is exceeded and
(2) the structured counterexamples provide more information about the system:
Each annotated path represents an acyclic execution trace together with possi-
ble deviations from this direct path in the form of loops. Additionally, bounded
model checking returns a counterexample which consist of shortest possible paths
(although they might be not the most probable ones).

Points for further research are to make the detection of loops more powerful
such that loops themselves may consist of loops. This will reduce the size of
the counterexample further. Other optimizations aim at reducing the number
of SAT-calls, e. g. by re-using loops on different annotated paths. Furthermore,
optimization techniques known from conventional bounded model checking
should be transferred to the stochastic world to speed-up the solution of the
SAT-instances. The extension of bounded model checking to Markov decision
processes (MDPs) will be another topic of our future research.

References

1. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

2. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods in System Design 19(1) (2001) 7–34



3. Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking
and reliability of results. In: 11th IEEE Int’l Workshop on Design and Diagnostics
of Electronic Circuits and Systems (DDECS), IEEE CS (2008) 207–212

4. Hojati, R., Brayton, R.K., Kurshan, R.P.: BDD-based debugging of design us-
ing language containment and fair CTL. In: 5th Int’l Conf. on Computer Aided
Verification (CAV). Vol. 697 of LNCS., Springer (1993) 41–58

5. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: 32nd Design Au-
tomation Conference. (1995) 427–432

6. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model check-
ing. In: Symposium on Logic in Computer Science (LICS), IEEE CS (2002) 19–29

7. Gurfinkel, A., Chechik, M.: Proof-like counter-examples. In: 9th Int’l Conf. on
TACAS. Vol. 2619 of LNCS., Springer (2003) 160–175

8. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic
reachability. In: 3rd Int’l Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS). Vol. 3829 of LNCS., Springer (2005) 177–195

9. Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reach-
ability. In: 4th Int’l Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS). Vol. 4202 of LNCS., Springer (2006) 33–51

10. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In: 13th

Int’l Conf. on TACAS. Vol. 4424 of LNCS., Springer (2007) 72–86
11. Damman, B., Han, T., Katoen, J.P.: Regular expressions for PCTL counterexam-

ples. In Rubino, G., ed.: 5th QEST, Saint-Malo, France, IEEE CS (2008) 179–188
12. Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterex-

amples in probabilistic model checking. In: Haifa Verification Conference. LNCS,
Springer (2008)

13. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Int’l Conf. on
Computer Aided Verification (CAV). Vol. 5123 of LNCS., Springer (2008) 162–175

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512–535

15. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies
in Constructive Mathematics and Mathematical Logic, Part 2 (1970) 115–125

16. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: 12th Int’l Conf. on TACAS. Vol.
3920 of LNCS., Springer (2006) 441–444

17. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multiterminal binary decision diagrams:
An efficient data structure for matrix representation. Formal Methods in System
Design 10(2/3) (1997) 149–169

18. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD). (1993) 42–47

19. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of
Colorado at Boulder (2005)

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: 6th Int’l Conf. on Theory and
Applications of Satisfiability Testing. Vol. 2919 of LNCS., Springer (2003) 502–518

21. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88(1) (1990) 60–87

22. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6) (1985) 637–647

23. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6) (2006) 561–589


