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Abstract. Providing compact and understandable counterexamples for
violated system properties is an essential task in model checking. Existing
works on counterexamples for probabilistic systems so far computed either
a large set of system runs or a subset of the system’s states, both of
which are of limited use in manual debugging. Many probabilistic systems
are described in a guarded command language like the one used by the
popular model checker PRISM. In this paper we describe how a minimal
subset of the commands can be identified which together already make
the system erroneous. We additionally show how the selected commands
can be further simplified to obtain a well-understandable counterexample.

1 Introduction

The ability to provide counterexamples for violated properties is one of the most
essential features of model checking [1]. Counterexamples make errors reproducible
and are used to guide the designer of an erroneous system during the debugging
process. Furthermore, they play an important role in counterexample-guided
abstraction refinement (CEGAR) [2–5]. For linear-time properties of digital or
hybrid systems, a single violating run suffices to refute the property. Thereby,
this run—acquired during model checking—directly forms a counterexample.

Probabilistic formalisms like discrete-time Markov chains (DTMCs), Markov
decision processes (MDPs) and probabilistic automata (PAs) are well-suited to
model systems with uncertainties. Violating behavior in the probabilistic setting
means that the probability that a certain property holds is outside of some
required bounds. For probabilistic reachability properties, this can be reduced to
the case where an upper bound on the probability is exceeded [6]. Thereby, a
probabilistic counterexample is formed by a set of runs that all satisfy a given
property while their probability mass is larger than the allowed upper bound.
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Tools like PRISM [7] verify probabilistic systems by computing the solution of a
linear equation system. While this technique is very efficient, the simultaneous
generation of counterexamples is not supported.

During the last years, a number of approaches have been proposed to compute
probabilistic counterexamples by enumerating certain paths of a system [8, 6, 9].
In general, such a set may be extremely large; for some systems it is at least
double exponential in the number of system states [6]. Also different compact
representations of counterexamples have been devised, e. g., counterexamples are
described symbolically by regular expressions in [6], while in [10] and [11] the
abstraction of strongly connected components yields loop-free systems.

A different representation is obtained by taking a preferably small subset
of the state space, forming a critical subsystem. Inside this part of the original
system the property is already violated, see [8] and [11]. Both approaches use
heuristic path search algorithms to incrementally build such critical subsystems
for probabilistic reachability properties. In [12–14], a different approach was
suggested: not only a small subsystem, but a minimal one is computed for a large
class of properties, namely probabilistic reachability and ω-regular properties for
both DTMCs and MDPs. This is achieved using solver techniques such as mixed
integer linear programming (MILP) [15].

An unanswered question for all these approaches is how they can actually be
used for debugging. Most practical examples are built by the parallel composition
of modules forming a flat state-space with millions of states. Although critical
subsystems are often smaller by orders of magnitude than the original system,
they may still be very large, rendering manual debugging practically impossible.

In this paper, we focus on the non-deterministic and fully compositional
model of probabilistic automata (PA) [16, 17]. The specification of such models
is generally done in a high-level language allowing the parallel composition of
modules. The modules of the system are not specified by enumerating states
and transitions but can be described using a guarded command language [18, 19]
like the one used by PRISM. The communication between different modules takes
place using synchronization on common actions and via shared variables. Having
this human-readable specification language, it seems natural that a user should
be pointed to the part of the system description which causes the error, instead
of referring to the probabilistic automaton defined by the composition. To the
best of our knowledge, no work on probabilistic counterexamples has considered
this sort of high-level counterexamples yet.

We show how to identify a smallest set of guarded commands which induces
a critical subsystem. In order to correct the system, at least one of the returned
commands has to be changed. We additionally simplify the commands by removing
branching choices which are not necessary to obtain a counterexample. We present
this as a special case of a method where the number of different transition labels
for a PA is minimized. This offers great flexibility in terms of human-readable
counterexamples. The NP-hard computation of such a smallest critical label set
is done by the established approach of mixed integer linear programming.



Structure of the paper. In Section 2 we review some foundations. Our approach
to obtain smallest command sets is presented in Section 3. How the essential
commands can be simplified is described in Section 4. After some experimental
results in Section 5 we conclude the paper in Section 6.

2 Foundations

Let S be a countable set. A sub-distribution on S is a function µ : S → [0, 1] such
that 0 ≤

∑
s∈S µ(s) ≤ 1. We use the notation µ(S′) =

∑
s∈S′ µ(s) for a subset

S′ ⊆ S. A sub-distribution with µ(S) = 1 is called a probability distribution. We
denote the set of all probability distributions on S by Distr(S) and analogously
by SubDistr(S) for sub-distributions.

Probabilistic Automata

Definition 1 (Probabilistic automaton). A probabilistic automaton (PA)
is a tuple M = (S, sinit,Act, P ) such that S is a finite set of states, sinit ∈ S
is an initial state, Act is a finite set of actions, and P : S → 2Act×Distr(S) is a
probabilistic transition relation such that P (s) is finite for all s ∈ S.

In the following we also use η to denote an action-distribution pair (α, µ).
We further define succ(s, α, µ) = {s′ ∈ S |µ(s′) > 0} for (α, µ) ∈ P (s), succ(s) =⋃

(α,µ)∈P (s) succ(s, α, µ), and pred(s) = {s′ ∈ S | ∃(α, µ) ∈ P (s′) : µ(s) > 0}.
The evolution of a probabilistic automaton is as follows: Starting in the initial

state s = sinit, first a transition (α, µ) ∈ P (s) is chosen non-deterministically.
Then the successor state s′ ∈ succ(s, α, µ) is determined probabilistically accord-
ing to the distribution µ. This process is repeated for the successor state s′. To
prevent deadlocks we assume P (s) 6= ∅ for all s ∈ S.

An infinite path of a PA M is an infinite sequence s0(α0, µ0)s1(α1, µ1) . . .
with si ∈ S, (αi, µi) ∈ P (si) and si+1 ∈ succ(si, αi, µi) for all i ≥ 0. A finite path
π of M is a finite prefix s0(α0, µ0)s1(α1, µ1) . . . sn of an infinite path of M with
last state last(π) = sn. We denote the set of all finite paths of M by Pathsfin

M.

A sub-PA is like a PA, but it allows sub-distributions instead of probability
distributions in the definition of P .

Definition 2 (Subsystem). A sub-PAM′ = (S′, s′init,Act′, P ′) is a subsystem
of a sub-PA M = (S, sinit,Act, P ), written M′ v M, iff S′ ⊆ S, s′init = sinit,
Act′ ⊆ Act and for all s ∈ S′ there is an injective function f : P ′(s) → P (s)
such that for all (α′, µ′) ∈ P ′(s) with f((α′, µ′)) = (α, µ) we have that α′ = α
and for all s′ ∈ S′ either µ′(s′) = 0 or µ′(s′) = µ(s′).

A sub-PA M = (S, sinit,Act, P ) can be transformed into a PA as follows: We
add a new state s⊥ 6∈ S, turn all sub-distributions into probability distributions
by defining µ(s⊥) := 1 − µ(S) for each s ∈ S and (α, µ) ∈ P (s), and make s⊥
absorbing by setting P (s⊥) := {(τ, µ) ∈ Act×Distr(S∪{s⊥}) | µ(s⊥) = 1}. This
way all methods we formalize for PAs can also be applied to sub-PAs.



Before a probability measure on PAs can be defined, the nondeterminism has
to be resolved. This is done by an entity called scheduler.

Definition 3 (Scheduler). A scheduler for a PA M = (S, sinit,Act, P ) is a
function σ : Pathsfin

M → SubDistr(Act × Distr(S)) such that σ(π)(α, µ) > 0
implies (α, µ) ∈ P (last(π)) for all π ∈ Pathsfin

M and (α, µ) ∈ Act×Distr(S). We
use SchedM to denote the set of all schedulers of M.

By resolving the nondeterminism, a scheduler turns a PA into a fully prob-
abilistic model, for which a standard probability measure can be defined [20,
Chapter 10.1]. In this paper we are interested in probabilistic reachability proper-
ties: Is the probability to reach a set T ⊆ S of target states from sinit at most
equal to a given bound λ ∈ [0, 1] ⊆ R? Such a reachability property will be
denoted with P≤λ(♦T ). Note that checking ω-regular properties can be reduced
to checking reachability properties. For a fixed scheduler σ, this probability
PrσM(sinit,♦T ) can be computed by solving a linear equation system. However,
for a PA without a scheduler, this question is not well-posed. Instead we ask:
Is the probability to reach a set T ⊆ S of target states from sinit at most λ for
all schedulers? That means, P≤λ(♦T ) has to hold for all schedulers. To check
this, it suffices to compute the maximal probability over all schedulers that T
is reached from sinit, which we denote with Pr+

M(sinit,♦T ). One can show that
for this kind of properties maximizing over a certain subclass of all schedulers
suffices, namely the so-called memoryless deterministic schedulers, which can be
seen as functions σ : S → Act× SubDistr(S).

Definition 4 (Memoryless deterministic scheduler). A scheduler σ ofM =
(S, sinit,Act, P ) is memoryless if last(π) = last(π′) implies σ(π) = σ(π′) for all
π, π′ ∈ Pathsfin

M. The scheduler σ is deterministic if σ(π)(η) ∈ {0, 1} for all
π ∈ Pathsfin

M and η ∈ Act×Distr(S).

The maximal probability Pr+
M(s,♦T ) to reach T from s is obtained as

the unique solution of the following equation system: Pr+
M(s,♦T ) = 1, if

s ∈ T ; Pr+
M(s,♦T ) = 0, if T is unreachable from s under all schedulers, and

Pr+
M(s,♦T ) = max(α,µ)∈P (s)

∑
s′∈S µ(s′) · Pr+

M(s′,♦T ) otherwise. It can be
solved by either rewriting it into a linear program, by applying a technique called
value iteration, or by iterating over the possible schedulers (policy iteration) (see,
e. g., [20, Chapter 10.6]). A memoryless deterministic scheduler is obtained from
the solution by taking an arbitrary element of P (s) in the first two cases and an
element of P (s) for which the maximum is obtained in the third case.

PRISM’s Guarded Command Language For a set Var of Boolean variables,
let AVar denote the set of variable assignments, i. e., of functions ν : Var→ {0, 1}.

Definition 5 (Model, module, command). A model is a tuple (Var, sinit,M)
where Var is a finite set of Boolean variables, sinit : Var→ {0, 1} the initial state,
and M = {M1, . . . ,Mk} a finite set of modules.



A module is a tuple Mi = (Vari,Acti, Ci) with Vari ⊆ Var a set of variables
such that Vari ∩ Varj = ∅ for i 6= j, Acti a finite set of synchronizing actions,

and Ci a finite set of commands. The action τ with τ 6∈
⋃k
i=1 Acti denotes the

internal non-synchronizing action. A command c ∈ Ci has the form

c = [α] g → p1 : f1 + . . .+ pn : fn

with α ∈ Acti ∪̇ {τ}, g a Boolean predicate (“guard”) over the variables in Var,
pi ∈ [0, 1] a rational number with

∑n
i=1 pi = 1, and fi : AVar → AVari being a

variable update function. We refer to the action α of c by act(c).

Note that each variable may be written by only one module, but the update
may depend on variables of other modules. Each model with several modules
is equivalent to a model with a single module which is obtained by computing
the parallel composition of these modules. We give a short intuition on how this
composition is built. For more details we refer to the documentation of PRISM.
Assume two modules M1 = (Var1,Act1, C1) and M2 = (Var2,Act2, C2) with
Var1 ∩Var2 = ∅. The parallel composition M = M1||M2 = (Var,Act, C) is given
by Var = Var1 ∪Var2, Act = Act1 ∪Act2 and

C = { c | c ∈ C1 ∪ C2 ∧ act(c) ∈ {τ} ∪ (Act1 \Act2) ∪ (Act2 \Act1) } ∪
{ c⊗ c′| c ∈ C1 ∧ c′ ∈ C2 ∧ act(c) = act(c′) ∈ Act1 ∩Act2 } ,

where c⊗ c′ for c = [α] g → p1 : f1 + . . .+ pn : fn ∈ C1 and c′ = [α] g′ → p′1 :
f ′1 + . . .+ p′m : f ′m ∈ C2 is defined as

c⊗ c′ = [α] g ∧ g′ → p1 · p′1 : f1 ⊗ f ′1 + . . .+ pn · p′1 : fn ⊗ f ′1
. . .

+ p1 · p′m : f1 ⊗ f ′n + . . .+ pn · p′n : fn ⊗ f ′m.

Here, for fi : AVar → AVar1 and f ′j : AVar → AVar2 we define fi ⊗ f ′j : AVar →
AVar1∪Var2 such that for all ν ∈ AVar we have that (fi⊗f ′j)(ν)(x) equals fi(ν)(x)
for each x ∈ Var1 and f ′j(ν)(x) for each x ∈ Var2.

Intuitively, commands labeled with non-synchronizing actions are executed on
their own, while for synchronizing actions a command from each synchronizing
module is executed simultaneously. Note that if a module has an action in its
synchronizing action set but no commands labeled with this action, this module
will block the execution of commands with this action in the composition. This is
considered to be a modeling error and the corresponding commands are ignored.

The PA-semantics of a model is as follows. Assume a model (Var, sinit,M) with
a single module M = (Var,Act, C) which will not be subject to parallel composi-
tion any more. The state space S of the corresponding PA M = (S, sinit,Act, P )
is given by the set of all possible variable assignments AVar, i. e., a state s is a
vector (x1, . . . , xm) with xi being a value of the variable vi ∈ Var = {v1, . . . , vm}.
To construct the transitions, we observe that the guard g of each command

c = [α] g → p1 : f1 + . . .+ pn : fn ∈ C



defines a subset of the state space Sc ⊆ AVar with s ∈ Sc iff s satisfies g. Each
update fi : AVar → AVar maps a state s′ ∈ S to each s ∈ Sc. Together with the
associated values pi, we define a probability distribution µc,s : S → [0, 1] with

µc,s(s
′) =

∑
{i | 1≤i≤n∧fi(s)=s′}

pi

for each s′ ∈ AVar. The probabilistic transition relation P : AVar → 2Act×Distr(AVar)

is given by P (s) = {(α, µc,s) | c ∈ C ∧ act(c) = α ∧ s ∈ Sc} for all s ∈ AVar.

Mixed Integer Programming A mixed integer linear program optimizes a
linear objective function under a condition specified by a conjunction of linear
inequalities. A subset of the variables in the inequalities is restricted to take only
integer values, which makes solving MILPs NP-hard [21, Problem MP1].

Definition 6 (Mixed integer linear program). Let A ∈ Qm×n, B ∈ Qm×k,
b ∈ Qm, c ∈ Qn, and d ∈ Qk. A mixed integer linear program (MILP) consists
in computing min cTx+ dT y such that Ax+By ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm
and the generation of so-called cutting planes. These algorithms heavily rely on the
fact that relaxations of MILPs which result by removing the integrality constraints
can be efficiently solved. MILPs are widely used in operations research, hardware-
software co-design, and numerous other applications. Efficient open source as
well as commercial implementations are available like Scip [22], Cplex [23], or
Gurobi [24]. We refer to, e. g., [15] for more information on solving MILPs.

3 Computing Counterexamples

In this section we show how to compute smallest critical command sets. For this,
we introduce a generalization of this problem, namely smallest critical labelings,
state the complexity of the problem, and specify an MILP formulation which
yields a smallest critical labeling.

Let M = (S, sinit,Act, P ) be a PA, T ⊆ S, Lab a finite set of labels, and
L : S × Act × Distr(S) 7→ 2Lab a partial labeling function such that L(s, η)
is defined iff η ∈ P (s). Let Lab′ ⊆ Lab be a subset of the labels. The PA
induced by Lab′ is M|Lab′ = (S, sinit,Act, P ′) such that for all s ∈ S we have

P ′(s) =
{
η ∈ P (s) |L(s, η) ⊆ Lab′

}
.

Definition 7 (Smallest critical labeling problem). Let M, T , Lab and L
be defined as above and P≤λ(♦T ) be a reachability property that is violated by
sinit in M. A subset Lab′ ⊆ Lab is critical if Pr+

M|Lab′
(sinit,♦T ) > λ.

Given a weight function w : Lab→ R≥0, the smallest critical labeling problem
is to determine a critical subset Lab′ ⊆ Lab such that w(Lab′) :=

∑
`∈Lab′ w(`)

is minimal among all critical subsets of Lab.



Theorem 1. To decide whether there is a critical labeling Lab′ ⊆ Lab with
w(Lab′) ≤ k for a given integer k ≥ 0 is NP-complete.

A proof of this theorem, which is based on the reduction of exact 3-cover [21,
Problem SP2] is given in the extended version [25] of this paper.

The concept of smallest critical labelings gives us a flexible description of
counterexamples being minimal with respect to different quantities.

Commands In order to minimize the number of commands that together induce
an erroneous system, let M = (S, sinit,Act, P ) be a PA generated by modules
Mi = (Vari,Acti, Ci), i = 1, . . ., k. For each module Mi and each command
c ∈ Ci we introduce a unique label3 `c,i with weight 1 and define the labeling
function L : S × Act × Distr(S) → 2Lab such that each transition is labeled
with the set of commands which together generate this transition4. Note that in
case of synchronization several commands together create a certain transition. A
smallest critical labeling corresponds to a smallest critical command set, being a
smallest set of commands which together generate an erroneous system.

Modules We can also minimize the number of modules involved in a counterexam-
ple by using the same label for all commands in a module. Often systems consist
of a number of copies of the same module, containing the same commands, only
with the variables renamed, plus a few extra modules. Consider for example a
wireless network: n nodes want to transmit messages using a protocol for medium
access control [26]. All nodes run the same protocol. Additionally there may be a
module describing the channel. When fixing an erroneous system, one wants to
preserve the identical structure of the nodes. Therefore the selected commands
should contain the same subset of commands from all identical modules. This can
be obtained by assigning the same label to all corresponding commands from the
symmetric modules and using the number of symmetric modules as its weight.

States The state-minimal subsystems as introduced in [12] can be obtained as
special case of smallest critical labelings: For each state s ∈ S introduce a label
`s and set L(s, η) = {`s} for all η ∈ P (s). Lab′ ⊆ Lab = {`s | s ∈ S} is a smallest
critical labeling iff S′ = {s ∈ S | `s ∈ Lab′} induces a minimal critical subsystem.

We will now explain how these smallest critical labelings are computed. First,
the notions of relevant and problematic states are considered. Intuitively, a state
s is relevant, if there exists a scheduler such that a target state is reachable from
s. A state s is problematic, if there additionally exists a deadlock-free scheduler
under that no target state is reachable from s.

Definition 8 (Relevant and problematic states). Let M, T , and L be as
above. The relevant states ofM for T are given by Srel

T = {s ∈ S | ∃σ ∈ SchedM :
PrσM(s,♦T ) > 0}. A label ` is relevant for T if there is s ∈ Srel

T and η ∈ P (s)
such that Srel

T ∩ succ(s, η) 6= ∅ and ` ∈ L(s, η).

3 In the following we write short lc instead of lc,i if the index i is clear from the context.
4 If several command sets generate the same transition, we make copies of the transition.



Let Sched+
M be the set of all schedulers σ with {η | σ(π)(η) > 0} 6= ∅ for

all π. The states in Sprob
T = {s ∈ Srel

T | ∃σ ∈ Sched+
M : PrσM(s,♦T ) = 0} are

problematic states and the set P prob
T =

{
(s, η) ∈ Sprob

T × Act × Distr(S)
∣∣ η ∈

P (s) ∧ succ(s, η) ⊆ Sprob
T

}
are problematic transitions regarding T .

Both relevant states and problematic states and actions can be computed in
linear time using graph algorithms [27].

States that are not relevant can be removed from the PA together with all
their incident edges without changing the probability of reaching T from sinit.
Additionally, all labels that do not occur in the relevant part of the PA can be
deleted. We therefore assume that the (sub-)PA under consideration contains
only states and labels that are relevant for T .

In our computation, we need to ensure that from each problematic state
an unproblematic state is reachable under the selected scheduler, otherwise the
probability of the problematic states is not well defined by the constraints [14].

We solve this problem by attaching a value rs to each problematic state s ∈ Sprob
T

and encoding that a distribution of s is selected only if it has at least one successor
state s′ with a value rs′ > rs attached to it. This requirement assures by induction
that there is an increasing path from s to an unproblematic state, along which
the values attached to the states are strictly increasing.

To encode the selection of smallest critical command sets as an MILP, we
need the following variables:

– for each ` ∈ Lab a variable x` ∈ {0, 1} which is 1 iff ` is part of the critical
labeling,

– for each state s ∈ S \ T and each transition η ∈ P (s) a variable σs,η ∈ {0, 1}
which is 1 iff η is chosen in s by the scheduler; the scheduler is free not to
choose any transition,

– for each state s ∈ S a variable ps ∈ [0, 1] which stores the probability to
reach a target state from s under the selected scheduler within the subsystem
defined by the selected labeling,

– for each state s ∈ S being either a problematic state or a successor of a
problematic state a variable rs ∈ [0, 1] ⊆ R for the encoding of increasing
paths, and

– for each problematic state s ∈ Sprob
T and each successor state s′ ∈ succ(s) a

variable ts,s′ ∈ {0, 1}, where ts,s′ = 1 implies that the values attached to the
states increase along the edge (s, s′), i.e., rs < rs′ .

Let wmin := min{w(`) | ` ∈ Lab ∧ w(`) > 0} be the smallest positive weight
that is assigned to any label. The MILP for the smallest critical labeling problem
is then as follows:

minimize − 1

2
wmin · psinit +

∑
`∈Lab

w(`) · x` (1a)

such that

psinit > λ (1b)



∀s ∈ S \ T :
∑

η∈P (s)

σs,η ≤ 1 (1c)

∀s ∈ S ∀η ∈ P (s) ∀` ∈ L(s, η) : x` ≥ σs,η (1d)

∀s ∈ T : ps = 1 (1e)

∀s ∈ S \ T : ps ≤
∑

η∈P (s)

σs,η (1f)

∀s ∈ S \ T ∀η ∈ P (s) : ps ≤
∑

s′∈succ(s,η)

µ(s′) · ps′ + (1− σs,η) (1g)

∀(s, η) ∈ P prob
T : σs,η ≤

∑
s′∈succ(s,η)

tss′ (1h)

∀s ∈ Sprob
T ∀s′ ∈ succ(s) : rs < rs′ + (1− tss′) . (1i)

The number of variables in this MILP is in O(l + n+m) and the number of
constraints in O(n+ l ·m) where l is the number of labels, n the number of states,
and m the number of transitions of M, i. e., m =

∣∣{(s, η, s′) | s′ ∈ succ(s, η)}
∣∣.

We first explain the constraints in lines (1b)–(1i) of the MILP, which describe a
critical labeling. First, we ensure that the probability of the initial state is greater
than the probability bound λ (1b). For reachability properties, we can restrict
ourselves to memoryless deterministic schedulers. So for each state s ∈ S \ T at
most one scheduler variable σs,η ∈ P (s) can be set to 1 (1c). Note, that there
may be states where no transition is chosen. For target states we do not need any
restriction. If the scheduler selects a transition η ∈ P (s), all labels ` ∈ L(s, η)
have to be chosen (1d). For all target states s ∈ T the probability ps is set to
1 (1e), while for all non-target states without chosen transition (σs,η = 0 for all
η ∈ P (s)), the probability is set to zero (1f); if σs,η = 1 for some η ∈ P (s), this
constraint is no restriction to probability ps. However, in this case constraint (1g)
is responsible for assigning a valid probability to ps. The constraint is trivially
satisfied if σs,η = 0. If transition η is selected, the probability ps is bounded from
above by the probability to go to one of the successor states of η and to reach
the target states from there.

The reachability of at least one unproblematic state is ensured by (1h) and (1i).
First, for every state s with transition η that is problematic regarding T , at least
one transition variable must be activated. Second, for a path according to these
transition variables, an increasing order is enforced for the problematic states.
Because of this order, no problematic states can be revisited on an increasing
path which enforces the final reachability of a non-problematic state.

These constraints enforce that each satisfying assignment of the label variables
x` corresponds to a critical labeling. By minimizing the weight of the selected
labels we obtain a smallest critical labeling. By the additional term − 1

2wmin ·psinit
we obtain not only a smallest critical labeling but one with maximal probability.
The coefficient − 1

2wmin is needed to ensure that the benefit from maximizing the
probability is smaller than the loss by adding an additional label. Please note,
that any coefficient c with 0 < c < wmin could be used.



Theorem 2. The MILP given in (1a)–(1i) yields a smallest critical labeling.

A proof of this theorem can be found in the extended version [25] of this paper.

Optimizations The constraints of the MILP describe critical labelings, whereas
minimality is enforced by the objective function. In this section we describe how
some additional constraints can be imposed, which explicitly exclude variable
assignments that are either not optimal or encode labelings that are also encoded
by other assignments. Adding such redundant constraints to the MILP often
speeds up the search.

Scheduler cuts We want to exclude solutions of the constraint set for which a
state s ∈ S has a selected action-distribution pair η ∈ P (s) with σs,η = 1 but
all successors of s under η are non-target states without any selected action-
distribution pairs. Note that such solutions would define ps = 0. We add for all
s ∈ S \ T and all η ∈ P (s) with succ(s, η) ∩ T = ∅ the constraint

σs,η ≤
∑

s′∈succ(s,η)\{s}

∑
η′∈P (s′)

σs′,η′ . (2)

Analogously, we require for each non-initial state s with a selected action-
distribution pair η ∈ P (s) that there is a selected action-distribution pair leading
to s. Thus, we add for all states s ∈ S \ {sinit} the constraint∑

η∈P (s)

σs,η ≤
∑

s′∈pred(s)\{s}

∑
{η′∈P (s′) | s′∈succ(s,η)}

σs′,η′ . (3)

As special cases of these cuts, we can encode that the initial state has at least
one activated outgoing transition and that at least one of the target states has an
selected incoming transition. These special cuts come with very few additional
constraints and often have a great impact on the solving times.

Label cuts In order to guide the solver to select the correct combinations of labels
and scheduler variables, we want to enforce that for every selected label ` there
is at least one scheduler variable σs,η activated such that ` ∈ L(s, η):

x` ≤
∑
s∈S

∑
{η∈P (s) | `∈L(s,η)}

σs,η . (4)

Synchronization cuts While scheduler and label cuts are applicable to the general
smallest critical labeling problem, synchronization cuts take the proper synchro-
nization of commands into account. They are therefore only applicable for the
computation of smallest critical command sets.

Let Mi,Mj (i 6= j) be two modules which synchronize on action α, c a
command of Mi with action α, and Cj,α the set of commands with action α in
module Mj . The following constraint ensures that if command c is selected by
activating the variable xlc , then at least one command d ∈ Cj,α is selected, too.

x`c ≤
∑

d∈Cj,α

x`d . (5)



4 Simplification of Counterexamples

Even though we can obtain a smallest set of commands which together induce
an erroneous system by the techniques described in the previous section, further
simplifications may be possible. For this we identify branching choices of each
command in the counterexample which can be removed, still yielding an erroneous
system. To accomplish this, we specify an MILP formulation which identifies
a smallest set of branching choices that need to be preserved for the critical
command set, such that the induced sub-PA still violates the property under
consideration.

For this we need a more detailed labeling of the commands. Given a command
ci of the form [α] g → p1 : f1 +p2 : f2 + · · ·+pn : fn, we assign to each branching
choice pj : fj a unique label bi,j . Let Labb be the set of all such labels.

When composing the modules, we compute the union of the labeling of the
branching choices being executed together. When computing the corresponding
PAM, we transfer this labeling to the branching choices of the transition relation
of M. We define the partial function Lb : S ×Act×Distr(S)× S 7→ 2Labb such
that Lb(s, ν, s

′) is defined iff ν ∈ P (s) and s′ ∈ succ(s, ν). In this case, Lb(s, ν, s
′)

contains the labels of the branching choices of all commands that are involved in
generating the transition from s to s′ via the transition ν.

The following MILP identifies a largest number of branching choices which
can be removed. The program is similar to the MILP for command selection, but
instead of selecting commands it uses decision variables xb to select branching
choices in the commands. Additionally to the probability ps of the composed
states s ∈ S, we use variables ps,ν,s′ ∈ [0, 1] ⊆ R for s ∈ S, ν ∈ P (s) and
s′ ∈ succ(s, ν), which are forced to be zero if not all branching choices which
are needed to generate the transition from s to s′ in ν are available (6g). For
the definition of ps in (6h), the expression µ(s′) · ps′ of (1g) is replaced by ps,η,s′ .
The remaining constraints are unchanged.

minimize − 1

2
psinit +

∑
b∈Labb

xb (6a)

such that

psinit > λ (6b)

∀s ∈ S \ T :
∑

η∈P (s)

σs,η ≤ 1 (6c)

∀s ∈ T : ps = 1 (6d)

∀s ∈ S \ T ∀η ∈ P (s) ∀s′ ∈ succ(s, η) :

ps,η,s′ ≤ µ(s′) · ps′ (6e)

ps,η,s′ ≤ σs,η (6f)

∀b ∈ Lb(s, η, s′) : ps,η,s′ ≤ xb (6g)

∀s ∈ S \ T ∀η ∈ P (s) : ps ≤
∑

s′∈succ(s,η)

ps,η,s′ + (1− σs,η) (6h)



∀s ∈ S \ T : ps ≤
∑

η∈P (s)

σs,η (6i)

∀(s, η) ∈ P prob
T : σs,η ≤

∑
s′∈succ(s,η)

ts,s′ (6j)

∀s ∈ Sprob
T ∀s′ ∈ succ(s) : rs < rs′ + (1− ts,s′) (6k)

5 Experiments

We have implemented the described techniques in C++ using the MILP solver
Gurobi [24]. The experiments were performed on an Intel R© Xeon R© CPU E5-2450
with 2.10 GHz clock frequency and 32 GB of main memory, running Ubuntu
12.04 Linux in 64 bit mode. We focus on the minimization of the number of
commands needed to obtain a counterexample and simplify them by deleting a
maximum number of branchings. We do not consider symmetries in the models.
We ran our tool with two threads in parallel and aborted any experiment which
did not finish within 10 min (1200 CPU seconds). We conducted a number of
experiments that are publicly available on the web page of PRISM [28].
I coin-N -K models the shared coin protocol of a randomized consensus algo-
rithm [29]. The protocol returns a preference between two choices with a certain
probability, whenever requested by a process at some point in the execution
of the consensus algorithm. The shared coin protocol is parameterized by the
number N of involved processes and a constant K > 1. Internally, the protocol
is based on flipping a coin to come to a decision. We consider the property
P≤λ

(
♦ (finished ∧ all coins equal)

)
, which is satisfied if the probability to finish

the protocol with all coins equal is at most λ.
I wlan-B-C models the two-way handshake mechanism of the IEEE 802.11
Wireless LAN protocol. Two stations try to send data, but run into a collision.
Therefore they enter the randomized exponential backoff scheme. The parameter
B denotes the maximal allowed value of the backoff counter. We check the property
P≤λ

(
♦ (num collisions = C)

)
putting an upper bound on the probability that a

maximal allowed number C of collisions occur.
I csma-N -C concerns the IEEE 802.3 CSMA/CD network protocol. N is the
number of processes that want to access a common channel, C is the maximal
value of the backoff counter. We check P≤λ(¬collision max backoff U delivered)
expressing that the probability that all stations successfully send their messages
before a collision with maximal backoff occurs is at most λ.
I fw-N models the Tree Identify Protocol of the IEEE 1394 High Performance
Serial Bus (called “FireWire”) [30]. It is a leader election protocol which is
executed each time a node enters or leaves the network. The parameter N denotes
the delay of the wire as multiples of 10 ns. We check P≤λ(♦ leader elected), i.e.,
that the probability of finally electing a leader is at most λ.

Some statistics of the models for different parameter values are shown in
Table 1. The columns contain the name of the model, its number of states,



Table 1. Model statistics

Model #states #trans. #mod. #comm. Pr+(sinit,♦T ) λ MCS

coin-2-1 144 252 2 14 (12) 0.6 0.4 13
coin-2-2 272 492 2 14 (12) 0.5556 0.4 25∗

coin-2-4 528 972 2 14 (12) 0.529 40 0.4 55∗

coin-2-5 656 1212 2 14 (12) 0.523 79 0.4 67∗

coin-2-6 784 1452 2 14 (12) 0.519 98 0.4 83∗

coin-4-1 12416 40672 4 28 (20) 0.636 26 0.4 171∗

coin-4-2 22656 75232 4 28 (20) 0.578 94 0.4 244∗

csma-2-2 1038 1282 3 34 (34) 0.875 0.5 540
csma-2-4 7958 10594 3 38 (38) 0.999 02 0.5 1769∗

fw-1 1743 2197 4 68 (64) 1.0 0.5 412
fw-4 5452 7724 4 68 (64) 1.0 0.5 412∗

fw-10 17190 29364 4 68 (64) 1.0 0.5 412∗

fw-15 33425 63379 4 68 (64) 1.0 0.5 412∗

wlan-0-2 6063 10619 3 70 (42) 0.183 59 0.1 121
wlan-0-5 14883 26138 3 70 (42) 0.001 14 0.001 952∗

wlan-2-1 28597 57331 3 76 (14) 1.0 0.5 7
wlan-2-2 28598 57332 3 76 (42) 0.182 60 0.1 121∗

wlan-2-3 35197 70216 3 76 (42) 0.017 93 0.01 514∗

wlan-3-1 96419 204743 3 78 (14) 1.0 0.5 7
wlan-3-2 96420 204744 3 78 (42) 0.183 59 0.1 121∗

transitions, modules, and commands. The value in braces is the number of
relevant commands. Column 6 contains the reachability probability and column 7
the bound λ. The last column shows the number of states in the minimal critical
subsystem, i. e., the smallest subsystem of the PA such that the probability to
reach a target state inside the subsystem is still above the bound. Entries which
are marked with a star, correspond to the smallest critical subsystem we could
find within the time bound of 10 min using our tool LTLSubsys [12], but they
are not necessarily optimal.

The results of our experiments are displayed in Table 2. The first column
contains the name of the model. The following three blocks contain the results of
runs without any cuts, with all cuts, and with the best combination of cuts: If
there were cut combinations with which the MILP could be solved within the
time limit, we report the one with the shortest solving time. If all combinations
timed out, we report the one that yielded the largest lower bound.

For each block we give the computation time in seconds (“Time”), the memory
consumption in MB (“Mem.”), the number of commands in the critical command
set (“n”) and, in case the time limit was exceeded, a lower bound on the size
of the smallest critical command set (“lb”), which the solver obtains by solving
a linear programming relaxation of the MILP. An entry “??” for the number
of commands means that the solver was not able to find a non-trivial critical
command set within the time limit. For the run without cuts we additionally
give the number of variables (“Var.”) and constraints (“Constr.”) of the MILP.



Table 2. Experimental results (time limit = 600 seconds)

no cuts all cuts best cut combination branches

Model Var. Constr. Time Mem. n lb Time Mem. n lb Time Mem. n lb simp. |S′|

coin-2-1 277 491 TO 773 9 8 298.56 146 9 opt 145.76 95 9 opt 1/12 28
coin-2-2 533 1004 TO 864 9 6 TO 676 9 7 TO 562 9 7 1/12 72
coin-2-4 1045 2028 TO 511 9 6 TO 162 9 6 TO 426 9 7 1/12 105
coin-2-5 1301 2540 TO 485 9 5 TO 121 9 6 TO 408 9 6 1/12 165
coin-2-6 1557 3052 TO 550 9 5 TO 159 9 6 TO 495 9 6 1/12 103
coin-4-1 26767 50079 TO 642 ?? 3 TO 627 20 3 TO 703 20 5 2/24 391
coin-4-2 47759 92063 TO 947 ?? 3 TO 993 ?? 3 TO 961 ?? 4 ?? ??

csma-2-2 2123 5990 2.49 24 32 opt 17.88 50 32 opt 2.11 24 32 opt 3/42 879
csma-2-4 15977 46882 195.39 208 36 opt 263.89 397 36 opt 184.05 208 36 opt 20/90 4522

fw-1 3974 13121 TO 205 28 27 184.49 119 28 opt 44.21 135 28 opt 38/68 419
fw-4 13144 43836 TO 268 28 21 TO 367 28 21 107.71 328 28 opt 38/68 424
fw-10 46282 153764 TO 790 28 13 TO 1141 28 18 545.68 993 28 opt 38/68 428
fw-15 96222 318579 TO 1496 28 9 TO 958 31 14 TO 1789 28 18 33/68 416

wlan-0-2 7072 6602 TO 324 33 15 TO 209 33 30 TO 174 33 32 23/72 3178
wlan-0-5 19012 25808 TO 570 ?? 10 TO 351 ?? 30 TO 357 ?? 30 ?? ??
wlan-2-1 28538 192 0.04 43 8 opt 0.07 44 8 opt 0.04 43 8 opt 6/14 7
wlan-2-2 29607 15768 TO 413 33 14 TO 188 33 30 TO 180 33 30 23/72 25708
wlan-2-3 36351 18922 TO 600 38 14 TO 315 37 32 TO 275 38 32 31/72 25173
wlan-3-1 96360 192 0.09 137 8 opt 0.13 137 8 opt 0.08 137 8 opt 6/14 7
wlan-3-2 97429 6602 TO 450 33 15 TO 292 33 30 TO 260 33 31 23/72 93639

In the last block we give information about the number of branching choices
which could be removed from the critical command set (“simp.”). In case the
different runs did not compute the same set, we used the one obtained with all
cuts. An entry k/m means that we could remove k out of m relevant branching
choices. We omit the running times of the simplification since in all cases it
was faster than the command selection due to the reduced state space. The last
column (“|S′|”) contains the number of states in the PA that is induced by the
minimized command set.

Although we ran into timeouts for many instances, in particular without any
cuts, in almost all cases (with the exception of coin4-2 and wlan0-5) a solution
could be found within the time limit. We suppose that also the solutions of the
aborted instances are optimal or close to optimal. It seems that the MILP solver
is able to quickly find good (or even optimal) solutions due to sophisticated
heuristics, but proving their optimality is hard. A solution is proven optimal as
soon as the objective value of the best solution and the lower bound coincide. The
additional cuts strengthen this lower bound considerably. Further experiments
have shown that the scheduler cuts of Eq.(2) have the strongest effect on the lower
bound. Choosing good cuts consequently enables the solver to obtain optimal
solutions for more benchmarks.

Our method provides the user not only with a smallest set of simplified
commands which induce an erroneous system, but also with a critical subsystem
of the state space. Comparing its size with the size of the minimal critical
subsystem (cf. Table 1) we can observe that for some models it is is close to
optimal (e. g., the coin-instances), for others it is much larger (e. g., the wlan-



instances). In all cases, however, we are able to reduce the number of commands
and to simplify the commands, in some cases considerably.

6 Conclusion

We have presented a new type of counterexamples for probabilistic automata
which are described using a guarded command language: We computed a smallest
subset of the commands which alone induces an erroneous system. This requires
the solution of a mixed integer linear program whose size is linear in the size
of the state space of the PA. State-of-the-art MILP solvers apply sophisticated
techniques to find small command sets quickly, but they are often unable to prove
the optimality of their solution.

For the MILP formulation of the smallest critical labeling problem we both
need decision variables for the labels and for the scheduler inducing the maximal
reachability probabilities of the subsystem. On the other hand, model checking
can be executed without any decision variables. Therefore we plan to develop
a dedicated branch & bound algorithm which only branches on the decision
variables for the labels. We expect a considerable speedup by using this method.
Furthermore, we will investigate heuristic methods based on graph algorithms.
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