
Symbolic Partition Refinement with Automatic
Balancing of Time and SpaceI

Ralf Wimmer

Institute of Computer Science, Albert-Ludwigs-University Freiburg, Germany

Salem Derisavi

IBM Toronto Software Lab, CanadaII

Holger Hermanns

Department of Computer Science, Saarland University, Germany

Abstract

State space lumping is one of the classical means to fight the state space explosion problem in state-based
performance evaluation and verification. Particularly when numerical algorithms are applied to analyze
a Markov model, one often observes that those algorithms do not scale beyond systems of moderate size.
To alleviate this problem, symbolic lumping algorithms have been devised to effectively reduce very large –
but symbolically represented – Markov models to moderate size explicit representations. This lumping step
partitions the Markov model in such a way that any numerical analysis carried out on the lumped model is
guaranteed to produce exact results for the original system. But even this lumping preprocessing may fail
due to time or memory limitations. This paper discusses the two main approaches to symbolic lumping, and
combines them to improve on their respective limitations. The algorithm automatically converts between
known symbolic partition representations in order to provide a trade-off between memory consumption and
runtime. We show how to apply this algorithm for the lumping of Markov chains, but the same techniques
can be adapted in a straightforward way to other models like Markov reward models, labeled transition
systems, or interactive Markov chains.

Key words: state space lumping, symbolic methods, Markov chains

1. Introduction

Markov chains are among the most fundamental mathematical structures used for performance and de-
pendability modeling of communication and computer systems. Since the size of a Markov chain usually
grows exponentially with the size of the corresponding high-level model, one often encounters the state space
explosion problem, which frequently makes the analysis of the Markov chain intractable.

In the area of formal verification, bisimulation equivalence [1] plays a prominent role as an equivalence
relation on state transition graphs. It equates two states if and only if their future behavior is indistinguishable.
In the context of Markov models, the same idea is known as lumpability [2]. Originally, lumpability was

IThis work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org for more
information.

IIPart of this work was done while the co-author was at Carleton University in Ottawa, Canada.
Email addresses: wimmer@informatik.uni-freiburg.de (Ralf Wimmer), derisavi@ca.ibm.com (Salem Derisavi),

hermanns@cs.uni-sb.de (Holger Hermanns)

Preprint submitted to Performance Evaluation January 12, 2010

defined with respect to a given partition of the state space. If the lumpability condition is satisfied for this
partition, an often much smaller model can be obtained by considering the quotient induced by the partition.
That quotient, the lumped Markov chain, captures all relevant behavior.

Many approaches to alleviate or circumvent the state space explosion problem for Markov chains are
implicitly or explicitly based on the notion of lumpability, since this allows computation of measures of the
original Markov chain using the analysis of the lumped Markov chain. A core practical challenge in this
context is to devise a proper partition of the state space ensuring that the lumping conditions hold, while
avoiding to actually generate the (possibly excessively large) state space representation of the system to be
lumped.

One strand of work exploits information available in the high-level model, such as symmetries or
hierarchies, in order to directly generate the lumped model. Examples of such model-level approaches
include [3, 4, 5, 6, 7, 8]. Another strand of work is a result of looking at lumpability from the bisimulation
perspective [9, 10, 11]. It allows us to formulate lumpability as a fixpoint of a higher order function on the
original state space, and gives rise to an effective algorithm to compute the smallest possible partition of
a Markov chain that satisfies the lumping conditions. This means that instead of using high-level model
information, which is cheaper but may lead to sub-optimal lumping, the optimally lumped Markov chain can
be computed by an efficient fixpoint algorithm [12, 13]. Since this can in some cases be done faster than
doing the actual analysis on the original model, it is possible to preprocess an arbitrary Markov chain to
derive the best lumped Markov chain, and then proceed with the analysis of the latter. Due to the reduction
in state space size, this two-step approach often speeds up the overall analysis time [14].

While this appears as a great step forward, the optimal lumping approach does not solve the state space
explosion problem per se, since the fixpoint algorithm runs on the original, possibly excessively large state
space. This is where symbolic representations come into play: Instead of explicitly representing the original
state space, it is represented in a symbolic manner, using structures such as BDDs or MTBDDs [15, 16, 17,
18, 19, 20, 21, 22, 23]. These structures are equipped with well-understood heuristics such that in most cases
they only grow moderately in the size of the high-level compositional model [24, 25, 26].

Notably, numerical analysis techniques do not scale if directly applied on symbolic representations. As
observed in [26, 27], the MTBDD representation of the solution vector tends to grow extremely large, despite
a compact MTBDD representation of the model. This is caused by lacking regularity and diversity of values
in the solution vector as the computation progresses. Resorting to EVBDDs instead of MTBDDs can lead to
a similar blow up during model checking, not in terminal nodes, but in edge value labelings, induced by the
irregularity of the values and operations occurring. However, symbolic representations play a key role if used
to represent the original state space in order to then generate the best possible lumping.

These considerations motivate the recent work on symbolic algorithms for optimal lumping. Rooted in the
work of Blom and Orzan [28, 29, 30], who developed a distributed algorithm for bisimulation minimization,
different symbolic lumping algorithms have been developed [31, 32, 33]. In combination with compositional
construction techniques, they have been applied to models of sizes otherwise far out of reach of contemporary
numerical analysis engines [23, 34].

While the above symbolic algorithms are similar in spirit, they have conceptual and practically relevant
differences. The work of [31] utilizes a “fast” partition representation that makes it possible to have a very
efficient algorithm in terms of computation time, but even for fairly small numbers of equivalence classes it
consumes a considerable amount of memory. On the other hand, the “compact” partition representation
of [32] stays very small in terms of space requirements, but its drawback is that performing operations on
the representation can become quite expensive timewise. The difference is caused by drastically different
representation techniques for encoding the state space partitions as BDDs, which are accessed and refined by
the algorithm.

To further push the limits of this technology, this paper provides an in-depth study of the earlier
approaches to symbolic lumping and then devises a combination of them. We develop an algorithm which is
memory efficient by using the compact partition representation of [32] and runtime efficient by using the fast
partition representation and refinement algorithm of [31]. Our “hybrid” approach offers a “spectrum” of
representations whose extremes are the fast representation on one side and the compact representation on
the other. It provides us a parameter by which we can control where in the spectrum a specific instance of

2

the representation stands.
In principle, it is possible to implement our algorithms using both MTBDDs and EVBDDs. However,

we do not expect great reductions in memory consumption by using EVBDDs, because the central data
structure for representing partitions of state spaces is a vector of Boolean functions. For Boolean functions
the size of BDDs and EVBDDs is identical up to one node [18]. Since our algorithmic ideas are more easy
to explain in the context of MTBDDs and since efficient and well-tested implementations of MTBDDs are
available, we use MTBDDs for the presentation and the experiments.

The contributions of the paper are 1) an algorithm that converts between fast and compact partition
representations in a logarithmic number of BDD operations, 2) a simple but effective algorithm that
automatically changes the parameter mentioned above to balance the time and space requirements of the
algorithm such that the refinement works at maximal speed without exceeding the available memory, and
3) an implementation of the conversion and parameter selection algorithms into the principal refinement
algorithm. We experimentally evaluate the benefits of our algorithm, and compare its performance with the
algorithms of [33] (that uses the fast representation of [31]) and [32].

The entire work is presented here in the context of continuous-time Markov chain lumping. However, there
is a much broader spectrum of possible applications, since the techniques are straightforwardly adaptable
to labeled transition systems, discrete-time or interactive Markov chains, Markov reward models, Markov
decision processes etc. The core contribution of this paper is thus a general, fast, and memory efficient
algorithm for symbolic lumping and symbolic bisimulation minimization.

Organization of the paper: Section 2 reviews the basic concepts and the context in which the present paper is
placed. In Section 3, we discuss the principal algorithmic considerations behind a non-symbolic lumping
algorithm. After discussing the earlier approaches to symbolic lumping in Section 4, Section 5 introduces the
new hybrid algorithm. Experimental results are presented in Section 6 demonstrating the effectiveness of our
approach. Section 7 concludes the paper.

2. Background

In this section, we first review the concepts of continuous-time Markov chains and lumpability. We then give
a brief account of the general principle of signature-based lumping algorithms. We finally review symbolic
data structures and their use to represent various entities appearing in our context, such as sets and matrices.

2.1. Markov chains and state space lumping
A continuous-time Markov chain (MC) M is a pair M = (S,R) where S is a finite non-empty set of states
and R : S × S → R≥0 is the transition rate matrix such that R(s, s) = 0 for all s ∈ S. The generator matrix
Q : S × S → R is defined as Q(s, s) = −∑s′∈S R(s, s′) and Q(s, t) = R(s, t) for all s, t ∈ S with s 6= t.

A partition P of a set S is a set of pairwise disjoint, non-empty subsets of S, such that their union equals
S. Elements of P are called blocks of P . In the sequel, a subpartition is a subset of a partition. For elements
s and t in the same block of P , we write s ≡P t. The block of P which contains s ∈ S is denoted by [s]P .
Let P and P ′ be partitions of S. P is called a refinement of P ′ (or conversely P ′ coarser than P), denoted
by P v P ′, if ∀B ∈ P ∃B′ ∈ P ′ : B ⊆ B′.

For a matrix A ∈ R|S|×|S| and subsets B,B′ ⊆ S, we define A(B,B′) =
∑
s∈B

∑
s′∈B′

A(s, s′). For s ∈ S and

B ⊆ S, we use A(s,B) and A(B, s) instead of A({s}, B) and A(B, {s}) respectively.

Definition 1. Let M = (S,R) be an MC with generator matrix Q. With respect to a partition P of S, M
is

• ordinarily lumpable if ∀C,C ′ ∈ P ∀s, s′ ∈ C : Q(s, C ′) = Q(s′, C ′), and

• exactly lumpable if ∀C,C ′ ∈ P ∀s, s′ ∈ C : Q(C ′, s) = Q(C ′, s′),

• strictly lumpable if it is ordinarily and exactly lumpable with respect to P .

3

We recall briefly [12, 35, 36] in what sense each variation of lumpability preserves the behavior of the Markov
chain.

Ordinary lumpability ensures that the probability distribution at any time point of being in any particular
partition equals the sum of the state probabilities in that partition at the given time. Therefore we can
shrink the Markov chain by replacing each block of the partition by a single state, provided we are only
interested in the probabilities of entire blocks.

Exact lumpability fulfills a different interesting property: Starting with an initial distribution that is
equally distributed inside each block, the distribution at any time stays equally distributed inside each block.
More formally: Let p(s, s′, t) denote the probability that control is in state s′ at time t, given the system
was started in state s at time 0; let p0 : S → [0, 1] denote the probability distribution which assigns each
state the probability of being chosen as the initial state. Furthermore, let P 0 be an initial partition such
that for all s, s′ ∈ S : p0(s) 6= p0(t) ⇒ s 6≡P (0) s′ and P be an exactly lumpable partition with P v P (0).
Then, p(s, s′, t) = p(s, s′′, t) holds for all t ≥ 0 and all s′, s′′ ∈ S with s′ ≡P s′′. Therefore, we can shrink
the Markov chain by replacing each block of the partition by a single state, and still retrieve the individual
state probabilities, provided that the equal distribution condition on the initial distribution is met. Strict
lumpability induces both the above properties. Not surprisingly, those properties also hold for the steady-state
limiting distributions.

In the following, we restrict ourselves to ordinary lumping, and postpone the discussion on how to handle
exact and strict lumpability to Section 3.3. A partition P of an MC satisfying the conditions of ordinary
lumpability in Definition 1 will be called a lumpable partition.

Definition 2. Let M = (S,R) be an MC that is ordinarily lumpable with respect to a partition P of S.
Then M̃ = (S̃, R̃) is the lumped (or, quotient) MC such that

S̃ = {arbitrary element of C |C ∈ P}

R̃(s̃, s̃′) =

{
R(s̃, [s̃′]P) if s̃ 6= s̃′

0 if s̃ = s̃′.

Note that although S̃ apparently depends on the arbitrarily selected element of each class of P , the
conditions in Definition 1 ensure that all possible lumped MCs are isomorphic (identical up to state identities).

2.2. (Multi-terminal) Binary Decision Diagrams
Since the amount of memory needed by an explicit representation of the state space (e. g. by a sparse matrix
representation) is linear in the size of the represented system, the available memory severely limits the size of
the systems tractable using explicit techniques.

The strength of symbolic representations like matrix diagrams (MDs) [20], and different flavors of decision
diagrams such as (Multi-terminal) Binary Decision Diagrams, (MT)BDDs [15, 16], edge-valued binary
decision diagrams (EVBDDs) [17], probabilistic decision graphs (PDGs) [37], and zero-suppressed decision
diagrams (ZBDDs) [19, 38] is that the size of the representation does not grow as excessive as the size of the
represented systems. In practice, by using various heuristics the size of the representation often becomes
much smaller and grows about linearly in the size the high-level model, instead of growing linearly with
the state space size [24]. Dedicated algorithms which exploit the structure of this compact representation
can often handle very large systems, because often their runtime is approximately linear in the size of that
representation [15, 16, 39]. We work with MTBDDs in this paper.

Definition 3. Let x = (x1, . . . , xh) be a vector of Boolean variables. A multi-terminal binary decision
diagram (MTBDD) G(x) = (V, r, E) is an acyclic, directed graph with root r ∈ V such that the following
conditions hold:

• Each node v ∈ V is either an inner node or a leaf.

• Leaves v ∈ V do not have outgoing edges and are labeled with a real value label(v) ∈ R.
4

• Inner nodes v ∈ V have exactly two successor nodes, denoted low(v) and high(v). Inner nodes are
labeled by a variable label(v) ∈ {x1, . . . , xh}.

If all leaves are labeled only with 0 and 1, G is called a BDD. Each node v ∈ V of an MTBDD represents
a function fv : {0, 1}h → R, which is defined as follows:

Definition 4. Let G(x) = (V, r, E) be an MTBDD. We assign each node v ∈ V a function fv : {0, 1}h → R
as follows:

• If v is a leaf node, then fv(x) = label(v).

• If v is an inner node with label(v) = xi, then

fv(x) = xi · fhigh(v)(x) + (1− xi) · flow(v)(x).

The function represented by G(x) is the function fr assigned to the root node.

In order to obtain a data structure which can algorithmically be handled efficiently, we need further
restrictions:

Let G(x) = (V, r, E) be an MTBDD. G(x) is free if on each path from r to a leaf node each variable occurs
at most once as node label. It is called ordered if G(x) is free and on each path from r to a leaf node, the
variables occur in the same order. Finally, G(x) is reduced if ∀u, v ∈ V : fu 6= fv.

From now on, we will assume, that all (MT)BDDs are ordered and reduced. We will denote them by
calligraphic letters. We refer to the number of nodes of an MTBDD G(x) by |G(x)| and call it the size of
G(x). In the following, we explain how to use (MT)BDDs to represent sets and matrices. When clear from
the context, we will furthermore identify an (MT)BDD with the represented function and omit the variables
which occur as labels of the BDD nodes.

Set representation. Let N ⊆ {0, 1}h be a set of Boolean vectors. N can be represented symbolically by a
BDD N (x) such that N (x) = 1 if x ∈ N and 0 otherwise.

Matrix representation. We use MTBDDs to efficiently represent transition matrices of MCs. A matrix
R : {0, 1}h × {0, 1}h → R can be represented using an MTBDD R with 2h binary variables. The first h
variables encode the row index and the other h variables the column index. We use an interleaved variable
ordering in which each row variable is immediately followed by its corresponding column variable or vice
versa. An interleaved variable ordering often leads to small MTBDDs for MCs which are generated from
high-level models [40].

3. Explicit-State Lumping Algorithms

In the following, we present two different algorithms which compute the coarsest lumping quotient that
refines an initial partition P (0), possibly induced by atomic labels, rewards, etc. attached to states. If no
initial partition is explicitly given, we set P (0) = {S}.

3.1. Traditional Lumping Algorithm
The basis for most explicit-state lumping algorithms is the algorithm described in [13]. It is optimal for
ordinary lumping and has a running time of O(m · log n), where n is the number of states and m the number
of transitions of the Markov chain with a non-zero rate.

Algorithm 3.1 shows the pseudo-code of this explicit-state lumping algorithm. LumpMC takes the original
MC M and returns the quotient MC M̃ . It works in two stages. First, LumpablePart computes the
coarsest partition P with respect to which M is lumpable by iterative refinements of the initial partition
P (0), until a fixpoint is reached. In the second stage (line 2), CompQuotient (whose pseudo-code is not
shown here) computes the quotient M̃ according to Definition 2.

5

LumpMC(M,P (0))

1 P := LumpablePart(S,R, P (0))

2 (S̃, R̃) := CompQuotient(S,R, P)

3 return M̃ := (S̃, R̃)

LumpablePart(S,R, P (0))

1 P := P (0)

2 L := P (0)

3 while L 6= ∅
4 B := Pop(L)
5 Split(P,B,L)
6 return P

Split(P,B,L)

1 Pold := P
2 foreach C ∈ Pold

3 {C1, . . . , C
′
α} :=

˘
{s ∈ C |R(s,B) = R(s′, B)}

˛̨
s′ ∈ C

¯
4 P :=

`
P \ {C}

´
∪̇ {C1, . . . , C

′
α}

5 L := L ∪̇
`
{C1, . . . , C

′
α} \ largest C′i

´
Algorithm 3.1: Runtime-optimal explicit-state lumping algorithm

LumpablePart maintains a list L of potential splitters. Each refinement iteration of LumpablePart
(lines 3–5) refines P with respect to one potential splitter B. Split splits each class C of P into classes
C ′1, . . . C

′
α (line 3) by grouping the states of C based on their cumulative outgoing rates to B. More formally:

refinement(C,B) =
{{s ∈ C |R(s,B) = R(s′, B)} ∣∣ s′ ∈ C}. (1)

In line 5 of Split, the list of potential splitters is updated. We need to add all newly generated blocks but
one to the list. We can neglect any single block C ′i, because its power of splitting other blocks is maintained
by the remaining sub-blocks. Excluding the largest sub-block C ′i from the set {C ′1, . . . , C ′α} of potential
splitters is similar to the “process the smaller half” strategy given by Hopcroft [41]. It has been proven that
the algorithm runs in time O(m · log n) when using this strategy [13].

The algorithm finishes when P is refined with respect to all potential splitters. The result is the coarsest
ordinarily lumpable partition that is a refinement of P (0). See [13, 42] for more details.

3.2. Markov Chain Lumping using Signature-based Refinement
Most lumping algorithms in the literature use – like the algorithm presented in the previous section – iterative
partition refinement such that, in each iteration, the current partition is refined with respect to a block
retrieved from a list of potential splitters. Blom and Orzan were the first to devise an iterative algorithm
that, in each iteration, refines the current partition with respect to all blocks simultaneously [28]. Their
algorithm works by computing, in each iteration, the signature of all states with respect to the current
partition (as opposed to the current splitter in conventional algorithms). Defined formally in Eq. (2), the
signature of a state with respect to a partition is the total transition rate from the state to each block of the
partition. In each refinement step, states are kept in the same block iff they have the same signature. The
algorithm stops once the partition reaches a fixpoint, i. e., a partition that will not be split any further.

This signature-based principle is independent of the type of representation (i. e., explicit or symbolic) used.
While the idea was originally used to design an explicit and distributed algorithm for branching bisimulation
minimization of non-probabilistic transition systems, Wimmer et al. [31] and Derisavi [33] used it to develop
symbolic lumping algorithms for non-probabilistic and probabilistic systems, respectively.

For a given MC M = (S,R) with generator matrix Q and initial partition P (0) of S, the signature-based
algorithm to compute the coarsest lumpable partition refining P (0) is given in Algorithm 3.2. The actual
refinement is done by the sigref-operator, which is defined as follows:

sigref(P) =
{{s ∈ S | sig(P, s) = sig(P, t) ∧ s ≡P (0) t} | t ∈ S}

sig(P, s) =
{

(r,B) ∈ R× P ∣∣ r = Q(s,B)
} (2)

Starting with the given initial partition P (0), the algorithm iteratively applies the sigref-operator until a
fixpoint is reached. Theorem 1 guarantees that the fixpoint is the coarsest partition of S with respect to
which the MC is lumpable. The quotient system can be extracted in the same way as in Algorithm 3.1.

6

LumpablePartSigBased(M,P (0))

1 i := 0
2 do

3 P (i+1) := sigref(P (i)) according to Eq. (2)
4 i := i+ 1

5 until P (i) = P (i−1)

6 return P (i)

Algorithm 3.2: Explicit-state signature-based lumping algorithm

Theorem 1. Let M = (S,R) be an MC and P (0), P (1), . . . be a sequence of partitions of S with P (i+1) =
sigref(P (i)) for i ≥ 0. There exists f ≤ |S| − |P (0)| such that P (f+1) = P (f) and P (f) is the coarsest
refinement of P (0) with respect to which M is lumpable.

Proof. First we prove that P (n+1) v P (n) for all n ≥ 0. This implies the existence of a fixpoint after at
most |S| − |P (0)| splitting steps, because the sequence of partitions is monotonic and bounded below by{{s} | s ∈ S}. Additionally, in each step the number of blocks increases by at least one until a fixpoint is
reached.

We show our claim by induction on n. The base case (n = 0) holds, because by definition of sigref, each
partition which is created by sigref is a refinement of P (0). Now assume that P (i) v P (i−1) for a given i > 0.
We will now show that this implies P (i+1) v P (i), or equivalently ∀s, t ∈ S : s ≡P (i+1) t⇒ s ≡P (i) t. Given
s, t ∈ S, s ≡P (i+1) t implies that sig(P (i), s) = sig(P (i), t), and therefore, ∀B ∈ P (i) : Q(s,B(i)) = Q(t, B(i)).
Since P (i) v P (i−1), any block B(i−1) ∈ P (i−1) is the union of a number of pairwise disjoint blocks of
P (i), i. e. B(i−1) =

⋃b
j=1B

(j)
j with B

(i)
j ∈ P (i). Therefore, we have Q(s,B(i−1)) =

∑b
j=1 Q(s,B(i)

j) =∑b
j=1 Q(t, B(i)

j) = Q(s,B(i−1)) which implies s ≡P (i−1) t.
The next step is to show that each fixpoint of sigref induces a lumpable partition. Let P be a fixpoint of

sigref, i. e. P = sigref(P). We have for all s, t ∈ S with s ≡P t that sig(s, P) = sig(t, P) holds. This implies
∀B ∈ P : Q(s,B) = Q(t, B). Hence, P is a lumpable partition, a partition satisfying the conditions on
ordinary lumpability in Definition 1.

The last point we have to prove is that the fixpoint P (f) reached by the algorithm is the coarsest
lumpable partition which refines P (0). Let P ∗ be a lumpable partition with P ∗ v P (0). We show that
∀i ≥ 0 : P ∗ v P (i), from which our claim follows. We prove this by induction on i. Obviously, the base
case i = 0 holds. Now assume P ∗ v P (i) for some i ≥ 0. Therefore, any B(i) ∈ P (i) is the union of a
number of pairwise disjoint blocks of P ∗, i. e. B(i) =

⋃b
j=1B

∗
j with B∗j ∈ P ∗. We prove that P ∗ v P (i+1), or

equivalently ∀s, t ∈ S : s ≡P∗ t⇒ s ≡P (j+1) t. Let s, t ∈ S be states such that s ≡P∗ t. Using the induction
hypothesis, we have that s ≡P (i) t. Since P ∗ is a stochastic bisimulation, we have that Q(s,B∗j) = Q(t, B∗j).
Therefore Q(s,B(i)) =

∑b
j=1 Q(s,B∗j) =

∑b
j=1 Q(t, B∗j) = Q(t, B(i)). For this reason, the signatures of s

and t with respect to P (i) are identical. So s ≡P (i+1) t. �

3.3. Discussion
The runtime of the latter algorithm is in O(m · n) where n is the number of states and m the number of
transitions with a non-zero rate. In contrast, the former algorithm can be implemented such that it runs
in O(m · log n) time. However, these theoretical worst case bounds do not say much about their practical
runtime [42], in particular in the symbolic context we are studying in the remainder of this paper.

Before we go into details of the symbolic implementation of these algorithms, we briefly comment on the
open question of how to compute optimal partitions with respect to exact and strict lumpability with either
of these algorithms: Exact lumping can by reduced to ordinary lumping by reversing the direction of all
edges in the Markov chain prior to the algorithm, and reversing them again after quotient construction. To
compute the optimal partition with respect to strict lumpability, the entire fixpoint computation for ordinary
and exact lumpability are applied alternately until an overall fixpoint is reached, i. e. the partition does not
change anymore.

7

4. Symbolic Lumping Algorithms

In order to obtain an efficient symbolic algorithm which computes the coarsest lumpable partition of a
Markov chain, we first have to find an appropriate symbolic partition representation. Requirements are not
only compactness but also an efficient support of the necessary operations. The most common techniques will
be presented in this section. Then we will show how the two explicit-state lumping algorithms from Section 3
can be turned into symbolic algorithms. Their advantages and disadvantages are discussed afterward.

4.1. Partition Representations
The representation of state space partitions appearing in the refinement algorithm is a crucial aspect of the
setting considered in this paper. We are aware of four distinct techniques for the symbolic representation of
a partition P = {B0, . . . , Bn−1}. For the third and fourth technique, we presuppose an arbitrary, but fixed
order on the blocks of each represented partition.

1. To use a BDD PER to represent the corresponding equivalence relation ≡P such that PER(s, t) = 1 iff
s ≡P t, i. e. iff ∃Bi ∈ P : s ∈ Bi ∧ t ∈ Bi. This representation is used, e. g., in [43], which pioneered
symbolic bisimulation minimization. (ER)

2. To use one BDD per block. A partition representation is then a set {P0
BR, . . . ,Pn−1

BR } of BDDs such
that PiBR(s) = 1 iff s ∈ Bi. (BR)

3. To use an extra vector k of at least dlog2 ne new BDD variables to denote the block index. For the
block index a binary encoding is used. The partition is then represented by a BDD PFR such that
PFR(s, k) = 1 iff s ∈ Bk. To access the states of a block, a single cofactor computation with respect to
the block variables is necessary, i. e.

Bi(s) = PFR(s, k)|k=i. (3)

This representation was introduced in [31] to compute various kinds of bisimulation on labeled transition
systems, and adopted in [33] for Markov chain lumping. (FR)

4. To use a vector of d = dlog2 ne BDDs (P0
CR, . . . ,Pd−1

CR) such that PjCR(s) = 1 iff s ∈ Bi and the jth bit
of i is one. In other words, PjCR is the union of all blocks whose indices have 1 in their jth bit, i. e.

PjCR(s) =
∨

0≤i<n
the jth bit of i is 1

Bi(s) (4)

Restoring the block Bi from this representation uses O(log n) BDD operations as follows:

Bi(s) =
∧

0≤j<d
the jth bit of i is 1

PjCR(s) ∧
∧

0≤j<d
the jth bit of i is 0

(S(s) ∧ ¬PjCR(s)). (5)

This representation was introduced in [32], for symbolic computation of lumpability in Markov chains,
which we will briefly describe in the next section. (CR)

For a partition P , represented symbolically by (one or more) MTBDDs P using one of the four possibilities
introduced above, we denote the number of blocks of the partition by #P, i. e. #P = |P |.

We provide a small example to illustrate the latter two partition representation techniques CR and FR,
which will play a central role in this paper.

Example 1. Let P = {B0, B1, B2, B3} be a partition of S = {s0, s1, . . . , s8} consisting of four blocks

B0 = {s0, s3, s4} B1 = {s1, s2, s7}
B2 = {s5, s8} B3 = {s6}.

8

s3 s3

s2 s2

s1 s1 s1

s0 s0

1

P0
CR P1

CR

s3

s2 s2

s1 s1 s1 s1

s0 s0 s0 s0 s0

k1 k1 k1 k1

k0 k0

1

PFR

Figure 1: CR (left) vs. FR (right) representation

• The FR-representation uses one BDD PFR(s, k) representing the set{
(s0, 0), (s1, 1), (s2, 1), (s3, 0), (s4, 0), (s5, 2), (s6, 3), (s7, 1), (s8, 2)

}
.

• The CR-representation uses two BDDs P0
CR(s) and P1

CR(s) such that

P0
CR(s) = 1 iff s ∈ B1 ∪B3 = {s1, s2, s6, s7}
P1

CR(s) = 1 iff s ∈ B2 ∪B3 = {s5, s6, s8}.
We can access, for instance, block B2 by

B2 = P 1
CR ∩ (S \ P 0

CR) = {s5, s6, s8} ∩ {s0, s3, s4, s5, s8} = {s5, s8}.

The BDDs for both representation techniques are depicted in Figure 1. For the sake of readability, we have
removed all edges which directly point to leaf 0.

These four representations differ in terms of their time and space efficiency when applied in a symbolic
implementation of a refinement algorithm. We report on detailed experiments in Section 6, but provide a
preview here for the sake of the exposition.

The size of the first representation, ER, is rather unpredictable: sometimes it is the most compact
representation, in other cases it needs by far the most nodes of all four techniques. As shown in Section 6 by
a number of example models, the second representation, BR, is not space efficient in practice either.

We classify FR as the technique that enables us to implement the key operations of the algorithm very
efficiently in terms of running time. We therefore call it the fast representation. One disadvantage of the
fast representation is its size: the size of the BDD P is at least linear in the number of blocks. More
precisely, |P| = Ω(|P |), and that makes it unsuitable for partitions with a large number of blocks. CR, in
turn, is considerably slower to use, but in many cases has the smallest number of nodes among the four
representations. Therefore, we call it the compact representation.

Quotient extraction from FR and CR. We briefly show how the quotient system with respect to a lumpable
partition can be computed when the partition is represented using CR or FR. We describe the way how a
symbolic representation of the quotient can be obtained. An explicit representation can be obtained from
the symbolic representation by simple enumeration of all assignments that lead to a non-zero leaf of the
(MT)BDDs. The pseudo-codes of both algorithms are given in Algorithm 4.1.

To extract the quotient from CR, one state is first selected from each block. These states form the state
space S̃ of the quotient system (lines 2–5). The function GetBlock for accessing the blocks of a partition is

9

SymbolicCompQuotientCR(S,R,PCR)

1 eS(s) := 0; eR(s, t) := 0;
2 for c := 0 to #PCR − 1
3 Bc(s) := GetBlock(S,PCR, c)
4 Xc(s) := {arbitrary element of Bc}
5 eS(s) := eS(s) + Xc(s)
6 R′(s, t) := R(s, t) · eS(s)
7 for c := 0 to #PCR − 1
8 R′′(s) := ♦+

t

`
R′(s, t) · Bc(t)

´
9 R′′(s, t) := R′′(s) · Xc(t)

10 eR(s, t) := eR(s, t) +R′′(s, t)
11 return (eS, eR)

GetBlock(S,PCR, c)

1 B(s) := S(s)
2 for i := 0 to |PCR| − 1

3 if ith bit of c = 1
4 B(s) := B(s) ∧ PiCR(s)
5 else
6 B(s) := B(s) ∧ ¬PiCR(s)
4 return B

SymbolicCompQuotientFR(S,R,PFR)

1 eS(s) := [k → s]
`
∃s : PCR(s, k)

´
2 R1(s, t) := [k → t](♦+

t

`
R(s, t) · PFR(t, k))

´
3 eR(s, t) := [k → s](♦max

s

`
R1(s, t) · PFR(s, k))

´
4 return (eS, eR)

Algorithm 4.1: Symbolic quotient extraction for CR (top) and FR (bottom)

a direct implementation of formula (5). Then the transitions are restricted to the selected states (line 6). For
each block Bc and state s, we compute the cumulative transition rate from s to Bc (line 8). Thereby, ♦�x is
the quantification operator with respect to an associative and commutative operator �:

♦�x
(A(x, y)

)
=

⊙
a∈{0,1}h

A(a, y)

The selected state of the current block is added as the target state of the newly computed transitions (line 9).
These are then added to the new transition matrix (line 10).

The method for FR proceeds in a different way: The block numbers are used as the states of the quotient
system (line 1). The cumulative transition rates are computed in line 2, thereby substituting the target states
by their block numbers. The operation [k → t](·) renames the block number variables to the corresponding
target state variables. And finally, the source states are replaced by their block numbers (line 3).

The resulting system is in both cases the quotient MC with respect to the lumpable partition PCR and
PFR, respectively. From now on, we will concentrate on the computation of such partitions.

4.2. Symbolic Version of the Traditional Algorithm
By replacing the explicit data structure by the compact MTBDD representation and the explicit operations
by their symbolic counterparts, we can transform the explicit-state lumping algorithm from Section 3.1 to a
symbolic one. This approach was used in [32].

The approach of the symbolic algorithm, whose pseudo-code is shown in Algorithm 4.2, is the same as for
the explicit variant: as long as there are splitters, the blocks of the current partition are split successively. In
the beginning the list of splitters is identical to the initial partition. Each time a block is split, all resulting
blocks but one are added to the list of splitters and in the current partition, the block that was split is
replaced by the parts into which it was split.

The difference is the administration of the list of splitters: To reduce the number of update operations,
both the current partition and the current list of splitters are stored in PCR. The next splitter is determined
using a counter sc whose initial value is 0 and which is increased after each splitting round. When we split a
block C into C ′1, . . . , C

′
α, we replace C by C ′1 and append the other blocks C ′2, . . . , C

′
α to the end of the list.

They will become splitters later when sc is increased. Hence, in the main loop of LumpablePartitionFR
(lines 2–4), we iterate over all necessary splitters and refine the current partition with respect to them.

10

LumpablePartitionCR(P(0)
CR)

1 PCR := P(0)
CR

2 for sc := 0 to #PCR

3 B := GetBlock(PCR, sc)
4 SymSplit(PCR,B)
5 return PCR

SymComputeKeys(R, C,B)

1 R′(s, t) := C(s) · B(t) · R(s, t)
2 K := ♦+

t (R′(s, t))
3 return K

SymSplit(PCR,B)

1 for c := 0 to #PCR − 1
2 C := GetBlock(PCR, c)
3 K := SymComputeKeys(R, C,B)
4 T := {leaves of K}
5 α := #PCR − 1
6 foreach x ∈ T
7 C′α := (K == x)
8 α := α+ 1
9 ReplaceBlock(PCR, c, C′#PCR−1)

10 for i := #PCR to α− 1
11 AddBlock(PCR, i, C′i)
AddBlock(PCR, k, C)
1 if k = 2d

2 Append ∅ to the end of PCR

3 d := d+ 1
4 for i := 0 to d− 1

5 if ith bit of k = 1
6 PiCR := PiCR ∨ C
7 return PCR

ReplaceBlock(PCR, k, C)
1 Cold := GetBlock(PCR, k)
2 for i := 0 to d− 1

3 if ith bit of k = 1
4 PiCR := (PiCR ∧ ¬Cold) ∨ C
5 return PCR

Algorithm 4.2: The symbolic version of the traditional lumping algorithm

The splitting with respect to block B is done for each block C of the current partition by computing the
key K(s) =

∑
t∈B R(s, t). The different rates into the splitter are stored in the leaves of K. For each such

value x, we determine the set of states with K(s) = x (line 7 of SymSplit). The first such block replaces C
in PCR, the other ones are appended to PCR. This works as follows:

Assume PCR = (P0
CR, . . . ,Pd−1

CR). ReplaceBlock(PCR, l, C′l) replaces the block Cl with C′l . Therefore,
PCR is updated in the following way:

PiCR =

{
PiCR if the ith bit of l is zero
(PiCR ∧ ¬Cl) ∨ C ′l otherwise.

The call AddBlock(PCR, Ck) adds the block Ck at position k to PCR. Before the call, GetBlock(PCR, k)
must be empty. We have to update the partition in the following way:

PiCR =

{
PiCR if the ith bit of k is zero
PiCR ∨ Ck otherwise.

If PCR = (P0
CR, . . . ,Pd−1

CR) and k = 2d, we add PdCR = ∅ to PCR before appending Cd.
Upon termination this yields the coarsest lumpable partition which refines P(0)

CR. For more details, see [32].

4.3. Symbolic Implementation of the Signature-based Refinement Algorithm
Algorithm 4.3 shows the symbolic implementation of the signature-based algorithm explained in Section 3.2.
Line 4 computes the MTBDD representation of the signatures, and SigRefine, in line 5, returns the partition
refined with respect to the signatures. More details follow.

11

LumpablePartitionFR(P(0)
FR)

1 P ′FR := P(0)
FR

2 repeat
3 PFR := P ′FR

4 σ(s, k) := ♦+
t (R(s, t) · PFR(t, k))−D(s) · PFR(s, k)

5 nextNumber := 0
6 P ′FR := SigRefine(σ)
7 until (PFR = P ′FR)
8 return PFR

SigRefine(σ)

1 if σ ∈ ComputedTable
2 return ComputedTable[σ]
3 x := topVar(σ)
4 if x is a state variable
5 T := SigRefine(σ|x=1)
6 E := SigRefine(σ|x=0)
7 N := CreateNode(x, T , E)
8 else
9 N := Number2BDD(nextNumber)

10 nextNumber := nextNumber + 1
11 ComputedTable[σ] := N
12 return N

Algorithm 4.3: The state space lumping algorithm using signature-based refinement

Let Q be the MTBDD of the generator matrix and PFR be the fast representation of the current partition.
We then compute an MTBDD representation σ(s, k) of the signatures as follows:

We use an MTBDD σP (s, k) to represent the signature of states in S with respect to a partition P that
is defined in the following way: σP (s, k) = r iff (r,Bk) ∈ sig(P, s). This MTBDD can be obtained using the
equation

σ(s, k) = ♦+
t

(Q(s, t) · PFR(t, k)
)
. (6)

The problem with Eq. (6) is that |Q| might be excessively large due to the non-zero diagonal elements.
To tackle this problem, we rewrite Eq. (6):

σ(s, k) = ♦+
t

(R(s, t) · PFR(t, k)
)−D(s) · PFR(s, k) (7)

in which D(s) = ♦+
t

(R(s, t)
)

and R is the MTBDD representation of the transition rate matrix. Remarkably,
|D| often is very small.

To implement the refinement operation sigref symbolically, we exploit the following observation: Assume
that we have a variable order in which all state variables precede the block number variables. Then, each
state corresponds to a path in the MTBDD which ends in a node that represents the signature of this state.
Furthermore, since we use reduced MTBDDs, the paths of all states with the same signature must lead to
the same node. To obtain the refined partition, we simply replace the nodes representing signatures by new
block numbers.

Function SigRefine implements the sigref operator in this way. It takes σ(s, k) as input and returns the
BDD of the refined partition in FR-based representation.

To ensure that every node which represents a signature is replaced with the same block number each
time it is visited when traversing the MTBDD recursively, we store the node and its replacement in a hash
map, called ComputedTable. At the beginning of the algorithm, in lines 1–2, we first check if we have visited
(and replaced) the node before. If the current operand is contained in the ComputedTable, we return the
corresponding result without re-computation.

12

Otherwise, the BDD representing the signatures is traversed recursively (lines 4–8) until a node is reached
that represents a signature. The result is then the BDD of a new block number. Before returning the result,
we create an entry in the ComputedTable. The runtime of this algorithm lies in O(|σ|).

To take an arbitrary initial partition into account, we have two possibilities: either we refine only one
block of the initial partition at a time [44] or we add an extra entry to each signature such that the signatures
of states belonging to different blocks of the initial partition cannot be identical [33].

4.4. Discussion
The two different symbolic algorithms, that we have presented above, have different weaknesses and strengths.
The first algorithm, which is based on the compact partition representation, is very efficient in terms of
memory. But its drawback is that it needs access to single blocks for refinement whose extraction is expensive.
On the other hand, the FR-based algorithm inherits the memory-inefficiency from its partition representation,
but its great advantage is its runtime efficiency. There is no need to extract single blocks, but all blocks can
be refined simultaneously in one step.

The goal we want to achieve in the next section is to combine the strengths of both algorithms into a
single method that minimizes the necessary computation time, thereby not exceeding the available amount
of memory.

5. Hybrid Representation

In Section 2.2, we presented four different partition representations, two of which have desirable properties:
the compact representation (CR) is very efficient in terms of memory requirement, but its manipulation
(such as adding and removing a block) is relatively expensive. On the other hand, the fast representation
(FR) enables us to perform the operation sigref very efficiently in terms of speed, but its space requirement
is high for partitions with a large number of blocks.

5.1. Overall Idea
To get the best of both representations, our conceptual innovation is to provide a “hybrid” representation of
the partition that uses FR for computation and CR for storage. Recall that the core computational step, in
each iteration, is computing the signature of all states with respect to the current partition. Our key idea
is to use CR to represent the current partition, but to represent the subpartition of states for which the
signature is computed in FR, and to convert that into CR after signature-based refinement. To enable this,
we do not necessarily compute the signatures of all states simultaneously as in LumpablePartitionFR.

Instead, we do that in a number of steps. In each step, the signatures of all states in a chunk are computed.
A chunk is a collection of blocks of the current partition. This leads to a time-space trade-off depending on
the number of blocks we convert to FR for refinement. For the approach to be effective, it is important that
the additional overhead due to conversion is low.

The pseudo-code of LumpablePartitionHybrid, the hybrid algorithm, is given in Algorithm 5.1(a).
Its outer loop corresponds to the main loop of LumpablePartitionFR. In each iteration of the inner
loop of LumpablePartitionHybrid, Chunk computes a chunk consisting of csize blocks of the current
partition PCR. Then, Signature computes the signatures of all states in the chunk. Based on the signatures,
SigRefine refines the chunk into a subpartition in FR, and ConvertFR2CR converts the subpartition
into compact representation. Finally, Union adds it to P ′CR, the compact representation of the (new) refined
subpartition computed so far.

The hybrid version of the algorithm consumes less memory because it avoids representing both the
signatures of all states and also the complete partition using FR (σ, P , and P ′ in LumpablePartitionFR).
Instead, at each point of time only one chunk (Ci), the signatures of its states (σi), and its refinement
represented as FR (P ′FR,i) are stored. Since the number of nodes in the last two MTBDDs grows at least
linearly with csize, we can adjust the memory consumption of the algorithm and achieve various time-space
trade-offs by varying csize. That enables the hybrid algorithm to handle MCs out of reach of the original
FR-based algorithm due to memory limitations.

13

(a) LumpablePartitionHybrid(P(0)
CR, csize)

P ′CR := P(0)
CR

repeat
PCR := P ′CR; P ′CR := ∅; firstBlkIdx := 0
for i := 0 to

˚
#PCR/csize

ˇ
− 1

Ci := Chunk(PCR, csize, i)
σi(s, k) := Signature(Ci)
P ′FR,i := SigRefine(σi,firstBlkIdx)
P ′CR,i := ConvertFR2CR(P ′FR,i)
P ′CR := Union(P ′CR,P ′CR,i)
firstBlkIdx := firstBlkIdx + #P ′FR,i

until (#PCR = #P ′CR)
return PCR

(b) Chunk(PCR, csize, i)

C := S
if #PCR > csize
cbits := log2 csize
for j := 0 to (d− 1)− cbits

if jthbit of i = 1

C := C ∩ Pj+cbitsCR

else

C := C ∩ (S \ Pj+cbitsCR)
end if

end if
return C

(c) Signature(Ci)
C′i(s) :=

[
t→ s

](
♦∨s (T (s, t) · Ci(s))

)
A(s, k) := BlockToFR

(C′i(s))
R′(s, t, k) :=

(R(s, t) · Ci(s)
) · A(t, k)

D′(s, k) := D(s) · Ci(s) · A(s, k)
σi(s, k) := ♦+

t

(R′(s, t, k)
)−D′(s)

return σi

Algorithm 5.1: State space lumping algorithm using hybrid partition representation

The extraction of the quotient system after computing a lumpable partition can be performed exactly as
described in Algorithm 4.1 (upper part), since the final partition is given in CR.

5.2. Signature Refinement in the Hybrid Representation
In the following, we will explain in detail how each of the steps of LumpablePartitionHybrid is performed.

Computing the chunks. As mentioned above, LumpablePartitionHybrid partitions the state space into
chunks and then it refines each chunk separately. The function Chunk(PCR, csize, i) computes the ith chunk
consisting of csize blocks of P represented compactly as PCR. In other words, it returns the union of blocks
of P with indices i · csize through min

{
(i+ 1) · csize, |P |}− 1.

Algorithm 5.1(b) shows the pseudo-code of Chunk. The variable d is the number of MTBDDs of the
compact representation of P . We restrict csize to be a power of 2, which enables us to perform Chunk using
O(log |P |) symbolic operations.

Conversion from FR to CR. Let PFR(s, k) be the fast representation of the partition P = {B1, . . . , Bn} and
(P0

CR, . . . ,Pd−1
CR) be its compact representation. Recall that PjCR is the union of all blocks Bi such that the

jth bit of i is one. Consequently, S \ PjCR is the union of all blocks Bi such that the jth bit of i is zero.
Therefore, to convert PFR to the compact representation, we have

PjCR(s) = ♦∨k
(PFR(s, k)|kj=1

)
. (8)

Observe that the conversion takes only O(d) = O(log |P |) symbolic operations. Notably, the conversion from
CR to FR can also be done in a logarithmic number of steps, but is not needed for the algorithm.

Computing the signatures. Signature(Ci) (see Algorithm 5.1(c)) computes the signatures of all states in Ci,
the ith chunk of the current partition PCR. In Signature, T is the MTBDD of the 0-1 transition matrix,
i. e., T (s, t) = 1 if there is a transition from s to t, and T (s, t) = 0 otherwise. We first compute C′i the set
of successor states of Ci. Then, BlockToFR attaches to each state in Ci its block number and stores it
in A, i. e., A(s, k) = 1 iff s ∈ Bk ∩ C ′i, and A(s, k) = 0 otherwise. We explain below how this is performed

14

efficiently. The remaining three lines provide the restriction of the source states in the generator matrix
Q(s, t) to the current chunk Ci, and replace the target states therein with their block numbers. As discussed
in Section 4.3 for Eq. (7), we avoid the representation of the generator matrix in this computation.

The central novelty in Signature is BlockToFR(U). It computes the fast representation of the
restriction of a partition on the set U ⊆ S. The straightforward approach to do so is to compute PFR(s, k)·U(s).
However, that necessitates the generation of the fast (and possibly large) representation PFR of P which
we want to avoid. BlockToFR exploits the compact representation and performs only O(d) = O(log |P |)
symbolic operations to do so:

BlockToFR(U) =
d−1∧
j=0

(
kj ∧ (PjCR ∩ U)

)
∨
(
kj ∧

(
(S \ PjCR) ∩ U

))
(9)

The intuition behind Eq. (9) is that kj ∧ (PjCR ∩ U) (resp. kj ∧ ((S \ PjCR) ∩ U)) sets to 1 (resp. 0) the jth

block index variable of all states in U that belong to a block whose index has 1 (resp. 0) in its jth bit.

Computing the union of two partitions. In LumpablePartitionHybrid, we refine a chunk using the
signatures of its states resulting in P ′CR,i, a partition of the chunk. Then, Union computes a new subpartition
that contains all blocks of P ′CR,i and P ′CR, the computed subpartition of the state space. In the new
subpartition, all the blocks have the same index as they had in P ′CR or P ′CR,i.

Lemma 1 forms the basis of the Union operation:

Lemma 1. Let P be a partition of U ⊆ S and {P ′, P ′′} be a partition of P . Furthermore, let (P0, . . . , Pd−1),
(P ′0, . . . , P

′
d−1), and (P ′′0 , . . . , P

′′
d−1) be the CR of P , P ′, and P ′′ respectively. Then,

Pj = P ′j ∪ P ′′j . (10)

Proof.

Pj =
⋃
{Bi ∈ P | the jth bit of i is 1}

=
⋃
{Bi ∈ P ′ | the jth bit of i is 1} ∪

⋃
{Bi ∈ P ′′ | the jth bit of i is 1}

= P ′j ∪ P ′′j
�

If the CR of P ′ and P ′′ have different lengths, we append empty sets to the shorter representation to
bring them to the same length. Using Eq. (10), Union(P ′, P ′′) takes only log2(|P ′|+ |P ′′|) symbolic union
operations.

To make Lemma 1 applicable and perform Union(P ′CR,P ′CR,i) efficiently, we need to assign the block
numbers carefully. In particular, we need the indices of P ′CR and P ′CR,i to be disjoint and also not to
have “holes” (i. e., to have consecutive block indices). Hence, we only have to compute the union of the
corresponding BDDs. To facilitate this, we always make the indices of blocks of P ′CR start from zero in each
iteration of the outer loop. When we want to index the blocks of P ′FR,i, we set our starting index to be
#P ′CR, i. e., the next available index in P ′CR. That is reflected in the second parameter of SigRefine in
Algorithm 5.1(a).

5.3. Optimizations
Avoiding unnecessary conversions. During the initial iterations of the outer loop of LumpablePartition-
Hybrid, the number of blocks of P is normally smaller than the chunk size csize. That means the whole
partition consists only of one chunk. In that case, we completely avoid the overhead of the conversions by
only using FR until the number of blocks exceeds csize. Only then do we start the refinement with the
hybrid partition representation.

As a result, the algorithm automatically switches the partition representation from FR to hybrid only
when it is necessary. The advantage is that the algorithm achieves the efficiency of the algorithm in [33]
(solely based on FR) as long as the resulting partition does not exceed csize.

15

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 FPC
S-2-1

 FPC
S-2-2

 FPC
S-2-3

 FPC
S-2-4

 FPC
S-2-5

 FPC
S-3-1

 FPC
S-3-2

 P2P-3-5

 P2P-4-5

 P2P-5-5

 Polling-12

 Polling-13

 Polling-14

 Polling-15

 Polling-16

 C
ycling-2

 C
ycling-3

 FG
F
 R

obot-21

 R
obot-22

 R
obot-23

 R
obot-24

 R
obot-25

 R
obot-26

 R
obot-27

 R
obot-28

 R
obot-29

 R
obot-30

 K
anban-3

n
o
d
es

compact representation
one BDD per block

equivalence relation
fast representation

Figure 2: Sizes of the partitions using various representation techniques. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article)

Automatic selection of csize. As explained above, csize enables us to change the time–space balance of the
algorithm. As we increase csize, the running time of the algorithm decreases and its space consumption
increases. Therefore, it is important to be able to automatically choose an appropriate value for csize. In
the following, we present an algorithm to do so.

Our goal is to use as much of the available physical memory as possible, thereby minimizing the
computation time. There are ample possibilities to deal with the time–space trade-off behind the chunk size.
We implemented the following.

We let the user provide a memory limit. Initially, we set csize = 2dlog2 |S|e (upper bound) such that all
blocks fit into one chunk. Therefore, the algorithm starts using only FR. If the memory limit is exceeded, we
set csize = 2dlog2 |P |e−1 where P is the last successfully computed partition. The algorithm is then restarted
using P as the initial partition. Since csize < |P |, the algorithm uses a hybrid of CR and FR, thereby
reducing the memory consumption at the price of higher runtime. Afterward, each time the memory limit is
exceeded, the chunk size is divided by two and the algorithm is restarted using the last successfully computed
partition as the initial partition.

If the chunk size becomes smaller than one, the refinement process cannot be completed within the given
memory bound. Either the algorithm has to be aborted or the memory limit has to be increased.

6. Experimental Study

6.1. Example Models and Implementation
We have implemented our hybrid algorithm in C++ using the CUDD package [45] as the MTBDD library.
To generate the MTBDD representations of the input MCs, we used the probabilistic model checking tool
PRISM [21]. Our input models are given in PRISM’s guarded command language. They are read by PRISM,
which generates MTBDD representations of the models. We have modified PRISM such that the MTBDD
representations are dumped to a file. These dumped MTBDDs are read by our implementation.

All the code involved in the experiments was compiled using gcc 4.2.4. The experiments were conducted
on a Dual Core AMD OpteronTM 2.4 GHz CPU with 4 GB of main memory running Linux in 32-bit mode.
We have stopped any experiment that takes more than 2000 seconds. This value is chosen arbitrarily, but
uniform over all experiments.

16

Table 1: Size of the example models before and after lumping

Original System Quotient System
Benchmark states transitions states transitions
FPCS-2-2 15769 91232 703 5846
FPCS-2-3 256932 1697760 2145 19760
FPCS-2-4 3803193 27771984 5151 50298
FPCS-2-5 52639632 416078208 10585 107300
FPCS-3-1 23040 153600 969 8908
FPCS-3-2 1889947 15302784 9139 107522
FPCS-3-3 124075800 1151306784 47905 631280
P2P-3-5 32768 245761 56 106
P2P-4-5 1048576 10485761 126 281
P2P-5-5 33554432 419430401 196 456
P2P-6-5 1073741824 16106127361 266 631
Polling-12 73728 503808 6144 41984
Polling-13 159744 1171456 12288 90112
Polling-14 344064 2695168 24576 192512
Polling-15 737280 6144000 49125 409600
Polling-16 1572864 13893632 98304 868352
Polling-18 7077888 69599232 393216 3866624
Cycling-2 4666 18342 3511 14445
Cycling-3 57667 305502 40659 224591
Cycling-4 431101 2742012 282943 1878339
Cycling-5 2326666 16778785 1424914 10739110
FGF 80616 562536 38639 379757
Robot-25 61200 325917 60600 322919
Robot-26 68900 367397 68250 364149
Robot-27 77220 412253 76518 408745
Robot-28 86184 460617 85428 456839
Robot-29 95816 512621 95004 508563
Robot-30 106140 568397 105270 564049
Kanban-3 58400 446400 58400 446400

We consider seven different example models from the literature to study the performance of the algorithm:
A fault-tolerant parallel computer system (FPCS) [46], a peer-to-peer (P2P) protocol based on BitTorrent
(studied in [8]), a cyclic server polling system [47], a robot moving through an n × n grid [48] (Robot), a
Kanban production system [49], and two biological models: the first one describes the Fibroblast growth
factor signaling (FGF) within cells [50], and the second one is a probabilistic model of cell cycle control in
eukaryotes (Cycling) [51].

For the FPCS model, we converted the SAN (Stochastic Activity Network) specification to the PRISM
input language. We obtained the PRISM specifications of the other five models from http://www.prismmodel
checker.org/casestudies/index.php.

All but the FGF model are parametrized. The first two models have two parameters. For FPCS, they
denote the number of computers in the system and the number of memory modules in each computer,
respectively. For P2P, they represent the number of clients and the number of blocks of the file to be
transmitted, respectively. The remaining models have only one parameter: for the polling benchmark, the
parameter denotes the number of servers; for the robot benchmark, the size of the grid; in the Kanban
benchmark, the parameter denotes the number of tokens in the system; and for the cell cycle control, it
denotes the initial number of molecules.

With the exception of the Kanban model, all of these Markov chains can be minimized, i. e., the lumped
system is smaller than the original one. The lumped model of the Kanban system, however, has the same
size as the input model.

Table 1 shows the number of states and transitions for all example models before and after lumping.
The runtimes for all following experiments include the time to compute the coarsest ordinarily lumpable

partition, but not the time for computing the quotient system using that partition. The reason is that the
computation of the partition is the most expensive step, which is optimized by the hybrid algorithm. Using
the hybrid algorithm with unlimited memory and the CR-based quotient extraction algorithm yielding a
symbolic representation of the quotient MC, the quotient computation took less than 20 % of the overall

17

minimization time.

6.2. Results
Partition sizes. We first computed the coarsest lumpable partition for the example models and converted
them to the four partition representations described in Section 2.2 to compare their sizes.

For the representation of the equivalence relation we used an interleaved variable order, since an interleaved
variable order often leads to small (MT)BDDs [52]. For the fast representation we used a variable order such
that the block number variables are placed at the end of the order (i. e. at the bottom of the BDD). We need
such a variable order to be able to perform the refinement operation efficiently (see Section 4.3).

Figure 2 shows the result of this experiment. Note that the scale of the vertical axis is logarithmic.
For all benchmarks with the exception of P2P, the CR representation (shown using the left-most (red) bars

of each benchmark) ranks among the two most compact representations, often with only a small difference to
the most compact one, while the other representations are, in some cases, significantly larger. Quantitatively
speaking, the size of CR is on average1 2.24 times the size of the smallest representation while the same
number for FR, BR and ER is 26.02, 28.87, and 5.03, respectively.

The exception is P2P for which CR is slightly, but not prohibitively, larger than FR. The reason is that
P2P models exhibit a large degree of symmetry, resulting in quite small lumpable partitions (in the order of a
few hundred blocks, see above). In this case, the overhead introduced by the block number variables in FR is
marginal and the MTBDD size is dominated by other effects.

Effect of the chunk size. To evaluate the effect of the chunk size on the time and space requirements of the
hybrid algorithm from Section 5, we applied it to the six models, varying the chunk size from one block per
chunk to a size such that all blocks fit into one chunk. The maximal number of BDD nodes which have to be
stored in memory simultaneously (peak number of nodes) is depicted on the left-hand side of Figure 3 and
Figure 4 while the runtime is shown on the right-hand side.

We observe that for all benchmarks with the exception of P2P, the memory requirement grows drastically
as the chunk size increases. For P2P, the memory requirement slightly decreases or stays more or less constant
depending on the configuration. That is because the compact representation for the P2P model accounts for
the major part of the memory requirement of the algorithm, as reflected in Figure 2.

Moreover, the runtime of the algorithm for all benchmarks decreases significantly when chunk size
increases. The sensitivity of the runtime is milder for P2P examples because the chunk size has only little
influence on the size of the partition representation.

Because of the optimization explained in Section 5.3, when csize is larger than the size of the lumpable
partition (i. e., the final result), the hybrid algorithm behaves exactly like the pure-FR algorithm (that only
uses FR). That is the reason why the runtime and space requirement of the hybrid algorithm eventually
stabilizes when the chunk size exceeds a specific threshold.

In general, the experiments show that we can indeed have a time–space trade-off. The smaller the chunk
size, the less memory and the more time the algorithm consumes. That property enables us to have a simple
and automatic chunk size selection algorithm, described in Section 5.3.

Evaluation of the automatic chunk size selection algorithm. We ran the algorithm once without limiting the
available memory, i. e., it was allowed to use as much physical memory as needed. In the other experiments,
we limited the available memory to 75, 50, 30, and 15 MB for the MTBDDs. The results are shown in
Table 2.

For each set of experiments, we give the running time, the memory usage of the nodes, and the number of
chunk bits (cbits = log2 csize) with which the lumping computation succeeded without violating the memory
limit2. We have marked the number of chunk bits using a bold font if it was automatically decreased by the

1This is computed using arithmetic mean.
2The actual memory requirement is slightly higher than the limit, since the limit is placed on the memory used by the

MTBDDs. The memory requirement of the program code and of other data structures than MTBDDs is not taken into account
for the limit.

18

Table 2: Runtime and memory consumption of the hybrid algorithm with automatic chunk size selection
for different memory limitations (all times in seconds, memory usage in MB)

unlimited memory 75 MB 50 MB
Model Time Mem. cbits Time Mem. cbits Time Mem. cbits
FPCS-2-2 0.32 18.29 15 0.34 18.29 15 0.30 18.29 15
FPCS-2-3 1.62 50.02 19 1.56 50.02 19 1.54 50.02 19
FPCS-2-4 6.51 62.93 23 6.32 62.94 23 6.66 55.93 23
FPCS-2-5 44.83 96.32 27 149.03 79.66 13 40.81 65.00 12
FPCS-3-1 0.80 29.45 16 0.84 29.46 16 0.84 29.45 16
FPCS-3-2 19.78 105.66 22 64.41 80.08 12 28.57 63.08 12
FPCS-3-3 220.00 520.70 28 329.63 89.27 10 296.09 61.61 8
P2P-3-5 0.07 10.49 15 0.07 10.49 15 0.08 10.49 15
P2P-4-5 0.92 33.55 20 0.90 33.55 20 0.91 33.55 20
P2P-5-5 6.94 63.68 25 6.99 63.67 25 6.22 54.65 25
P2P-6-5 227.86 62.72 30 230.57 62.72 30 152.97 56.51 30
Polling-12 24.92 60.07 17 23.76 60.08 17 23.53 56.85 17
Polling-13 71.89 71.99 18 72.01 71.99 18 71.99 68.18 18
Polling-14 260.64 110.79 19 391.42 87.13 14 350.88 68.61 13
Polling-15 710.72 231.48 20 789.63 85.47 13 802.45 66.48 12
Polling-16 1868.24 433.97 21 1965.46 83.67 12 2525.20 68.51 11
Polling-18 15610.48 1814.29 24 mem out mem out
Cycling-2 1.04 23.70 14 1.02 23.70 14 1.04 23.70 14
Cycling-3 26.05 88.55 17 27.10 83.53 17 38.26 64.62 14
Cycling-4 329.06 634.85 20 2369.78 87.51 8 mem out
Cycling-5 3236.05 2132.23 23 mem out mem out
FGF 94.67 128.22 18 179.51 80.64 13 108.63 64.37 13
Robot-25 115.70 76.27 17 115.40 76.27 17 117.25 66.98 17
Robot-26 154.37 81.50 18 153.77 81.50 18 165.68 67.61 18
Robot-27 181.25 83.07 18 180.03 83.07 18 290.24 66.78 16
Robot-28 208.68 87.01 18 206.53 84.34 18 298.31 66.71 16
Robot-29 245.27 88.13 18 246.25 85.31 18 335.13 64.53 15
Robot-30 287.26 93.45 18 292.23 85.96 18 391.78 64.66 15
Kanban-3 53.24 146.71 17 69.22 82.55 14 67.81 67.91 14

30 MB 15 MB
Model Time Mem. cbits Time Mem. cbits

FPCS-2-2 0.34 18.29 15 0.34 18.29 15
FPCS-2-3 1.62 38.64 19 19.41 19.40 11
FPCS-2-4 34.66 37.20 11 19.96 20.45 9
FPCS-2-5 102.74 41.56 10 mem out
FPCS-3-1 0.78 29.46 16 0.94 19.76 16
FPCS-3-2 47.06 40.41 9 30.94 25.05 8
FPCS-3-3 445.03 51.19 7 mem out

P2P-3-5 0.07 10.49 15 0.08 10.49 15
P2P-4-5 0.93 33.55 20 1.16 19.41 20
P2P-5-5 25.62 35.26 25 mem out
P2P-6-5 mem out mem out

Polling-12 24.74 40.02 17 49.63 20.73 11
Polling-13 144.36 43.46 13 130.03 25.11 10
Polling-14 297.24 50.51 12 466.23 24.95 9
Polling-15 826.32 48.64 11 mem out
Polling-16 3566.04 46.14 8 mem out
Polling-18 mem out mem out
Cycling-2 1.12 23.70 14 1.24 19.85 14
Cycling-3 71.88 39.33 10 179.33 20.96 7
Cycling-4 mem out mem out
Cycling-5 mem out mem out

FGF 113.76 40.54 12 139.06 22.84 10
Robot-25 178.65 39.96 15 201.39 21.02 13
Robot-26 239.90 38.42 14 264.93 20.85 13
Robot-27 279.88 37.19 14 324.10 20.97 13
Robot-28 342.43 38.39 14 353.87 21.01 13
Robot-29 368.46 37.57 14 417.22 20.85 13
Robot-30 416.45 38.70 14 476.56 20.57 13
Kanban-3 78.01 36.75 12 mem out

19

Table 3: Comparison of the hybrid algorithm with the algorithms based only on FR [33] and on CR [32]
(runtimes measured in seconds).

hybrid algorithm
pure FR-based algorithm with automatic csize pure CR-based algorithm

Model Runtime Node peak Runtime Node peak Runtime Node peak
FPCS-2-2 0.36 192342 0.34 194100 2.43 30114
FPCS-2-3 1.56 646403 1.56 649118 27.31 56076
FPCS-2-4 6.24 1740601 6.32 1744309 148.07 153937
FPCS-2-5 mem out 149.03 3479910 669.45 365859
FPCS-3-1 0.82 429480 0.84 433907 9.41 74562
FPCS-3-2 mem out 64.41 3471734 785.16 501825
FPCS-3-3 mem out 329.63 3499328 time out
P2P-3-5 0.07 35439 0.07 35548 0.95 39144
P2P-4-5 0.93 173396 0.90 173545 11.46 223080
P2P-5-5 6.84 502239 6.99 502428 88.75 684236
P2P-6-5 226.79 1064528 230.57 1064757 320.89 1554417
Polling-12 23.51 853853 23.76 854632 175.13 129042
Polling-13 71.90 1801559 72.01 1802466 545.42 466033
Polling-14 mem out 391.42 3507504 1788.61 452243
Polling-15 mem out 789.63 3483998 time out
Polling-16 mem out 1965.46 3462536 time out
Cycling-2 1.04 253277 1.02 257299 23.30 70223
Cycling-3 27.04 3283756 27.10 3295680 time out
Cycling-4 mem out time out time out
Cycling-5 mem out mem out mem out
FGF mem out 179.51 3503416 1098.53 390501
Robot-25 133.93 1905411 115.40 1906895 1312.20 246678
Robot-26 154.98 2339002 153.77 2340408 1642.80 265755
Robot-27 214.09 2556052 180.03 2557574 time out
Robot-28 230.30 2770960 206.53 2772461 time out
Robot-29 252.71 3047872 246.25 3049540 time out
Robot-30 304.78 3294827 292.23 3296445 time out
Kanban-3 mem out 69.22 3493196 time out

chunk size selection algorithm to adhere to the memory limit. An entry “mem out” means that the lumping
computation failed since the memory limit was exceeded in spite of a chunk size of 1.

We observe that as we decrease the physical memory available to the algorithm, it adapts itself by
decreasing the chunk size as much as necessary. This adaptation comes with a cost in the running time which
in the worst case grows by a small factor.

One would expect that the running time grows as the available memory decreases in each row of the table.
However, there are a few exceptions. This is due to the caching behavior of the MTBDD package. If CUDD
runs short of available memory, garbage collection is executed more frequently to free nodes which are no
longer used. Furthermore, the size of internal caches is reduced to save memory. Both can influence the
runtime in unpredictable ways. These memory saving strategies of CUDD are also the reason why sometimes
less memory is used although the chunk size has not been decreased (see e. g., Polling-12).

Comparing the hybrid algorithm with the pure CR-based algorithm (Section 4.2) and the pure FR-based
algorithm (Section 4.3). To have a fair comparison of the effectiveness of the three algorithms, we apply
them to different models while we set an equal memory limit (75 MB) and time limit (2000 s) for all of them.

Table 3 shows the results of our experiments. For the hybrid algorithm the table contains the runtime
including the time it takes to arrive at a suitable chunk size. We observe that the hybrid algorithm finishes
several experiments successfully for which the FR-based and the CR-based algorithms fail due to memory
limits and time limits, respectively. In all experiments that both hybrid and FR-based algorithms finish
successfully, the hybrid algorithm is at most 2 % slower and uses roughly the same amount of memory.
Moreover, for all experiments that both hybrid and CR-based algorithms finish successfully, the hybrid
algorithm is much faster than the CR-based one.

If we relax the memory bound and provide 2 GB of main memory, the hybrid algorithm is the only one
that does not fail on the Cycling-5 benchmark. The purely FR-based algorithm fails due to the memory
limit, whereas the CR-based one does not terminate within 12 hours.

Thus, our hybrid algorithm provides us with the core advantages of both representations/algorithms with
a negligible running time penalty.

20

7. Conclusion

In this paper, we have developed a general, fast and memory efficient algorithm for ordinary (and also exact
and strict) Markov chain lumping. The algorithm is presented in the context of continuous-time Markov
chains, but is easily adaptable to labeled transition systems, Kripke structures, discrete-time or interactive
Markov chains, Markov reward models, etc.

The particular strength of this algorithm is that it exploits the true potential of BDD-based representation
with respect to time and space, in a way that so far was unavailable. Based on experimental analysis of
different partition representation techniques, we have devised an algorithm that (1) exploits the compactness
of the CR representation and (2) uses the efficiency of the FR representation for an iterative signature-based
refinement of partition chunks. The algorithm is parametric in the chunk size it processes at once. We have
also devised and evaluated a strategy that automatically chooses an appropriate value for the chunk size.
Thanks to our hybrid representation and automatic chunk size selection, severe memory limitations caused
only a worst case slowdown by a small factor in running time compared to unlimited available memory.
Moreover, given the same memory limits, the hybrid algorithm works virtually as fast as pure-FR algorithm
while drastically outperforming the pure-CR algorithm for models for which pure-FR runs out of memory.

The algorithm is designed to work with MTBDDs or BDDs. It appears possible to extend the algorithm
to EVBDDs or PDGs, but it is unclear whether this has positive effects on the overall performance, since a
key point is the partition representation. The number of inner nodes of a BDD and of its corresponding
EVBDD is the same. Only the edges to the leaf 1 of the BDD are replaced by edges to the leaf 0 (with
appropriate labeling) [18]. Therefore, using EVBDDs instead of BDDs for the partitions is not expected to
reduce their size notably.

References

[1] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), Proc. of the 5th GI-Conference on
Theoretical Computer Science, Vol. 104 of Lecture Notes in Computer Science, Springer, 1981, pp. 167–183.

[2] J. G. Kemeney, J. L. Snell, Finite Markov Chains, D. Van Nostrand Company, Inc., 1960.
[3] W. H. Sanders, J. F. Meyer, Reduced base model construction methods for stochastic activity networks, IEEE Journal on

Selected Areas in Communication 9 (1) (1991) 25–36.
[4] H. Hermanns, M. Ribaudo, Exploiting symmetries in stochastic process algebras, in: 12th European Simulation Multicon-

ference, 1998, pp. 763–770.
[5] S. Gilmore, J. Hillston, M. Ribaudo, An efficient algorithm for aggregating PEPA models, IEEE Transactions on Software

Engineering 27 (5) (2001) 449–464.
[6] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, Stochastic well-formed colored nets and symmetric modeling

applications, IEEE Transactions on Computers 42 (11) (1993) 1343–1360.
[7] S. Derisavi, P. Kemper, W. H. Sanders, Symbolic state-space exploration and numerical analysis of state-sharing composed

models, Linear Algebra and Its Applications 386 (2004) 137–166.
[8] M. Kwiatkowska, G. Norman, D. Parker, Symmetry reduction for probabilistic model checking, in: Proc. of the Int’l Conf.

on Computer-Aided Verification (CAV), Vol. 4114 of Lecture Notes in Computer Science, 2006, pp. 234–248.
[9] K. G. Larsen, A. Skou, Bisimulation through probabilistic testing, in: 16th Annual ACM Symposium on Principles of

Programming Languages (POPL), 1989, pp. 344–352.
[10] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.
[11] J. Hillston, H. Hermanns, U. Herzog, V. Mertsiotakis, M. Rettelbach, Stochastic process algebras: integrating qualitative

and quantitative modelling, in: 7th IFIP WG6.1 International Conference on Formal Description Techniques (FORTE),
Vol. 6 of IFIP Conference Proceedings, Chapman & Hall, 1994, pp. 449–451.

[12] P. Buchholz, Exact and ordinary lumpability in finite Markov chains, Journal of Applied Probability 31 (1994) 59–74.
[13] S. Derisavi, H. Hermanns, W. H. Sanders, Optimal state-space lumping in Markov chains, Information Processing Letters

87 (6) (2003) 309–315.
[14] J.-P. Katoen, T. Kemna, I. Zapreev, D. N. Jansen, Bisimulation minimization mostly speeds up probabilistic model

checking, in: Proc. of the Int’l Conf. on Tools and Algorithms for the Construction and Anlysis of Systems (TACAS), Vol.
4424 of Lecture Notes in Computer Science, 2007, pp. 87–101.

[15] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, X. Zhao, Multiterminal binary decision diagrams: An efficient
data structure for matrix representation, Formal Methods in System Design 10 (2/3) (1997) 149–169.

[16] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, F. Somenzi, Algebraic decision diagrams and their
applications, Formal Methods in System Design 10 (2/3) (1997) 171–206.

[17] Y.-T. Lai, S. Sastry, Edge-valued binary decision diagrams for multi-level hierarchical verification, in: Proc. of the 1992
Design Automation Conference (DAC), IEEE CS Press, 1992, pp. 608–613.

21

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

FPCS-2-1
FPCS-2-2
FPCS-2-3
FPCS-2-4
FPCS-2-5
FPCS-3-1
FPCS-3-2
FPCS-3-3

(a) FPCS (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

FPCS-2-1
FPCS-2-2
FPCS-2-3
FPCS-2-4
FPCS-2-5
FPCS-3-1
FPCS-3-2
FPCS-3-3

(b) FPCS (Running time)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

P2P-3-5
P2P-4-5
P2P-5-5
P2P-6-5

(c) P2P (Peak # of nodes)

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

P2P-3-5
P2P-4-5
P2P-5-5
P2P-6-5

(d) P2P (Running time)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

Polling-12
Polling-13
Polling-14
Polling-15
Polling-16

(e) Polling system (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

Polling-12
Polling-13
Polling-14
Polling-15
Polling-16

(f) Polling system (Running time)

Figure 3: Maximal number of live nodes and running times of the hybrid algorithm for different chunk
sizes (part 1)

22

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

Robot-24
Robot-25
Robot-26
Robot-27
Robot-28
Robot-29
Robot-30

(a) Grid World Robot (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

Robot-24
Robot-25
Robot-26
Robot-27
Robot-28
Robot-29
Robot-30

(b) Grid World Robot (Running time)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

FGF
Kanban-3

(c) FGF Signalling / Kanban Production System (Peak # of
nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

FGF
Kanban-3

(d) FGF Signalling / Kanban Production System (Running
time)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5 10 15 20

m
ax

im
al

 n
u
m

b
er

 o
f

li
v
e

n
o
d
es

lg csize

Cycling-2
Cycling-3
Cycling-4

(e) Cell Cycle Control (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n
ti

m
e

[s
]

lg csize

Cycling-2
Cycling-3
Cycling-4

(f) Cell Cycle Control (Running time)

Figure 4: Maximal number of live nodes and running times of the hybrid algorithm for different chunk
sizes (part 2)

23

[18] Y.-T. Lai, M. Pedram, S. B. K. Vrudhula, Formal verification using edge-valued binary decision diagrams, IEEE Trans.
Computers 45 (2) (1996) 247–255.

[19] S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial problems, in: Proc. of the 1993 Design Automation
Conference (DAC), 1993, pp. 272–277.

[20] G. Ciardo, A. S. Miner, A data structure for the efficient Kronecker solution of GSPNs, in: 8th International Workshop on
Petri Nets Performance Models (PNPM), 1999, pp. 22–31.

[21] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM: A tool for automatic verification of probabilistic systems,
in: Proc. of the Int’l Conf. on Tools and Algorithms for the Construction and Anlysis of Systems (TACAS), Vol. 3920 of
Lecture Notes in Computer Science, 2006, pp. 441–444.

[22] M. Kuntz, M. Siegle, E. Werner, Symbolic performance and dependability evaluation with the tool CASPA, in: FORTE
Workshops 2004, Vol. 3236 of Lecture Notes in Computer Science, Springer, 2004, pp. 293–307.

[23] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan, J. Rakow, R. Wimmer, B. Becker, Compositional
dependability evaluation for statemate, IEEE Transactions on Software Engineering 35 (3) (2009) 274–292.

[24] R. Enders, T. Filkorn, D. Taubner, Generating BDDs for symbolic model checking in CCS, Distributed Computing 6 (3)
(1993) 155–164.

[25] H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi terminal binary decision diagrams to represent and analyse continuous
time markov chains, in: B. Plateau, W. J. Stewart, M. Silva (Eds.), 3rd Int’l Workshop on the Numerical Solution of
Markov Chains (NSMC), Prensas Universitarias de Zaragoza, Zaragoza, Spain, 1999, pp. 188–207.

[26] H. Hermanns, M. Z. Kwiatkowska, G. Norman, D. Parker, M. Siegle, On the use of MTBDDs for performability analysis
and verification of stochastic systems, Journal of Logic and Algebraic Programming 56 (1–2) (2003) 23–67.

[27] M. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model checking with PRISM: A hybrid approach, Software
Tools for Technology Transfer 6 (2) (2004) 128–142.

[28] S. Blom, S. Orzan, Distributed branching bisimulation reduction of state spaces, in: Proc. of the Int’l Workshop on Parallel
and Distributed Model Checking, Vol. 89 of Electronic Notes in Theoretical Computer Science, Elsevier, 2003, pp. 99–113.

[29] S. Blom, S. Orzan, A distributed algorithm for strong bisimulation reduction of state spaces, Software Tools for Technology
Transfer 7 (1) (2005) 74–86.

[30] S. Blom, S. Orzan, Distributed state space minimization, Software Tools for Technology Transfer 7 (3) (2005) 280–291.
[31] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, B. Becker, Sigref – A symbolic bisimulation tool box, in: Proc. of

the Int’l Symp. on Automated Technology for Verification and Analysis (ATVA), Vol. 4218 of Lecture Notes in Computer
Science, 2006, pp. 477–492.

[32] S. Derisavi, A symbolic algorithm for optimal Markov chain lumping, in: Proc. of the Int’l Conf. on Tools and Algorithms
for the Construction and Anlysis of Systems (TACAS), Lecture Notes in Computer Science, 2007, pp. 139–154.

[33] S. Derisavi, Signature-based symbolic algorithm for optimal Markov chain lumping, in: Proc. of the Int’l Conf. on
Quantitative Evaluation of Systems (QEST), 2007, pp. 141–150.

[34] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan, R. Wimmer, B. Becker, Compositional
performability evaluation for statemate, in: Proc. of the Int’l Conf. on Quantitative Evaluation of Systems (QEST), 2006,
pp. 167–178.

[35] P. J. Schweitzer, Aggregation methods for large Markov chains, in: G. Iazeolla, P.-J. Courtois, A. Hordijk (Eds.), Proc. of
the Int’l Workshop on Computer Performance and Reliability, Elsevier, 1984, pp. 275–286.

[36] S. Baarir, C. Dutheillet, S. Haddad, J.-M. Ilié, On the use of exact lumpability in partially symmetrical well-formed nets,
in: Proc. of the Int’l Conf. on Quantitative Evaluation of Systems (QEST), IEEE CS Press, 2005, pp. 23–32.

[37] M. Bozga, O. Maler, On the representation of probabilities over structured domains, in: N. Halbwachs, D. Peled (Eds.),
Proc. of the Int’l Conf. on Computer-Aided Verification (CAV), Vol. 1633 of Lecture Notes in Computer Science, Springer,
Trento, Italy, 1999, pp. 261–273.

[38] K. Lampka, M. Siegle, Analysis of Markov reward models using zero-suppressed multi-terminal BDDs, in: L. Lenzini, R. L.
Cruz (Eds.), Proc. of the 1st Int’l Conf. Performance Evaluation Methodolgies and Tools (VALUETOOLS), Vol. 180 of
ACM International Conference Proceeding Series, ACM, 2006, p. 35.

[39] I. Wegener, Branching programs and binary decision diagrams, SIAM Monographs on Discrete Mathematics and Applications,
SIAM, 2000.

[40] H. Hermanns, M. Z. Kwiatkowska, G. Norman, D. Parker, M. Siegle, On the use of MTBDDs for performability analysis
and verification of stochastic systems, Journal of Logic and Algebraic Programming 56 (1-2) (2003) 23–67.

[41] J. E. Hopcroft, An n log n algorithm for minimizing states in a finite automaton, in: Z. Kohavi, A. Paz (Eds.), Theory of
Machines and Computations, Academic Press, 1971, pp. 189–196.

[42] S. Derisavi, Solution of large Markov models using lumping techniques and symbolic data structures, Ph.D. thesis, University
of Illinois at Urbana-Champaign (2005).

[43] A. Bouali, R. de Simone, Symbolic bisimulation minimisation, in: Proc. of the Int’l Conf. on Computer-Aided Verification
(CAV), Vol. 663 of Lecture Notes in Computer Science, 1992, pp. 96–108.

[44] R. Wimmer, M. Herbstritt, B. Becker, Optimization techniques for BDD-based bisimulation minimization, in: ACM Great
Lakes Symposium on VLSI, 2007, pp. 405–410.

[45] F. Somenzi, CUDD: Colorado University decision diagram package. public software, Colorado University, Boulder,
http://vlsi.colorado.edu/~fabio/ (2007).

[46] W. H. Sanders, L. M. Malhis, Dependability evaluation using composed SAN-based reward models., Journal Parallel and
Distributed Computing 15 (3) (1992) 238–254.

[47] O. Ibe, K. Trivedi, Stochastic Petri net models of polling systems, IEEE Journal on Selected Areas in Communications
8 (9) (1990) 1649–1657.

24

[48] H. Younes, M. Kwiatkowska, G. Norman, D. Parker, Numerical vs. statistical probabilistic model checking, Software Tools
for Technology Transfer 8 (3) (2006) 216–228.

[49] G. Ciardo, M. Tilgner, On the use of Kronecker operators for the solution of generalized stocastic Petri nets, ICASE Report
96-35, Institute for Computer Applications in Science and Engineering (1996).

[50] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn, Probabilistic model checking of complex biological
pathways, Theoretical Computer Science 319 (3) (2008) 239–257.

[51] P. Lecca, C. Priami, Cell cycle control in eukaryotes: A BioSpi model, Electronic Notes in Theoretical Computer Science
180 (3) (2007) 51–63.

[52] H. Hermanns, M. Siegle, Bisimulation algorithms for stochastic process algebras and their BDD-based implementation, in:
Proc. of the 5th Int’l AMAST Workshop on Real-Time and Probabilistic Systems (ARTS’99), Vol. 1601 of Lecture Notes
in Computer Science, 1999, pp. 144–264.

Ralf Wimmer received his diploma in computer science from the Albert-Ludwigs-University,
Freiburg (Germany) in 2004. Since 2005 he has been working as a PhD student at the
German Transregional Collaborative Research Center AVACS in Freiburg. His research
interests include applications of symbolic methods for stochastic verification.

Salem Derisavi received his bachelor degree in computer engineering in 1999 from Sharif
University of Technology, Iran and his PhD in computer science from the University of Illinois
at Urbana-Champaign in 2005. He is currently working with the IBM Software Laboratory
in Toronto, Canada. His research interests include designing efficient data structures and
algorithms for functional and numerical analysis of finite-state models, and more recently,
parallelizing compilers for multi-core processors.

Holger Hermanns studied at the University of Bordeaux, France, and the University of
Erlangen/Nürnberg, Germany, where he received a diploma degree in computer science
in 1993 (with honors) and a PhD degree from the Department of Computer Science in
1998 (with honors). From 1998 to 2006 he has been with the University of Twente, The
Netherlands, holding an associate professor position since October 2001. Since 2003 he heads
the Dependable Systems and Software Group at Saarland University, Germany. He has
published more than 100 scientific papers, holds various research grants, and has co-chaired
several international conferences including CAV, CONCUR and TACAS. His research interests
include modeling and verification of concurrent systems, resource-aware embedded systems,
and compositional performance and dependability evaluation.

25

