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Abstract. Bisimulation reduction is a classical means to fight the in-
famous state space explosion problem, which limits the applicability of
automated methods for verification like model checking. A signature-based
method, originally developed by Blom and Orzan for labeled transition
systems and adapted for Markov chains by Derisavi, has proved to be very
efficient. It is possible to implement it symbolically using binary decision
diagrams such that it is able to handle very large state spaces efficiently.
We will show, however, that for Markov chains this algorithm suffers from
numerical instabilities, which often result in too large quotient systems.
We will present and experimentally evaluate two different approaches to
avoid these problems: first the usage of rational arithmetic, and second
an approach not only to represent the system structure but also the
transition rates symbolically. In addition, this allows us to modify their
actual values after the quotient computation.

1 Introduction

The state space explosion problem denotes the observation that the state space
of a system grows exponentially in the number of components the system consists
of. The size of realistic systems limits the applicability of formal verification
techniques to large designs. To alleviate this effect, numerous techniques have
been developed like the usage of symbolic methods (e. g. decision diagrams in
various flavors, see [1]) and abstraction techniques (e. g. partial-order reduction
and symmetry reduction). Bisimulation minimization can be considered as a
kind of abstraction technique which can be performed fully automatically. The
idea behind bisimulation minimization is to group the states into equivalence
classes such that states are considered equivalent if and only if they exhibit the
same step-wise behavior. A system with a minimal number of states which has
the same behavior as the original system—this means that it satisfies the same
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formulas of a temporal logic like CTL or CSL—can be obtained by replacing
each equivalence class of the bisimulation with a single state.

While Fisler and Vardi [2] observed that bisimulation minimization does not
speed up checking invariant properties of labeled transitions systems, the contrary
is often the case for stochastic systems like discrete- and continuous-time Markov
chains. There, model checking involves the solution of a linear equation system
and is much more expensive than in the purely digital case. Hence, model checking
can benefit a lot from minimizing the model prior to checking properties [3, 4].

This has led to a revival of bisimulation techniques for stochastic systems in
the last few years (cf. for example [5–9]). One of the most efficient approaches is
based on signature-based partition refinement, originally developed by Blom and
Orzan [10] for labeled transition systems (LTSs). Wimmer et al. [11] extended this
approach such that a large number of different kinds of bisimulations for LTSs can
be computed symbolically using OBDDs. Derisavi [7] applied it successfully to
continuous-time Markov chains. The problem with this signature-based approach
for Markov chains is, as we will show, that it is very sensitive to numerical
problems. In many cases they lead to quotient systems with too many states, and
sometimes they can even prevent termination. In this paper we will address these
problems: by using rational arithmetic to avoid numerical problems. Although
considered to be computationally expensive typically, we will show that this is
not the case for our bisimulation algorithm. Another possibility, which we will
present, is to handle the transition rates not as numbers but as pure symbols.
Besides avoiding numerical problems this has the advantage that the rates can
be adjusted after the quotient computation without redoing the minimization.
We will also present experimental results for this technique.

We have structured this paper as follows: in the next section we review the
foundations which consist of continuous-time Markov chains, bisimulations, and
the principle of signature-based bisimulation computation. In Section 3 we present
methods which yield bisimulation relations in a reliable and/or parametric manner.
Section 4 provides an experimental evaluation of these methods. Finally, in
Section 5, we conclude and point out directions for future research.

2 Foundations

In this section we will briefly review the basics of continuous-time Markov
chains (CTMCs), bisimulations and the signature-based algorithm for computing
bisimulations on CTMCs symbolically.

Definition 1. Let AP be a finite set of atomic propositions. A continuous-time
Markov chain (CTMC) is a tuple M = (S, s0, R, L) such that S is a finite, non-
empty set of states; s0 ∈ S, the initial state; R : S × S → R≥0, the matrix of
transition rates; and L : S → 2AP , a labeling function which assigns each state a
set of atomic propositions from AP .



For a set S′ ⊆ S of states, we use the notation R(s, S) =
∑
s′∈S′ R(s, s′). The

transitions of a CTMC are governed by a negative exponential distribution, i. e.
the probability to take the transition from s to s′ within time t is given by

p(s, s′, t) =
R(s, s′)
R(s, S)

·
(

1− e−R(s,S)·t
)
. (1)

A partition of a set S is a set P ⊆ 2S \ {∅} such that the union of all elements
(called blocks) of P equals S and all blocks of P are pairwise disjoint. If P is
a partition of S, we write for states s, t ∈ S: s ≡P t iff there is a block B ∈ P
such that {s, t} ⊆ B. A partition P is a refinement of a partition P ′ (denoted
P v P ′) if ∀B ∈ P ∃B′ ∈ P ′ : B ⊆ B′.

Definition 2. Let M = (S, s0, R, L) be a continuous-time Markov-Chain. A
partition P of S is a bisimulation on M if for all s, t ∈ S with s ≡P t and for
all blocks B ∈ P the following conditions hold:

L(s) = L(t) and R(s,B) = R(t, B).

States s, t ∈ S are bisimilar (written s ≈ t) if there is a bisimulation P on M
such that s ≡P t.

The practically most important property of bisimilarity is that states are
bisimilar if and only if they satisfy the same formulas of the temporal logic
CSL [12], which is widely used for specification of requirements. This enables us
to use the quotient system for checking the validity of these formulas instead of
the larger original system.

The idea behind signature-based bisimulation computation is to compute for
each state a kind of fingerprint, such that states can only be bisimilar if their
fingerprints are identical. To obtain a refined partition, the blocks are grouped
according to the signatures of their states. This is formally captured in the
following definition:

Definition 3. Let M = (S, s0, R, L) be a CTMC, P (0) an initial partition of S,
and P a partition of S with P v P (0). The signature of a state s with respect to
P is then given by

sig(s, P ) =
{

(B, r) ∈ P × R≥0
∣∣ r = R(s,B)

}
.

The refinement sigref(P ) of P is defined as

sigref(P ) =
{
{t ∈ S | sig(s, P ) = sig(t, P ) ∧ s ≡P (0) t}

∣∣ s ∈ S}.
The initial partition is needed if one wants the bisimulation quotient to

preserve the validity of a certain logic like CSL or if additional information like
state rewards has to be taken into account. If we have to preserve CSL properties,
we set P (0) =

{
{s ∈ S |L(s) = L(t)}

∣∣ t ∈ S
}

; if state rewards r : S → R≥0

have to be considered, we use P (0) =
{
{s ∈ S | r(s) = r(t)}

∣∣ t ∈ S}; otherwise,



Algorithm 2.1: SigRefine(CTMC M , partition P (0))
begin

i← 0 (1)
repeat (2)

P (i+1) ← sigref(P (i)) (3)
i← i + 1 (4)

until P (i) = P (i−1) (5)
return P (6)

end

when there are no such requirements, we can use the trivial partition P (0) = {S},
which consists of only one block containing all states.

We iteratively apply the sigref-operator until a fixed point is reached. The
pseudo-code of this procedure is given in Algorithm 2.1.

Derisavi has shown in [7] that this algorithm terminates after at most |S| −
|P (0)|+ 1 iterations and yields the coarsest bisimulation on M that refines P (0).

Now we will show how this algorithm can be implemented using (MT)BDDs
such that their ability to represent large state spaces in a compact way is exploited.

Symbolic Implementation Ordered binary decision diagrams (OBDDs) [13] are
a data structure which represents boolean functions f : {0, 1}n → {0, 1} as a
rooted acyclic digraph. They can be considered as a compressed form of the
truth table of the represented function. Each assignment of the input variables
corresponds to a path in the OBDD which ends at a leaf that is labeled with the
value of the function under that assignment.

Multi-terminal BDDs are an extension of OBDDs for pseudo-boolean functions
f : {0, 1}n → R. The only difference to OBDDs is that leaves may be labeled
with arbitrary numbers (instead of being restricted to {0, 1}). Both, OBDDs and
MTBDDs, are called reduced if the sub-function represented at each node, is
unique.

For a BDD B(x,y) over the vectors x = (xn−1, . . . , x0) and y = (ym−1, . . . , y0)
of boolean variables and a bitvector v ∈ {0, 1}n, the expression B(x ← v,y)
denotes the cofactor of B(x,y) which results from fixing the variables xi to the
values given by v.

We assume that the reader is familiar with OBDDs and MTBDDs. For more
information we refer the reader to Wegener’s monograph [1].

OBDDs can be used to represent sets S ⊆ {0, 1}n of bit vectors via their
characteristic function χS such that s ∈ S ⇔ χS(s) = 1. This will be used to
represent the state space of the CTMC under consideration and for partitions of its
state space. Several possibilities for partition representation have been proposed in
the literature (cf. [9]). For the implementation of signature refinement the following
technique is suited best, since it allows to execute the refinement step in linear
time in the size of the signature-MTBDD [9]: each block of the partition is assigned



a unique number, which is encoded using a set of m ≥
⌈
log2 |P |

⌉
new OBDD

variables k = (km−1, . . . , k0). The partition P of S is then represented by an
OBDD P(s,k) such that, for a block Bi of P , s ∈ Bi iff P(s← 〈s〉,k← 〈i〉) = 1.
Here, 〈i〉 denotes the binary encoding of i.

We will use MTBDDs to represent the transition rate matrix of the CTMC
under consideration and signatures of its states. For the signatures we use an
MTBDD σ(s,k) such that σ(s← 〈s〉,k← 〈i〉) = r iff (r,Bi) ∈ sig(s, P ). Given
the transition rate matrix R(s, t) and the representation P(s,k) of the current
partition, the MTBDD representing the signatures of all states can be computed
by

σ(s,k) = Q+
t .
(
R(s, t) · P(t,k)

)
. (2)

Thereby Q◦a :
(
B(x,a)

)
=©2l−1

i=0 B(x,a← 〈i〉) is the quantification operator for
an associative and commutative binary operator ◦. It is a standard operation for
MTBDDs.

In order to ensure that the initial partition is taken into account, we modify
the signatures in Equation (2) such that two states can only have identical
signatures if they are contained in the same block of the initial partition. Let p
be a new BDD variable. We modify the signatures as follows:

σ′(s,k, p) = σ(s, k) + p · P(0)(s, k). (3)

Once we have computed the signatures, we have to get the refined partition.
For this, we can exploit the following observation: if we use a variable order for the
BDDs such that the state variables precede the block number variables (and the
auxiliary variable p), the encoding of a state s corresponds to a path in σ′(s,k, p)
which ends in the node that represents the signature of s. Furthermore, since
we only use reduced BDDs, the encodings of all states with the same signature
as s lead to the same node. To obtain the refined partition, we have to replace
all nodes that represent signatures by new block numbers. This can be done
in linear time by traversing σ′(s,k, p) recursively. More details on the symbolic
implementation can be found in [11, 7].

3 Reliable Bisimulation Computation

Almost all of today’s personal computers use floating-point arithmetic according
to the IEEE standard 754 [14] for numerical computations. The problem of all
fixed-length representations is that the result of arithmetical operations is often
not representable but has to be rounded to the nearest representable number.

Example 1. We compute 0.5 = 3 · 0.1 + 4 · 0.05 by adding three times 0.1 and
four times 0.05 on a IEEE 754 compatible processor (left-associative). Depending
on the order of the summands we obtain the following results (using the 64-bit
representation):



– 0.05 + 0.05 + 0.05 + 0.05 + 0.1 + 0.1 + 0.1
Result:1 0.01111111110.052

– 0.05 + 0.1 + 0.05 + 0.1 + 0.05 + 0.1 + 0.05
Result: 0.01111111110.0511

– 0.1 + 0.1 + 0.05 + 0.05 + 0.05 + 0.1 + 0.05
Result: 0.01111111101.152

We can observe that the result depends on the order of the operands.

For more detailed information about floating-point arithmetic and its problems
we refer the reader to [15].

These rounding problems also affect arithmetical operations on MTBDDs.
In our application, this is mainly the signature computation. Their effect is, in
general, that too many leaves with only slightly different values are created,
unnecessarily blowing up the size of MTBDD. For most applications this has no
impact on the correctness, but only on the speed and memory consumption of
the algorithm. To weaken this effect, most implementations apply the following
strategy: if a leaf with value v is requested from the MTBDD manager, it is not
only checked if a leaf with exactly the same value v already exists, but also if there
is a leaf whose value is close enough to v. That means, a new leaf with value v is
created if there exists no leaf with value v′ such that |v− v′| ≤ ε for a predefined
constant ε > 0. Otherwise the already existing leaf is returned. In general, there is
no value of ε which ensures that the effect of inexact computations is compensated
correctly.

The signature-based refinement algorithm, however, is very sensitive to round-
ing errors. If the signatures of two equivalent states differ slightly due to rounding,
they are represented at two different nodes in the MTBDD of signatures. Therefore
they are placed in different blocks of the refined partition.

This leads to the following effects: since equivalent states may be placed in
different blocks, the resulting bisimulation is often unnecessarily fine. Rounding
effects can also cause signatures of states with slightly different rates to be
mapped onto the same value. Then these states are erroneously placed in the
same block. The resulting partition may therefore be no correct bisimulation.
As we will see in the experimental section, rounding effects can even prevent
termination.

We therefore consider it important to develop techniques which avoid the
problems caused by inexact computations.

3.1 Rational Arithmetic

To avoid the problems we have observed for our floating-point implementation
of the bisimulation algorithm, we implemented a version which makes use of
rational arithmetic. Rational numbers are represented as the quotient of two

1 The dots separate the sign bit from the exponent and the exponent from the mantissa.
0n means that the digit 0 is repeated n times.



arbitrarily long integer numbers. Then all operations we need (mainly the addition
of numbers) can be performed precisely.

The MTBDDs used by our implementation have been modified such that
rational numbers are stored in the leaves instead of floating-point values. The
operations on the MTBDDs have also been adapted to cope with rational numbers.
Besides this, we have set the value of ε to 0 such that the BDD package itself
does not introduce errors.

3.2 Parametric Bisimulation Computation

Another idea how numerical problems can be avoided is not to work with concrete
numbers for the transition rates but with pure symbols. Since there can be several
transitions with the same rate from a state into a block of the current partition,
we cannot use sets to collect the transition symbols leading into a given block.
Instead, we have to use multisets.

Multisets allow an arbitrary (finite) number of copies of each element. For
a multiset S, we let 1S(x) denote the multiplicity of element x in the multiset
S. The element-wise union S ] T is the multiset such that for all elements the
equation 1S]T (x) = 1S(x) + 1T (x) holds. The set of multisets with elements
from a set S is denoted by M(S).

We can now define the symbolic counterpart of a CTMC:

Definition 4. A symbolic CTMC is a tuple M = (S, s0, V,R, L) such that S is a
non-empty finite set of states, s0 ∈ S the initial state, and L : S → 2AP a labeling
function. V = {µn−1, . . . , µ0} is a finite set of symbols. R : S × S →M(V ) is a
labeling function which labels each transition with a multiset of symbols.

If V is a set of symbols, we call a function I : V → R≥0 an interpretation of
V . For a multiset S ∈M(V ), we set I(S) =

∑
µ∈S

(
1S(µ) · I(µ)

)
. For a symbolic

CTMC M = (S, s0, V,R, L) an interpretation I induces an ordinary CTMC
MI = (S, s0, R, L) by setting R(s, s′) = I(R(s, t)).

We now modify the definition of the signature of a state as follows:

sig(s, P ) =
{

(r,B) ∈M(V )× P | r =
⊎
t∈B

R(s, t)
}

The refinement operator remains unchanged with the exception that it now
uses the modified signature:

sigref(P ) =
{
{s ∈ S | sig(s, P ) = sig(t, P ) ∧ s ≡P (0) t}

∣∣ t ∈ S}.
If we use this operator for partition refinement, we obtain a partition which

is a bisimulation for all possible interpretations of the symbols in V . We call
such a bisimulation interpretation-independent. Our algorithm yields the coarsest
interpretation-independent bisimulation which refines the initial partition P (0).
The reason why not the coarsest bisimulation is computed is that under a certain
interpretation I different multisets of symbols may lead to the same value, i. e.
that there are S and T with S 6= T and I(S) = I(T ).
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Fig. 1: Signature computation for symbolic Markov chains

If the coarsest bisimulation for a fixed interpretation is needed, it can be ob-
tained by applying the signature refinement algorithm to the DTMC which results
from applying the interpretation to the interpretation-independent quotient.

Example 2. We now consider the part of a symbolic CMTC M depicted in
Figure 1 and compute the signatures of s1 and s2:

sig(s1, P ) =
{

({|µ1, µ1|}, B)
}

sig(s2, P ) =
{

({|µ2|}, B), ({|µ3|}, B)
}

Since the states do not exhibit the same signatures, the refinement operator
sigref puts them in different blocks.

What are the advantages of this method? We can choose the actual transition
rates, i. e., the interpretation, after the minimization without recomputation
of the quotient. This can be beneficial if during the design phase the system
structure has already been fixed, but the exact rates have to be determined
experimentally. Another scenario is that the analysis shows that the error rates
of some components are too high to yield the required dependability. So some
components have to be replaced by more robust ones. This changes the rates of
the transitions. If an interpretation-independent bisimulation quotient has been
obtained, only the interpretation of its symbols has to be changed. So we can
save the time for computing the quotient from scratch.

The drawback of this approach is that not always the coarsest bisimulation
quotient for the current interpretation of the rates can be computed. This has
the effect that the quotient sometimes consists of more states than the one which
would be returned by the version with rational arithmetic. Our experimental
results (see Section 4), however, indicate that this effect does not occur for most
of the models, and for the others the increase in size compared to the optimal
quotient is not dramatic.

Example 3. Let us again consider the Markov chain M in Figure 1. We assume
that the current interpretation is given by I(µ1) = 3, I(µ2) = 1, and I(µ3) = 5.
If we compute the signatures of s1 and s2 for the ordinary Markov chain MI , we
obtain

sig(s1, P ) = sig(s2, P ) =
{

(6, B)
}
.

Since both states have the same signatures, sigref places them in the same block.



Symbolic Implementation We now show how to integrate the symbolic handling of
transition rates into our BDD-based algorithm. There are mainly two possibilities:
we could represent multisets as vectors in which the multiplicities of the symbols
in V are stored. The leaves of the MTBDDs for the signatures would then be
labeled with the representation of R(s,B) instead of with real numbers. The
drawback of this option is that we have to make considerable changes in the
BDD-library, since all operations and in particular the caching strategies for
BDD nodes are optimized for storing integer or floating-point values.

A much simpler approach is to represent the multisets as MTBDDs in the same
way as we have done for representing partitions. We pre-suppose an arbitrary,
but fixed order on the symbols in V , i. e. V = (µ0, . . . , µn−1). We introduce
l = dlog2 ne new BDD variables a = (al−1, . . . , a0) which encode the index of the
symbols. A multiset S ∈M(V ) is then encoded by an MTBDD S(a) such that
S(a← 〈i〉) = 1S(µi) (here 〈i〉 again denotes the binary encoding of i). Instead
of leaves which carries the transition rates, we have MTBDDs for the multiset
encoding, resulting in an MTBDD R(s, t,a) for the transition rate matrix.

This representation integrates seamlessly into our BDD-based framework: if
we use a variable order such that the variables for block numbers and multiset
encoding are placed after the state variables, we do not need to modify any
operations—not even the signature computation and partition refinement. Since
all leaves are now labeled with multiplicities of symbolic rates, no floating-point
numbers are necessary anymore. The algorithm works with integer values solely.
A further advantage is that this technique allows sharing of parts of the multiset
encoding.

Obtaining an ordinary CTMC from a symbolic one, given an interpretation
of the symbols is efficiently possible:

If the interpretation I : V → R≥0 is given by an MTBDD I(a) such that
I(a ← 〈i〉) = I(µi), we can obtain the transition rate matrix R(s, t) from
R(s, t,a) by

R(s, t) = Q+
a :
(
I(a) · R(s, t,a)

)
. (4)

4 Experiments

We have implemented the three variants of the SigRefine algorithm described in
this paper using C++ as the programming language and the g++ compiler version
4.4.1. For the construction and manipulation of OBDDs and MTBDDs we used the
Cudd library [16]. For the rational arithmetic we took the GNU Multiprecision
Library (GMP) [17]. The three variants of the refinement algorithms are denoted
by SigrefR for the rational arithmetic; SigrefF , for the floating-point arithmetic;
and SigrefS , for the version with symbolic representation of the transition rates.
We used the default value 10−12 for the parameter ε, which controls the creation
of new leaves in the floating-point version.

The experiments were conducted on a Dual Core AMD OpteronTM 2.4 GHz
CPU with 4 GB of main memory running Linux in 64-bit mode. We have stopped



Table 1: Size of the example models

Model States Transitions Model States Transitions

cycling-2 4666 18342 robot-25 61200 325917
cycling-3 57667 305502 robot-26 68900 367397
cycling-4 431101 2742012 robot-27 77220 412253
fgf 80616 562536 robot-28 86184 460617
polling-12 73728 503808 robot-29 95816 512621
polling-13 159744 1171456 robot-30 106140 568397
polling-14 344064 2695168 p2p-4-4 65536 524289
polling-15 737280 6144000 p2p-4-5 1048576 10485761
polling-16 1572864 13893632 p2p-4-6 16777216 201326593
ftwc-2-2 15769 91232 p2p-5-4 1048576 10485761
ftwc-2-3 256932 1697760 p2p-5-5 33554432 419430401
ftwc-2-4 3803193 27771984 p2p-5-6 1073741824 16106127361
ftwc-3-1 23040 153600 p2p-6-5 1073741824 16106127361
ftwc-3-2 1889947 15302784 p2p-7-5 34359738368 601295421441
kanban-3 58400 446400 kanban-4 454475 3979850

any experiment that took more than 7200 seconds or required more than 3 GB
of main memory.

We consider seven different example models from the literature to evaluate
the performance of the algorithms: a fault-tolerant worstation cluster system
(FTWC) [18], a peer-to-peer (P2P) protocol based on BitTorrent (studied in [19]),
a cyclic server polling system [20], a robot moving through an n × n grid [21]
(robot), a Kanban production system [22], and two biological models: the first
one describes the Fibroblast growth factor signaling (FGF) within cells [23],
and the second one is a probabilistic model of cell cycle control in eukaryotes
(cycling) [24].

For the FTWC model, we converted the SAN (Stochastic Activity Network)
specification to the PRISM input language. We obtained the PRISM speci-
fications of the other six models from http://www.prismmodelchecker.org/
casestudies/index.php.

All but the FGF model are parametrized. The first two models have two
parameters. For FTWC, they denote the number of computers in the system
and the number of memory modules in each computer, respectively. For P2P,
they represent the number of clients and the number of blocks of the file to be
transmitted, respectively. The remaining models have only one parameter: for
the polling benchmark, the parameter denotes the number of servers; for the
robot benchmark, the size of the grid; in the Kanban benchmark, the parameter
denotes the number of tokens in the system, and for the cell cycle control it
denotes the initial number of molecules.

For the sake of simplicity, we start with the trivial initial partition P (0) = {S}.
With the exception of the Kanban model, all of these Markov chains can be
minimized, i. e., the quotient system is smaller than the original one. The quotient
model of the Kanban system, however, has the same size as the input model.
Table 1 contains the number of states and transitions of all model instances
before minimization.



The results we obtained with the three program versions are shown in Table 2.
For each benchmark, the table contains three lines of information; the first is
for SigrefR; the second, for SigrefF ; and the third line contains the results
obtained using SigrefS .

If we compare the rational and the floating-point variant, the first observation
is that there is a benchmark, namely fgf, for which the floating-point variant
did not terminate. A more detailed look at the program output for this case
shows that after eight iterations, the algorithm starts alternating between a
partition consisting of 38829 blocks and one with 38833 blocks, thereby never
reaching a fixed point. Numerical errors are the reason why an unnecessarily
fine partition P is computed. When the signatures are computed w. r. t. P , the
rounding error which had made the signatures of two blocks B, B′ different,
does not occur. Therefore the signatures of the states in B and B′ become
identical again. Therefore, B and B′ are merged again. The refinement of this
finer partition results in P , closing the cycle.

The second observation is that there are some benchmarks, e. g. cycling-3,
cycling-4, and all ftwc-benchmarks (with the exception of ftwc-2-2) for which
SigrefF yields a finer result due to rounding errors than SigrefR. It cannot be
guaranteed that this partition is a correct bisimulation at all, since rounding errors
can make the signatures of states with slightly different rate equal. Furthermore,
in these cases SigrefF needs more iterations to reach the fixed point. This
increases the runtime considerably.

On benchmarks for which both the variant with rational and with floating-
point arithmetic yield the same result, the runtime and memory consumption of
both tools are almost identical (with rational arithmetic a few hundred kilobytes
more memory are required). That the runtimes are almost identical may be
surprising: typically, rational arithmetic is considered much slower than floating-
point arithmetic which is directly supported by the CPU. We performed a detailed
profiling of SigrefR and measured the fraction of the runtime consumed by
the rational arithmetic. In no case was it more than a few percent, because the
only affected function is the computation of the signatures. The runtime of this
operation—like most BDD operations—is clearly dominated by cache look-ups.
They are needed to keep the BDD reduced (so-called UniqueTable) and to avoid
unnecessary re-computations of intermediate results (ComputedTable).

Next we compare the version with rational arithmetic, SigrefR, and the
version with the symbolic representation of transition rates, SigrefS . SigrefR
always returns the coarsest bisimulation for the current interpretation of the
rate symbols, whereas SigrefS yields the coarsest interpretation-independent
bisimulation. The latter may be finer, but—as we can see in Table 2—for most of
the models, the sizes of the quotient systems are identical. The only exceptions
are the three cycling benchmarks, for which SigrefS creates more blocks.

On the benchmarks for which both tools return the same result, SigrefS is
in most cases slightly slower than SigrefR. This is due to the additional BDD
variables for encoding the rates, which make the MTBDDs larger. This is also
the reason why SigrefS requires a few Megabytes more memory. An exception



Table 2: Experimental results (first line: SigrefR, second line: SigrefF , third line:
SigrefS)

Model Iter. Blocks Time [s] Mem. [MB] Model Iter. Blocks Time [s] Mem. [MB]

cycling-2 6 3511 0.87 69.09 robot-25 49 60600 72.18 132.50
6 3511 0.84 66.91 49 60600 72.09 130.24
6 3997 1.14 57.17 49 60600 108.91 123.61

cycling-3 6 40659 19.55 146.18 robot-26 51 68250 87.48 134.40
13 43742 48.29 149.07 51 68250 87.23 132.15
6 48138 23.81 176.58 51 68250 127.78 137.68

cycling-4 6 282943 213.69 972.87 robot-27 53 76518 99.56 135.78
13 321416 573.04 972.64 53 76518 99.51 133.53
6 339367 311.98 1304.48 53 76518 146.66 149.06

fgf 9 38639 70.63 226.49 robot-28 55 85428 120.03 139.88
— No termination — 55 85428 119.81 137.63

9 38639 73.52 254.45 55 85428 162.63 163.19

polling-12 23 6144 17.20 94.79 robot-29 57 95004 140.98 145.19
23 6144 17.11 92.55 57 95004 140.88 142.92
23 6144 20.56 85.52 57 95004 197.68 168.32

polling-13 25 12288 52.60 121.39 robot-30 59 105270 201.14 162.48
25 12288 52.44 119.15 59 105270 164.18 160.21
25 12288 58.27 125.39 59 105270 228.92 181.07

polling-14 27 24576 139.42 198.44 p2p-4-4 3 70 0.07 39.72
27 24576 139.44 196.19 3 70 0.06 37.46
27 24576 166.96 200.02 2 70 0.04 37.50

polling-15 29 49152 342.98 417.63 p2p-4-5 3 126 0.72 65.90
29 49152 342.37 415.39 3 126 0.69 63.61
29 49152 429.88 377.95 2 126 0.48 63.65

polling-16 31 98304 870.61 806.26 p2p-4-6 3 210 12.33 122.77
31 98304 869.71 804.01 3 210 12.27 120.64
31 98304 1101.67 749.89 2 210 7.41 120.56

ftwc-2-2 3 703 0.31 49.20 p2p-5-4 3 105 0.36 45.83
13 703 1.25 55.79 3 105 0.36 43.62
3 703 0.27 45.43 2 105 0.23 43.62

ftwc-2-3 3 2145 1.32 75.31 p2p-5-5 3 196 8.00 83.20
16 10557 56.35 139.35 3 196 7.93 80.96
3 2145 1.24 70.59 2 196 8.77 81.11

ftwc-2-4 3 5151 6.18 90.96 p2p-5-6 3 336 887.49 263.14
20 93866 919.41 854.40 3 336 885.55 261.18
3 5151 5.08 94.14 2 336 563.10 260.90

ftwc-3-1 3 969 0.71 69.04 p2p-6-5 3 266 267.64 88.79
13 2126 7.03 70.64 3 266 266.60 86.43
3 969 0.71 66.18 2 266 137.60 85.89

ftwc-3-2 3 9139 14.73 185.31 p2p-7-5 3 336 2844.46 110.22
21 24249 273.34 387.83 3 336 3780.50 107.53
3 9139 15.61 185.93 2 336 1580.29 106.73

kanban-3 7 58400 49.40 267.68 kanban-4 8 454475 741.55 2582.63
7 58400 52.31 248.10 8 454475 749.98 2483.12
7 58400 52.59 284.11 8 454475 816.14 2604.74



to this trend are the p2p benchmarks. On these, SigrefS requires one iteration
less than SigrefR to reach the fixed point. This also demonstrates the effect that
R(s, S′) 6= R(t, S′), but for the current Interpretation I, I(R(s, S′)) = I(R(t, S′))
for some set S′ ⊆ S. Therefore, after one refinement step, SigrefR yields a
coarser partition than SigrefS , although in the end they return the same result.

5 Conclusion

In this paper we have presented two different approaches which can be used for
reliable bisimulation computation: the first one is the usage of rational arithmetic
for all numerical computations. This yields an algorithm which is clearly superior
to the standard variant that is based on floating-point arithmetic: using rational
arithmetic, we can always obtain the coarsest bisimulation, the runtime and
memory overhead is negligible, and in those cases where floating-point arithmetic
creates a partition which is unnecessarily fine, rational arithmetic is even faster
than floating-point arithmetic. Furthermore, termination is guaranteed if rational
arithmetic is used, which is not the case for floating-point arithmetic, as one of
our example benchmarks has shown.

The second approach relies on a symbolic representation of the transition rates.
Using this technique we can compute the coarsest interpretation-independent
bisimulation, i. e. the coarsest bisimulation which does not depend on the actual
values of the transition rates. Our benchmarks have shown that we nevertheless
obtain in many cases the same result as with rational arithmetic. Only for a few
exceptions the algorithm returns a finer partition. This symbolic handling of the
transition rates causes a little overhead due to additional BDD-variables. But
its advantage is that the actual values of the rates can be chosen after quotient
computation.

In summary, we can conclude that there is no reason to use floating-point
arithmetic for signature-based bisimulation computation. Rational arithmetic
produces reliably the coarsest bisimulation without any noticeable overhead.
If the option to modify the transition rates after minimization is required, it
is advantageous to use the algorithm with symbolic transition rates instead of
re-computing the quotient after changing the rates.

The techniques presented here are not restricted to (strong) bisimulation for
CMTCs. They can also be applied to other types of bisimulation, for instance
weak and backward bisimulation for CTMCs, to strong, weak, and branching
bisimulation on interactive Markov chains, and to (strong) bisimulation on
discrete-time Markov chains.

Acknowledgement. We thank Holger Hermanns from the Saarland University for
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