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Abstract. For formal verification, reliable results are of utmost importance. In
model checking of digital systems, mainly incorrect implementations due to logical
errors are the source of wrong results. In probabilistic model checking, however,
numerical instabilities are an additional source for inconsistent results.

First we present an example, for which several state-of-the-art probabilistic model
checking tools give completely wrong results due to inexact computations. This
motivates the investigation at which points inaccuracies are introduced during the
model checking process. We then give ideas how, in spite of these inaccuracies,
reliable results can be obtained or at least the user be warned about potential
problems: (1) to introduce a “degree of belief” for each sub-formula, (2) to use exact
(rational) arithmetic, (3) to use interval arithmetic to obtain safe approximations of
the actual probabilities, and (4) to provide certificates which testify that the result
is correct.

1 Introduction

While for traditional decision problems arising in computer science a binary true/false answer
is intuitively understandable, in the domain of probabilistic systems the interpretation of prob-
ability values can be very cumbersome. But our nature is inherently stochastic and hence
we have to cope with stochastic systems by modelling them, e. g., with discrete-time Markov
chains (DTMCs). At the very end of any method for analyzing stochastic systems, there has to
be a representation of probabilistic values within the computer. Typically, the architecture of
today’s computers provide a floating-point representation for real numbers, most prominently
established by the IEEE 754 standard specification [1].

Model checking as a verification method enables the separation of the system model from
the properties that specify the correct behavior of the system. Model checking has been in-
vestigated very deeply in the last 25 years and has become a mature verification methodology
pushing forward the frontiers for both large industrial systems (e. g., microprocessors) and novel
academic models (e. g., hybrid systems). In the last 10 years, probabilistic model checking has
been in the focus of intense research and besides enormous advances w. r. t. probabilistic models
and logics that can be handled algorithmically, first successful applications in industrial settings
have been reported.
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There are several academic tools available for probabilistic model checking. But we are only
aware of two publications about computing probabilities in a reliable way: [2] computes regular
expressions in a symbolic way from which the probabilities can be derived using only addition
and multiplication, which can be performed with rational arithmetic. However, this approach
cannot cope with nested PCTL formulae and we do not expect it to scale well. The second
paper [3] deals with performance analysis for compositional probabilistic I/O automata, but
without comparison to inexact arithmetic.

All other state-of-the-art tools like PRISM [4] and MRMC [5], to name only two of the most
popular ones, rely on inexact floating-point arithmetic. Also, to the best of our knowledge,
we are not aware of papers that discuss the impact of using inexact floating-point arithmetic
on the correctness of the result. Especially in the context of probabilistic model checking this
topic is often euphemized by stating that the probability values of the model are derived from
natural observations which itself are inherently stochastic. But this argument does not give the
permission to allow inadequate computations after the probability values of the model were
agreed to be the most accurate values available.

The main topic of this paper is therefore to discuss the impact of using inexact arithmetic
while model checking probabilistic models. We will demonstrate that even state-of-the-art tools
have the problem that sometimes completely wrong results are produced. In Section 3 we will
present an example for which two very popular model checkers compute the probability 1.0
instead of the correct result 0.0. These results clearly reveal the demand for reliable results,
either by using exact or interval arithmetic or—if possible—by providing certificates testifying
the correctness of the result.

This paper consists of the following parts: First, we review the basic definitions of discrete-
time Markov chains (DTMCs), the logic PCTL, and the algorithm for model checking PCTL
formulae on DTMCs. We motivate our investigation by providing an example for which inexact
arithmetic is definitively inappropriate. The next section is devoted to the investigation at which
points of conventional model checkers inaccuracies are introduced. We will point out ideas how
these inaccuracies can be avoided and how reliable results can be obtained in spite of inexact
computations. The paper closes with a conclusion and an outlook to future work.

2 Foundations of DTMC Model Checking

In this section we will briefly recall the definitions of discrete-time Markov chains (DTMCs),
the model we will focus on in this paper, and the logic PCTL, which is commonly used for the
specification of properties. We will also sketch the algorithms for checking if a DTMC exhibits
a property specified in PCTL.

2.1 Discrete-time Markov Chains

One of the simplest models in probabilistic model checking are discrete-time Markov chains.
They are essentially transition systems in which the transitions are labelled with the probability
to walk from its source state to the target state. This probability is independent of the way
the source state was reached (so-called Markov property).

Definition 1 Let AP be a fixed set of atomic propositions. A discrete-time Markov chain
(DTMC) is a tuple M = (S, P, L) such that S is a finite, non-empty set of states, P : S ×S →
[0, 1] the matrix of transition probabilities, and L : S → 2AP a labelling function which assigns
each state the set of propositions which are satisfied in that state.

P has to be a stochastic matrix, i. e., for each state s ∈ S the condition
∑

s′∈S P (s, s′) = 1
has to be satisfied.



A path of M is a finite or infinite sequence π = s0s1s2 · · · of states such that P (si, si+1) > 0
for all i ≥ 0. We denote the i-th state of π by πi (i. e., πi = si) and the i-th prefix by
π↑i= s0s1 · · · si. The number of states on a finite path π is |π|. Paths is the set of infinite paths
of M starting in state s.

Following Markov chain theory, we now define the probability space on the set of paths
starting in state s0 ∈ S as the unique measure on the σ-algebra where the basic cylinders are
induced by the finite paths starting in s0 and the probability measure by

Prs0({π ∈ Paths0 | s0s1 · · · sn is a prefix of π︸ ︷︷ ︸
basic cylinder of s0s1 · · · sn

}) =
n−1∏
i=1

P (si, si+1)
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Figure 1: A discrete-time Markov chain

We illustrate the main concepts in the fol-
lowing example:

Example 1 In Figure 1, you can see a
DTMC modelling a very simple communica-
tion protocol. First, an initialization is per-
formed, then data blocks are sent and the pro-
cess waits for an acknowledgment. This nor-
mal operation can be interrupted by an error
which occurs with probability 0.1 (when send-
ing) and 0.05 (when waiting for an acknow-
ledgment). After an error, the initialization
has to be repeated.

Let us consider the finite path π = s0s1s2s1s2s1 which is taken if two data packets are trans-
mitted without being interrupted by an error. Its probability is Prs0(π) = 1.0·0.9·0.95·0.9·0.95 =
0.731025.

2.2 Probabilistic Computation Tree Logic

After the formal introduction of the models, we still need a formal language to describe the
properties which we want to verify. The most common language is probabilistic computation
tree logic (PCTL), which was introduced by Hansson and Jonsson in [6].

In the following, we briefly define syntax and semantics of PCTL before we turn to the model
checking algorithms.

Definition 2 (Syntax of PCTL) Let AP be a fixed set of atomic propositions, a ∈ AP ,
on ∈ {<,≤, >,≥}, k ∈ N, and p ∈ [0, 1]. PCTL state formulae are then given by

Φ ::= true | a | ¬Φ | (Φ ∧ Φ) | Ponp(Ψ)

where Ψ is a path formula. PCTL path formulae are created by the following grammar:

Ψ ::= XΦ | Φ U Φ | Φ U≤k Φ.

Definition 3 (Semantics of PCTL) Let M = (S, P, L) be a DTMC, a ∈ AP , on ∈ {<,≤, >,
≥}, s ∈ S, and φ, φ1, φ2, ψ PCTL (state/path) formulae. We define the satisfaction relation �



recursively as follows:

s � true

s � a iff a ∈ L(s)

s � ¬φ iff s 6� φ

s � (φ1 ∧ φ2) iff s � φ1 and s � φ2

s � Ponp(ψ) iff Prs({π ∈ Paths |π � ψ}) on p

π � Xφ iff π1 � φ

π � φ1 Uφ2 iff ∃i ≥ 0 : (πi � φ2 ∧ ∀j < i : πj � φ1)

π � φ1 U≤k φ2 iff ∃0 ≤ i ≤ k : (πi � φ2 ∧ ∀j < i : πj � φ1).

2.3 Model Checking PCTL

Up to now, we have introduced discrete-time Markov chains as our system models and the logic
PCTL for the description of desired properties. In this section we will show how to compute the
states which satisfy a given PCTL formula. We will concentrate on the main principles which
are necessary to understand at which points inaccuracies are introduced. For more details on
PCTL model checking see e. g. [7, 8].

Model checking for PCTL is based on recursively traversing the syntax tree of the formula
bottom-up and computing the set Sat(φ) = {s ∈ S | s � φ} for each state sub-formula φ. This
can be done for state formulae as follows (a denotes an atomic proposition; φ, φ1, and φ2, PCTL
state formulae; ψ, a PCTL path formula; and p ∈ [0, 1], a real number):

Sat(true) = S Sat(a) = {s ∈ S | a ∈ L(s)}
Sat(¬φ) = S \ Sat(φ) Sat((φ1 ∧ φ2)) = Sat(φ1) ∩ Sat(φ2)

Sat(Ponp(ψ)) = {s ∈ S | Pr(s, ψ) on p}
Hereby, Pr(s, ψ) denotes the probability Prs({π ∈ Paths |π � ψ}). The remaining task is
consequently the computation of Pr(s, ψ). Depending on the path quantifier (X, U≤k , U ), we
distinguish three cases.

2.3.1 Next Quantifier (X)

Given the set Sat(φ), the probability Pr(s,Xφ) can be computed as follows:

Pr(s,Xφ) =
∑

s′∈Sat(φ)

P (s, s′).

2.3.2 Bounded Until Quantifier (U≤k )

We can characterize the bounded until operator with the following recursive equation system:

Pr(s, φ1 U≤k φ2) =


1 if s ∈ Sat(φ2)

0 if s 6∈ Sat(φ1) and s 6∈ Sat(φ2)

0 if k = 0 and s 6∈ Sat(φ2)∑
s′∈S

P (s, s′) · Pr(s′, φ1 U≤k−1 φ2) otherwise.

The intuition behind this recursive computation is the following: if s satisfies φ2, all paths
starting in s fulfill ψ := φ1 U≤k φ2; hence, the probability is 1. If s satisfies neither φ1 nor φ2, ψ
cannot be satisfied on any path starting in s; accordingly, the probability is set to 0. The same
holds if s does not satisfy φ2 and k = 0, such that no further steps may be taken. Otherwise,
we may walk one step and fulfill the formula in one step less.



2.3.3 Unbounded Until Quantifier (U )

The unbounded until operator can be characterized in a similar way as the bounded operator.
But in this case the characterization leads to a linear equation system:

We partition the state space into three sets S0, S1, and S? such that
Pr(s, φ1 Uφ2) = 1, if s ∈ S1, and 0, if s ∈ S0. A state s that is contained in the set Sat(φ)
of states that satisfy formula φ is denoted as φ-state. S0 contains all those states from which
no path leads to a φ2-state while passing only φ1-states. Conversely, S1 is the set of φ1-states
which do not have a path to a state in S0. S? contains all states not in S0 or S1. These sets
can be computed as follows [7]:

Sf = {s ∈ S | s 6∈ Sat(φ1) ∧ s 6∈ Sat(φ2)}
Si = {s ∈ S | s ∈ Sat(φ1) ∧ s 6∈ Sat(φ2)}
S0 = Sf ∪ {s ∈ Si | there exists no path in Si from s to any s′ ∈ Sat(φ2)}
S1 = Sat(φ2) ∪ {s ∈ Si | there exists no path in Si from s to any s′ ∈ S0}
S? = S \ (S0 ∪ S1)

The probability that in state s a path π is taken with π � φ1 Uφ2 is then given by the unique
solution of the following system of linear equations:

Pr(s, φ1 Uφ2) =


1 if s ∈ S1

0 if s ∈ S0∑
s′∈S

P (s, s′) · Pr(s′, φ1 Uφ2) if s ∈ S?.

The intuition behind this equation system is the same as in the case of bounded until. The
difference is that we do not have to take into account a bound on the number of steps.

Such linear equation systems are usually solved using iterative methods like Jacobi, Gauß-
Seidel or over-relaxation methods. In general, starting with an initial estimation x0 of the
solution, these methods iteratively compute more precise approximations until some conver-
gence criterion is satisfied, e. g. until ‖x(i) − x(i−1)‖ < ε for some ε > 0 and a norm ‖ · ‖.

The reasons for using iterative methods instead of e. g. Gaussian elimination are the following:
Stochastic model checkers that rely on an explicit state space representation use data structures
for the probability matrix that are optimized for sparse matrices. The application of direct
numerical solution methods destroys the sparseness of the probability matrix. Symbolic model
checkers, as described below, rely on an implicit state space representation and use iterative
methods because they can exploit the compact symbolic representation in a better way than
direct methods which have to modify single elements of the matrix. Furthermore, Gaussian
elimination is known not to be numerically robust, i. e., numerical errors can cumulate and
cause severe correctness problems.

2.4 Symbolic Methods for PCTL Model Checking

Algorithms that rely on an explicit representation of the state space are naturally restricted to
quite a small number of states. A method to overcome this problem is the usage of symbolic
data structures. Their advantage is that their size is not directly related to the size of the
represented state space. For many practical examples, the size of the symbolic representation
is much smaller than the explicit representation such that larger systems can be handled.

One of the most prominent symbolic data structures are binary decision diagrams (BDDs) [9].
We assume some familiarity of the reader with BDDs. For further information see e. g. We-
gener’s monograph [10] on decision diagrams.

Since the details on how to modify model checking algorithms, such that the symbolic repre-
sentation is exploited, are only of little importance for the understanding of the effects of inexact
arithmetic, we refer the reader to Parker’s thesis [8] about probabilistic model checking.



PRISM MRMC

probabilistic

const double gamma = 0.000001;

module sys
s: [1..6] init 1;

[] s=1 -> 1.0: (s’=2);
[] s=2 -> 0.5: (s’=3) + gamma: (s’=5) + (0.5-gamma): (s’=4);
[] s=3 -> 1.0: (s’=3);
[] s=4 -> 1.0: (s’=4);
[] s=5 -> gamma: (s’=6) + (1-gamma): (s’=4);
[] s=6 -> gamma: (s’=3) + (1-gamma): (s’=4);

endmodule

P=? [s=8 U (P<=0.5 [s=1 | s=2 | s=5 | s=6 U s=3])]

STATES 6
TRANSITIONS 10
1 2 1.0
2 3 0.5
2 4 0.499999
2 5 0.000001
3 3 1.0
4 4 1.0
5 4 0.999999
5 6 0.000001
6 3 0.000001
6 4 0.999999

#DECLARATION
a b c
#END
1 a
2 a
3 b
5 a
6 a

Figure 3: Input files for the DTMC shown in Fig. 2 (with γ = 10−6)

3 PCTL Model Checking with Inexact Arithmetic

It is well-known that the usage of inexact arithmetic for numerical computations can pose severe
problems. For efficiency reasons and because it is common sense that the models are quite
stable such that “nothing will go wrong”, IEEE 754 floating-point arithmetic [1] is ubiquitous
in (almost) all state-of-the-art tools for probabilistic model checking. We show in the following
that this assumption is not always justified.
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Figure 2: A discrete-time Markov chain

Fig. 2 shows a DTMC. Let 0 < γ ≤ 1/2. We
want to compute the probability with which
we walk along a path starting the initial state
s1 of the DTMC that satisfies the formula

cUP≤1/2
(aU b)

This formula means that c has to hold until we
reach a state that satisfies P≤1/2

(aU b). Since

Pr(s1, aU b) = 1/2 + γ3 > 1/2 and no state ful-
fills property c, the formula above is satisfied
in state s1 with probability 0.

We evaluated two state-of-the-art tools for
probabilistic model checking, namely PRISM
3.1.1 [4] and MRMC 1.2.2 [5], and applied
them to this DTMC and the property from above. The corresponding input files for PRISM
and MRMC are given in Fig. 3.

To our surprise, both tools returned the incorrect probability 1.0 for this DTMC and γ =
10−6. Probabilities in the order of magnitude of 10−6 are not uncommon for real-world systems,
e. g. when describing failure probabilities.

The reason for this incorrect result is due to the usage of floating-point arithmetic. It provides
about 15 correct decimal digits. To represent 1/2 + γ3 = 1/2 + 10−18, a precision of at least 18
decimal digits is required to obtain a value that is strictly larger than 1/2. Therefore (1/2+10−18)
is rounded down to 1/2. Now, the sub-formula P≤1/2

(aU b) is satisfied in state s1. This, however,

implies that the probability to take a path from s1 that satisfies cUP≤1/2
(aU b) is exactly 1.

A further problem that does not occur in this example is that the structure of the system may
be changed when transition probabilities are so small that they are mapped to 0 when using
inexact arithmetic. For more details on this issue, we kindly refer the reader to our technical
report [11].



In the following we investigate in more detail where these rounding problems are introduced
and discuss several concepts how reliability could be increased or even ensured.

4 Fighting the Problem of Inaccuracy

In this section we first investigate at which points inaccuracy is introduced during the model
checking process. Then, we present several ideas how to obtain reliable results in spite of these
inaccuracies.

4.1 Sources of Inaccuracy

To identify at which points inaccuracy is introduced during the model checking process, we
had a close look at the state-of-the-art model checkers PRISM [4], which supports explicit and
symbolic model checking as well as a hybrid variant of these two approaches, and the explicit
tool MRMC [5]. We have identified four major sources of inaccuracy. These are not restricted
to a specific tool, but they are inherent to all state-of-the-art probabilistic model checkers.

A. The floating-point arithmetic, which is used by all state-of-the-art model checkers for
PCTL. The floating-point arithmetic is based on IEEE standard 754 [1] for 64 bit numbers.
While the additions and multiplications are carried out with higher precision internally,
the result of each arithmetic operation is rounded to fit into the 64-bit representation.
About 15 decimal digits (51 binary digits) can be represented correctly. If the result
is not representable as a floating-point number with that precision, then the nearest
representable number is chosen if it is unique. If the result lies exactly inbetween of two
floating-point numbers, the one whose representation ends with “0” is chosen (round-
to-nearest-even). We refer the reader to e. g. [12] for details on how the rounding for
floating-point number works.

B. For symbolic model checking, another reason for inaccuracy is located in the BDD pack-
age. In popoular packages like CUDD [13], which is used by PRISM, there is a constant
δ > 0 such that a new leaf with value v is only generated if there is no leaf with value
v′ and |v − v′| ≤ δ. The value of δ is chosen to be in the order of the error by the
floating-point arithmetic. CUDD uses δ = 10−12 as default.

C. The termination criterion for solving the linear equation systems for the unbounded-until
quantifier. For the Jacobi method, for example, PRISM supports two termination criteria:
The iteration terminates either if ‖x(k) − x(k−1)‖∞ < ε for a given constant ε > 0 or if
‖x(k)−x(k−1)‖∞

‖x(k)‖∞
< ε. PRISM uses the second criterion and ε = 10−6 as default. MRMC uses

the Gauss-Seidel method to solve linear equation systems. The termination criterion is
similar to the one of PRISM.

D. For model checking time-bounded until operator on the continuous-time variant of DT-
MCs, continuous-time Markov chains (CTMCs), uniformization is applied [14]. The com-
putation of the probability that a path formula φ1 U≤t φ2 holds can then be reduced to
the evaluation of an infinite sum. Since an exact evaluation is impossible, an error is
introduced by the truncation of the sequence. The size of the error can be estimated
using a theorem by Fox and Glynn [15].

4.2 Degree of Belief

An idea to increase the trust in the results, which can easily be integrated into current tools, is
the computation of a “degree of belief”, i. e., a measure that gives the user at least a hint about



the risk that the truth value of a sub-formula flips due to inexact computations. We define the
measure as follows:

dbPonp(ψ) := min
{
|Pr(s, ψ)− p|

∣∣ s ∈ S}
.

If dbφ is close to 0 for some sub-formula φ, the result returned by the model checker has to be
taken with care, since already small errors may then change the probability of the outermost
formula arbitrarily. In our motivational example from section 3, we have dbP≤0.5(aU b) = 0,
warning the user about potentially wrong results.

4.3 Exact Arithmetic

By using exact arithmetic, we can eliminate the sources A and B. Source C can only be elimi-
nated by using a direct solution method like Gaussian elimination for linear equation systems.
These direct methods, however, are very badly suited for the solution of large sparse systems
or when using a symbolic data representation. They destroy the sparseness of the matrix and
require single entries in the matrix to be manipulated. Thereby the compact symbolic repre-
sentation cannot be exploited and—making it still worse—the structure of the matrix gets lost
such that the sizes of the sparse matrix representation and of the MTBDDs, resp., explode.
Source D, which occurs only in the context of CTMCs, also cannot be eliminated by using exact
arithmetic. But here, the Fox-Glynn approximation provides us at least with an estimation of
the maximal error introduced by truncating the infinite sum.

Another drawback of exact arithmetic are its costs: As our experiments with an exact PCTL
model checker have shown [11], the usage of rational arithmetic is very time and memory
consuming, and hence is not a viable way for the verification of large models.

4.4 Interval Arithmetic

Another way to go is to use interval arithmetic for the computations. That means that we
compute an interval [l, u] which contains the exact probability with which a path formula holds
in a state. A formula Ponp(ψ) is then satisfied for sure, if ∀x ∈ [l, u] : x on p. Conversely, the
formula is violated for sure if ∀x ∈ [l, u] : x 6on p. Otherwise nothing can be said about the
validity of the formula. We have therefore to cope with a three-valued logic as it was introduced,
e. g., in [16].

The usage of interval arithmetic can eliminate the sources A, B, and D of inaccuracy. The
elimination of source C is only possible if a direct solution method is used or if the iterative
method provides us with a bound for the error.

In opposite to exact arithmetic, interval arithmetic is not prohibitively more expensive than
standard floating-point arithmetic. Since two numbers have to be stored instead of one, the
memory consumption of the probability vectors will roughly double. The runtime will be higher
by a small factor since we have to derive lower and upper bounds for the probability requiring
two model checking runs per sub-formula.

4.5 Certificates for the Correctness of the Result

A certificate is an output of a model checker of a solver besides the yes/no answer which makes
it easy to check that the decision of the tool is correct.

Example 2 Consider the linear programming problem [17], where one has to decide whether a
system of the form Ax = b, x ≥ 0 is satisfiable for a matrix A ∈ Rn×m, a vector b ∈ Rm, and
variables x ∈ Rn.

If the system is satisfiable, the solver can provide a certificate by returning a satisfying variable
assignment for x. The user can then easily check if it indeed satisfies all constraints.



If the system is unsatisfiable, Farkas’ lemma [18] can be used to obtain a certificate. It says
that exactly one of the systems

Ax = 0, x ≥ 0 and yTA ≥ 0, yT b < 0

is satisfiable. Hence an assignment for y such that yTA ≥ 0, yT b < 0 is a certificate in case of
unsatisfiability.

Han et al. [19] provide a method to compute certificates for PCTL formulae of the form
P>p(aU b) (and counterexamples for P≤p(aU b), resp.) where a and b are atomic propositions.
In this case, a certificate consists of a finite set of finite paths which satisfy the path formula
aU b and whose probability mass exceeds the bound p. If such a certificate is given, it can be
verified easily using exact arithmetic since only multiplication and addition are necessary to
compute the probability.

Example 3 Let us consider the motivational example from section 3 again. A possible cer-
tificate showing that the property P>0.5(aU b) is fulfilled in state s1 of the DTMC of Fig. 2
is shown in Fig. 4. It consists of two paths: s1s2s3 and s1s2s5s6s3. Their probability is
1 · 1/2 + 1 · γ · γ · γ > 1/2.

s1 s2

s3

s5 s6 s3

1

1
2

γ γ γ

Figure 4: Certificate showing that P>0.5(aU b)
is satisfied in s1 of Fig. 2

To the best of our knowledge, up to now,
there is no efficient method to generate cer-
tificates for properties of the form P≤p(aU b)
and for properties with nested PCTL sub-
formulae. The approach that comes closest to
general certificates for PCTL is described in a
paper by Daws [2]. There, regular expressions
are computed for DTMCs that describe the
probability with which a path formula holds.
Since there are no numerical computations in-
volved in the construction of the regular ex-
pressions and since they can be evaluated us-
ing only multiplications and additions, the regular expressions can be seen as a kind of compact
representation of the paths satisfying a path formula. But since the computation of the regular
expressions is expensive, we do not expect the approach to scale beyond small-sized systems.
Furthermore, it does not support nested PCTL sub-formulae, which are — as we have seen in
section 3 — a major source of problems.

5 Conclusion

In this work we have discussed the impact of inexact numerical computations on the correctness
of the results in the context of probabilistic model checking. We have presented an example for
which several state-of-the-art probabilistic model checkers return completely wrong results due
to inexact numerical computations. Motivated by this artefact, we have investigated at which
points of the model checking process these inaccuracies are introduced.

We have discussed several approaches which try to circumvent the inexactness: (1) the
introduction of a “degree of belief” for each sub-formula, the usage of (2) exact or (3) interval
arithmetic for the numerical computations, and (4) the provision of certificates which testify
that the result is correct.

Our considerations reveal the need for further investigations how to provide certificates for the
correctness of the answer since not all problems can be solved using exact or interval arithmetic.

Acknowledgments. We thank Holger Hermanns from the Saarland University for his helpful com-
ments.
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