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ABSTRACT
In this paper we report on optimizations for a BDD-based
algorithm for the computation of bisimulations. The un-
derlying algorithmic principle is an iterative refinement of
a partition of the state space. The proposed optimizations
demonstrate that both, taking into account the algorith-
mic structure of the problem and the exploitation of the
BDD-based representation, are essential to finally obtain an
efficient symbolic algorithm for real-world problems.

The contributions of this paper are (1) block forwarding
to update block refinement as soon as possible, (2) split-
driven refinement that over-approximates the set of blocks
that must definitely be refined, and (3) block ordering to fix
the order of the blocks for the refinement in a clever way.

We provide substantial experimental results on examples
from different applications and compare them to alternative
approaches when possible. The experiments clearly show
that the proposed optimization techniques result in a signifi-
cant performance speed-up compared to the basic algorithm
as well as to alternative approaches.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata

Keywords
Symbolic methods, binary decision diagrams, state space
explosion, bisimulation, state space reduction
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This paper reports on successful optimization techniques for
BDD-based computation of bisimulations. In the context of
labeled transition systems bisimulations are equivalence re-
lations in terms of observational behavior. The resulting
bisimulation quotient is a compressed representation of the
original state space that preserves the observational behav-
ior. The relationship of bisimulations to formal verification
techniques (e.g., Model Checking) is that bisimulations pre-
serve important logical properties, e.g., CTL*\X1 in case
of branching bisimulation [20]. Although symbolic bisimu-
lation computation seems not to pay off in the context of
symbolic invariant checking [11], it plays an essential role
when sophisticated analysis techniques are applied that re-
quire an explicit state space representation (see e. g. [3]).
Moreover, bisimulations are an elementary method that is
widely spread in verification [22]. They are often the means
of choice to circumvent the inevitable state space explosion
problem without including problem specific knowledge.

In our case, we have already successfully coupled a ba-
sic version of a BDD-based bisimulation computation with
probabilistic model checking tools [3] that are still restricted
to “small” state spaces up to 108 states [16], and de facto rely
on an explicit state space representation. Contrary, high-
level specification methodologies, e. g., Statemate [13], lead
in practice to huge state spaces that are far out of reach for
an explicit representation. Consequently, BDD-based model
representations are used and BDD-based bisimulation is a
way to reduce such state spaces. Furthermore, system mod-
els often contain a lot of redundancies which in fact are ex-
actly the reason why bisimulation techniques are applicable,
i. e., the state space is compressible. These redundancies are
stemming either from component reuse (e. g., within a hier-
archical or concurrent design approach) or from symmetries
inherent to the model (e. g., schedulers).

In previous works, we have shown the general feasibility
of the BDD-based computation of branching bisimulation
using the concept of signatures [24]. Additionally, we ex-
tended our approach to the most important types of bisim-
ulation known from the literature (e. g. weak, orthogonal
bisimulation) [25], thus enabling a flexible handling of dif-
ferent bisimulations. In [3] we performed a case study to
quantitatively analyze large Statemate models.

The main contribution of this work are novel optimiza-
tion techniques that on the one hand take into account the
algorithmic structure of the signature-based refinement al-
gorithm and on the other hand exploit the effectiveness of

1CTL*\X is the computation tree logic where the next-state
quantifier ’X’ is not allowed. Furthermore, for an application
of pure CTL see e.g. [5].



the BDD-based problem representation for efficiently com-
putable, but yet powerful, heuristics for determinization of
the refinement ordering. Only these optimizations make the
application to practical models possible.

The experimental evaluation of our approach is done for
examples stemming from quite different domains and clearly
show that the proposed optimization techniques drastically
improve our basic algorithm. Additionally, we present ex-
perimental comparisons to other symbolic methodologies,
which emphasize that our approach is much more robust.

The paper is structured as follows. In the next section
we will give preliminaries that are used throughout the pa-
per. In Section 3 we will then briefly describe the BDD-
based bisimulation framework whereby we focus on branch-
ing bisimulation. Our novel optimization techniques are de-
scribed in detail in Section 4. The experimental evaluation
of our proposed techniques and a discussion of the results
follow in Section 5. Section 6 concludes the paper and states
some ideas for future work.

2. PRELIMINARIES
Bisimulations typically define equivalent behavior of states
in a discrete state space. There are mainly two different
formalisms: state-labeled systems (e. g. Kripke-structures)
and transition-labeled systems. In this work we will focus
on the latter.

Definition 1 A labeled transition system (LTS) is a triple
M = (S, A, T ) where S is a finite non-empty set of states,
A is a set of actions that may contain the so-called non-
observable action τ , and T ⊆ S × A × S is a relation that
defines labeled transitions between states.

A bisimulation partitions the state space S into disjoint
parts.

Definition 2 Given a finite set S, a partition of S is a set
P ⊆ 2S with[

B∈P

B = S and ∀B, B′ ∈ P : B = B′ ∨B ∩B′ = ∅

The elements B of the partition are called blocks.

Definition 3 Let P and P ′ be two partitions of the same set
S. Then P is a refinement of P ′ (or conversely P ′ coarser
than P ) if ∀B ∈ P ∃B′ ∈ P ′ : B ⊆ B′.

For a transition system M = (S, A, T ) and a partition P
of S we use the following notations:

• (s, t) ∈ P if there is a B ∈ P with s ∈ B and t ∈ B.

• s
a−→ t for (s, a, t) ∈ T

• s
a∗−→ t for the reflexive transitive closure of

a−→
• s

a∗−→
P

t if s
a∗−→ t and (s, t) ∈ P . We call such a

sequence inert.

Bisimulations are equivalence relations on the state space
of an LTS. They define which states are considered indistin-
guishable. There is a large number of different bisimulation
one can choose from, depending on the application [22]. In
this paper, we will concentrate on one of the most important
bisimulation, namely on branching bisimulation. All opti-
mizations that will be presented in this section apply in the

same way to other types of bisimulation that are described
in [25].

Branching bisimulation was introduced by van Glabbeek
and Weijland [23] to overcome the problem of weak bisim-
ulation, which does not preserve the branching structure of
the LTS. Branching bisimulation is comparable to stutter-
ing equivalence on Kripke structures and preserves CTL*
without next-state quantifier [20].

Definition 4 A binary relation Bb ⊆ S×S is a branching
bisimulation2 if for all s, s′, t ∈ S the following holds: If

(s, t) ∈ Bb then s
a−→ s′ implies either a = τ and (s′, t) ∈ Bb

or there exist t′, t′′, t′′′ ∈ S with t
τ∗−−→
Bb

t′
a−→ t′′

τ∗−−→
Bb

t′′′ and

(s′, t′′′) ∈ Bb.

The fastest known explicit algorithm for computing the
coarsest branching bisimulation of a transition system is that
of Groote and Vaandrager [12]. Short descriptions how sym-
bolic algorithms for strong bisimulation can be modified for
branching bisimulation can be found in [4, 10]. Blom and
Orzan have shown in [2] how a signature-based approach
can be used for the distributed minimization of explicitly
represented state spaces using branching bisimulation. In
the next section, we will briefly review our previous work
on extending the signature-based approach to BDD-based
state space representations.

3. SYMBOLIC COMPUTATION
Before describing the symbolic part of the bisimulation com-
putation, we will first explain the principles of the signatures
and the refinement operation. The next step is then to ex-
plain how the required data is represented by BDDs and how
the signatures and the iterative refinement can be computed
symbolically.

3.1 Signature-based Partition Refinement
The signature-based approach as first introduced by Blom
and Orzan in [2] relies on the notion of the signature of
a state. A signature can be considered as a kind of “fin-
gerprint” that characterizes the state w. r. t. the observable
actions that can be executed after an arbitrary number of
unobservable τ -steps.

Definition 5 The branching signature of a state s ∈ S
w. r. t. a partition P is defined as

sigP (s) =
˘
(a, B) ∈ A× P |

∃s′ ∈ S, s′′ ∈ B : s
τ∗−→ s′

a−→ s′′

∧ (s, s′) ∈ P ∧ (a 6= τ ∨ (s, s′′) 6∈ P )
¯
.

The refined partition is then obtained by splitting the blocks
according to the different signatures of its states.

Definition 6 For a partition P and a block B of P , the
refinement operator sigref is given by

sigrefP (B) =
˘
{t ∈ B | sigP (t) = sigP (s)} | s ∈ B

¯
sigref(P ) =

[
B∈P

sigrefP (B).

2Please note that the definition in [25, 24] is slightly differ-
ent. But according to the stuttering lemma from [23], they
are equivalent.
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Figure 1: An example of an LTS with initial parti-
tion.
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Figure 2: The coarsest branching bisimulation of the
LTS in Figure 1 refining the given initial partition.

Blom and Orzan have shown in [2] that this yields the
coarsest branching bisimulation if iterated until a fixpoint is
reached.

We will now illustrate this concept with a small example:

Example 1 As an example we use the LTS of Figure 1 to-
gether with the given initial partition P 0 with two blocks, i.e.,
P 0 = ({s1, s2, s3, s4}, {s5, s6, s7, s8, s9}) = (B1

1 , B1
2). Then,

the signatures for the states w. r. t. P 0 are

sigP0(s1) = sigP0(s2) = sigP0(s4) = {(b, B1
1)}

sigP0(s3) = {(b, B1
2)}

sigP0(s5) = sigP0(s7) = {(a, B1
1)}

sigP0(s6) = sigP0(s8) = sigP0(s9) = {(a, B1
1), (a, B1

2)}

With this, the refined partition (which is also the final branch-
ing bisimulation) for the example has four blocks:

P 1 = ({s1, s2, s4}, {s3}, {s5, s7}, {s6, s8, s9}).

3.2 Representation of the Data
For the symbolic bisimulation computation we have to rep-
resent the following sets: the state space S of the LTS, its
transition relation T , the partition P and the signatures sig.

We use a binary encoding for the states (using variables
s for the present state, variables t for the next state, and x
as auxiliary variables) and the actions (variables a). Then,
the state space is represented by a BDD S with S(s) = 1
iff s ∈ S. Analogously, we have a BDD T for the transition

relation with T (s, a, t) = 1 iff s
a−→ t.

We have chosen an uncommon way for the representation
of the partition P : We assign a unique number to each block

Algorithm 1 Signature for Branching Bisimulation

1: procedure SigBranching(LTS M , partition P)
2: Tτ (s, t)← Cofactor(T (s, a, t), a = τ)
3: inertτ (s, t)← Closure(Tτ (s, t)) ∧ ∃k : (P(s, k) ∧ P(t, k))
4: pre(s, a, t)← ∃x :

`
inertτ (s, x) ∧ T (x, a, t)

´
∧ (a 6= τ ∨ ¬∃k : P (s, k) ∧ P (t, k))

5: return ∃t : pre(s, a, t) ∧ P (t, k)
6: end procedure

of P (encoded using variables k) and represent P by a BDD
P with P(s, k) = 1 iff s ∈ Bk.

All other symbolic algorithms for bisimulations (e. g. [4])
typically use a BDD P ′(s, t) with P ′(s, t) = 1 iff (s, t) ∈ P .
Our representation has two advantages: First, our experi-
ments have shown that mostly P ′ is much larger than P in
terms of BDD nodes. Second, given T and P, it is easy to
compute the quotient w. r. t. P symbolically (see [25]). We
represent the signatures in the same way and create a BDD
σ with σ(s, a, k) = 1 iff (a, Bk) ∈ sig(s).

3.3 Computation of the Signatures
For the computation of the branching signature we provide
several basic BDD operations:

• Extraction of the τ -transitions from T :
Cofactor(T (s, a, k), a = τ)

• Pairs of states (s, t) that are in the same block:
∃k : P(s, k) ∧ P(t, k)

• Computation of the reflexive transitive closure (RTC)
of a relation R(s, t): There are several symbolic algo-
rithms for the computation of the RTC (e. g. [7, 18]).
We apply the iterative squaring method of [7].

• Computation of the non-τ or non-inert transitions:
T (s, a, t) ∧ ¬

`
∃k : (P (s, k) ∧ P (t, k)) ∧ a = τ

´
• Concatenation of R1(s, t) and R2(s, t):

∃x : R1(s, x) ∧R2(x, t)

• Substitution of t in R(s, t) by its block number:
∃t : R(s, t) ∧ P (t, k)

Algorithm 1 shows how these basic operations can be com-
bined to compute the branching signature.

At first, all pairs of states that are connected by a τ -
transition and their RTC, such that source and target state
are contained in the same block, are computed. In line 4 the
closure of the τ -transitions and the observable transitions
are concatenated. Finally, in line 5 the target state of the
transition sequence is replaced by its block number.

3.4 Computation of the Refinement
We assume that we have already computed the BDD σ(s, a, k)
for the signatures as described above. We are now going to
show how to compute the refined partition such that all
states with the same signature are merged into one block.

The variable order of the BDD is constrained as follows:
The si variables are placed at the top of the variable order,
followed by the aj and kl variables, i. e., level(si) < level(aj)
and level(si) < level(kl) must hold for all i, j, and l.

Then, we can exploit the following observation: Let s be
the encoding of a state. If we follow the path given by s
in the BDD, we reach a node v. The sub-BDD at node v
represents the signature of s. Furthermore, all states with
the same signature as s lead to v, due to the canonicity of
BDDs. To get the refined partition, we have to replace all
sub-BDDs that represent the signature of a state s ∈ S by



Algorithm 2 Partition Refinement

1: procedure Refine(signatures σ)
2: if σ ∈ ComputedTable then
3: return ComputedTable[σ]
4: end if
5: x← topVar(σ)
6: if x = si then
7: low ← Refine(Cofactor(σ, x = 0))
8: high ← Refine(Cofactor(σ, x = 1))
9: result ← BDDnode(x, high, low)
10: else
11: result ← newBlockNumber()
12: end if
13: ComputedTable[σ]← result
14: return result
15: end procedure

the BDD for the encoding of a new block number k. This is
sketched in Algorithm 2.

The algorithm uses a function newBlockNumber() that re-
turns a BDD with exactly one path from the root node to
the leaf 1. The values of the variables on that path corre-
spond to the binary encoding of a block number that has
not been used in the current partition BDD. It is reset each
time we call Refine.

Furthermore, the algorithm relies on a dynamic program-
ming approach to store all intermediate results in a so-called
ComputedTable. By this, we can detect whether a node was
reached before. If we reach a node already contained in
the ComputedTable, then we return the stored result. Oth-
erwise, if the node is labeled with a state variable si, the
algorithm is called recursively for the two sons. If the label
of the node is not a state variable, then the node is the root
of a sub-BDD representing a signature. This node must be
substituted with a new block number. For this, the Com-
putedTable has to be perfect (and is not a cache as usual).

The complexity of the refinement is linear in the size of
σ(s, a, t) if we assume that accessing the ComputedTable and
the call to newBlockNumber() take constant time.

4. OPTIMIZATIONS
In this section we present several optimizations that increase
the efficiency of the basic algorithm described in the previous
section.

4.1 Block Forwarding
During our experiments we observed that the BDD for the
expression

∃k : P (s, k) ∧ P (t, k), (1)

that describes the pairs of states that are contained in the
same block (see lines 3 and 4 of algorithm 1), is considerably
larger than the BDD for P (s, k), and the variable order with
the si and ti variables at the beginning and the ki variables
at the end makes the computation very expensive.

However, the computation of (1) can be avoided if the
signature computation and the refinement are carried out
not for all blocks in one step, but only for one block at a
time. Hence, we modified the function SigBranching such
that it takes an additional parameter B(s) for the block we
have to compute the signatures for. Then, we can replace
expression (1) by B(s)∧B(t). Experiments have shown that
block-by-block refinement pays off for all our benchmarks.

The block-wise refinement enables us to apply the fol-
lowing simple optimization technique, which we call block
forwarding : After the refinement of a block, the current par-

Algorithm 3 Signature-based Refinement

1: procedure Bisimulation
2: P ← initial partition . current partition
3: U ← P . unstable blocks
4: Unew ← ∅ . unstable blocks for the next iteration
5: while U 6= ∅ do
6: for all blocks B ∈ U do
7: P ←

`
P \ {B}

´
∪ sigrefP (B)

8: Unew ← Unew \ {B}
9: if B was split then
10: Unew ← Unew ∪ bw sigoa

P (B)
11: end if
12: end for
13: U ← Unew

14: end while
15: return P
16: end procedure

tition is updated with the result of this refinement. Hence,
during the refinement of the remaining blocks this infor-
mation can already be used in the same iteration. Block
forwarding substantially reduces the number of iterations
needed to reach the fixpoint.

4.2 Split-driven Refinement (SDR)
Especially at the end of the refinement process only few
blocks are split while the majority of the blocks remains un-
changed. Therefore we would like to ignore blocks of which
we know a priori that they will not be split. To do so, as-
sume that in the current iteration the block B was split.
Then, only those blocks are potentially unstable that con-
tain a state that has a pair (a, B) in its signature, for some
action a. To capture these potentially unstable states, we
define the backward signature bw sigP (B) as follows:

bw sigP (B) = {B′ ∈ P | ∃s ∈ B′ ∃a ∈ A : (a, B) ∈ sigP (s)}

That means, bw sigP (B) is exactly the set of blocks that
may be affected by the splitting of B. The signatures of all
states contained in other blocks have not changed. Now, if
we computed bw sigP in that way, we would encounter the
same problem as during the computation of the signatures:
For extracting the inert τ -transitions we have to compute
the BDD for expression (1). But in this case we cannot
avoid it easily by block-wise refinement because we walk
backwards in the LTS. Fortunately, we are not forced to
compute bw sigP (B) properly, but it suffices to compute
an over-approximation bw sigoa

P of the backward signature,
e. g. by saying that τ -steps are relevant for the backward
signature even if they are inert.

bw sigoa
P (B) = {B′ ∈ P | ∃s′ ∈ B′ ∃a ∈ A∃s ∈ B : s′

a−→ s}

This may cause some unnecessary refinements of stable blocks,
but it does not impact the correctness of the result.

Algorithm 3 shows the pseudo-code of the refinement al-
gorithm with all of the presented optimization techniques.
This version will be used for our experiments in section 5.

4.3 Choosing a Good Order of the Blocks
The effectiveness of the block forwarding technique strongly
depends on the order in which the potentially unstable blocks
are refined (see line 6 of algorithm 3). The idea is to provide
a block order such that blocks having a great impact on the
stability of others are split first. Then, more blocks may be
split in one iteration than without any ordering. Before the
actual refinement, we therefore sort the potentially unstable
blocks w. r. t. one of the following block ordering heuristics:



• SortByBWSig : in decreasing order w. r. t. |
S

bw sigoa(B)|
• SortByBlockSize: in decreasing order w. r. t. |B|.

Please note that both heuristics can be computed effi-
ciently using the BDD-function satisfy count [6] that is lin-
ear in the size of the BDD.

We will show in Section 5 that these orders often have
the intended effect, namely that they reduce the number of
potentially unstable blocks that have to be refined.

5. EXPERIMENTAL RESULTS
To evaluate our algorithm we implemented it in a tool called
Sigref [25] using the BDD package CUDD [21]. For com-
parison with other state-of-the-art algorithms, we also im-
plemented an extension of Bouali/de Simone’s algorithm [4]
to branching bisimulation, as briefly suggested in their pa-
per. We applied both tools to three different sets of bench-
marks stemming from very different domains:
Kanban Production System Here, we use a process-
algebraic description of a Kanban system [8] that models a
production environment with four machines each having a
parameterizable buffer of workpieces. From this description
we generated a BDD representation of the transition sys-
tem using the Caspa tool [17]. Caspa allows action-hiding,
and therefore, as an example, we have hidden all internal
actions that are not involved in the synchronization of the
machines. This is the appropriate configuration when only
inter-process communication will be analyzed.
Milner’s Scheduler The second group of benchmarks is
an implementation of Milner’s scheduler [19]. Its purpose
is to schedule n not further specified tasks T1, . . . , Tn with
the following constraints: Ti must be started before Ti+1.
After Tn, T1 is started again. Ti may only be started again
if its previous run has already terminated. To enforce the
ordering constraint we use a token-passing mechanism. A
task may only be started if it holds the token and is not
running. The token is then passed to the next task. For the
analysis, we assume a scenario in which we want to prove
that the ordering constraint is satisfied. Therefore we map
all other actions (e. g. those for the token passing or the
termination of the tasks) to τ .
Failure-enhanced Statemate descriptions As a third
benchmark suite we analyzed LTSs that were generated from
Statemate descriptions [13] that are extended by some
failure-behavior. The first example describes a train control
system stemming from the ETCS specification and models
a scenario regarding the communication between trains and
the Radio Block Centers (RBCs) (see [9] for details about
ETCS which is part of ERTMS). The analysis tackles the
problem of colliding trains on the same track. The example
is scalable in the number of trains whereby we used 1, 2, and
3 trains, resulting in three benchmarks etcs-1, etcs-2, and
etcs-3. Especially etcs-3 samples a realistic scenario. Fur-
thermore, we used an example, bs-p, from the ARP 4761 case
study [1] that models a braking system from an air-plane.
It is about the correctness of the pilot’s braking pedal and
the hydraulic pressure given to the wheels of the air-plane.
The benchmark ctrl describes a redundancy controller of
an industrial avionics project. A detailed description of all
Statemate models can be found in [14].

Table 1 shows the sizes of all benchmarks before and after
minimization. We applied four different versions of Sigref:
(1) without SDR and no block ordering, (2) with SDR and
no block ordering, (3) with SDR and SortByBlockSize block
ordering, and (4) with SDR and SortByBWSig block order-

state space transitions
Benchmark before after before after

kanban-4 16020316 2785 74424320 10932
kanban-5 16772032 7366 133938560 31795
kanban-6 264515056 17010 1689124864 78584
kanban-7 268430272 35456 2617982976 172382
kanban-8 4224876912 68217 29070458880 345128
kanban-9 4293193072 123070 41055336960 642837
milner-4 4096 252 20480 1020
milner-5 32768 1019 204800 5115
milner-6 262144 4090 1966080 24570
milner-7 2097152 16377 18350080 114681
milner-8 16777216 65528 167772160 524280
etcs-1 1057 51 15058 749
etcs-2 428113 1312 16589262 48848
etcs-3 158723041 35842 16658393318 3128876
bs-p 184865921 1177 10025344274 42830
ctrl 139623 9627 11867888 653303

Table 1: Size of the benchmarks

ing. Additionally, we applied Bouali/de Simone’s algorithm
to the benchmarks. The results3 are contained in Table 2.
The number of iterations needed to reach the fixpoint is de-
noted by “#it”, the columns denoted by “#refined” contain
the number of blocks that were refined during the compu-
tation. It can be seen that the application of split-driven
refinement substantially reduces this number by a factor of
at least 2. This effect is intensified by the application of an
appropriate ordering heuristics – especially for the State-
mate benchmarks. The reduction of the number of refined
blocks is also resembled in the runtimes: the smaller the
number of refined blocks, the smaller the runtime. The few
exceptions are caused by the higher computational costs of
SortByBWSig. On the average, the SortByBlockSize heuris-
tics gives the best results w. r. t. CPU time.

We are aware of the runtimes of Bouali/de Simone’s algo-
rithm for the examples of Milner’s scheduler that outperform
Sigref by orders of magnitude. This is mainly due to the
very regular structure of the scheduler that generates BDDs
for P ′(s, t) with only a few hundred nodes.

The opposite happens for the more irregular benchmarks,
mainly those generated from Statemate designs, which are
— from our point of view — much more important in prac-
tice: Sigref manages to compute the bisimulation quo-
tient in reasonable time whereas Bouali/de Simone’s algo-
rithm fails due to the time limit. The reason for this is
again the size of the partition BDD: because of the more
irregular structure the size of P ′(s, t), which is used by
Bouali/de Simone, is much bigger than our representation.

As a summary we can say that although there are cases in
which other tools outperform Sigref due to special struc-
tures of the state space, Sigref is much more robust and
can cope with a wide range of benchmarks. Furthermore,
the proposed optimizations are able to reduce the runtime
significantly compared to the basic algorithm.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented powerful optimization tech-
niques for a signature-based symbolic bisimulation frame-
work that allow the minimization not only of larger state
spaces, but also in less time.

We have provided experimental results for benchmarks
stemming from different domains such as Statemate mod-

3The experiments were performed on an AMD Opteron
2.6 GHz CPU. We have set a time limit of 8 h (= 28 800 s).
An entry “TL” means that this time limit was exceeded. In
all cases, the tools needed less than 512 MB of memory.



Sigref without SDR Sigref with split-driven refinement Bouali
No ordering SortByBlockSize SortByBWSig

Benchmark #it. #refined Time [s] #it. #refined Time [s] #it. #refined Time [s] #it. #refined Time [s] #it. Time [s]

kanban-4 8 13879 35.89 10 4747 12.65 9 4438 13.04 11 4504 15.28 14 5.20
kanban-5 8 34563 178.63 8 11813 56.62 10 11310 61.16 13 11266 72.34 17 23.17
kanban-6 8 74056 753.32 8 27163 252.66 12 25609 346.06 10 26364 314.01 20 68.73
kanban-7 10 213787 4163.36 10 56406 943.51 14 53273 1061.32 11 52116 1361.09 23 621.42
kanban-8 10 388169 17383.70 10 108270 3239.49 12 101907 3330.95 12 101678 3743.23 n. a. TL
kanban-9 n. a. n. a. TL 12 200414 10098.50 14 174999 9736.97 13 178144 11034.00 n. a. TL
milner-4 5 747 0.15 7 320 0.11 6 387 0.14 6 370 0.15 7 0.02
milner-5 5 2970 2.40 9 1285 1.12 8 1389 1.28 8 1421 1.41 9 0.05
milner-6 5 11833 29.06 11 5122 12.40 8 5380 12.99 8 5346 13.80 10 0.12
milner-7 5 47224 384.15 13 20415 161.29 12 20563 155.75 10 20973 167.90 12 0.24
milner-8 5 188663 6376.51 10 81468 2250.05 12 78829 2215.16 11 79591 2219.40 13 0.49
etcs-1 6 171 0.11 6 88 0.08 6 76 0.09 6 77 0.10 5 2.29
etcs-2 8 6179 49.77 8 2246 20.73 8 1789 20.62 8 1749 21.56 n. a. TL
etcs-3 9 203986 17944.40 9 63622 5899.97 9 50540 4249.97 9 47465 4265.11 n. a. TL
bs-p 14 10981 189.42 14 6976 150.05 13 3792 98.70 14 4011 107.43 n. a. TL
ctrl 10 55964 1981.02 10 27254 818.48 10 19653 576.12 8 21227 612.71 n. a. TL

Table 2: Benchmark results for different Sigref versions

els and process-algebraic descriptions that show the efficacy
of our improvements. In comparison with other symbolic al-
gorithms, the results show that our approach is much more
robust regarding a wide range of transition systems.

As future work, we will investigate how the signature-
based approach can be extended to compute stochastic bisim-
ulations for Interactive Markov Chains [15]. Furthermore,
we will think about a flexible way to combine both the
signature-based approach as well as Bouali/de Simone’s al-
gorithm.
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