
Probabilistic Model Checking
and Reliability of Results∗

Ralf Wimmer Alexander Kortus Marc Herbstritt Bernd Becker

Institute of Computer Science,
Albert-Ludwigs-University,

79110 Freiburg im Breisgau, Germany
{wimmer|kortus|herbstri|becker}@informatik.uni-freiburg.de

Abstract—In formal verification, reliable results are of utmost
importance. In model checking of digital systems, mainly in-
correct implementations of the model checking algorithms due
to logical errors are the source of wrong results. In probabilistic
model checking, however, numerical instabilities are an additional
source for inconsistent results.

We motivate our investigations with an example, for which
several state-of-the-art probabilistic model checking tools give
completely wrong results due to inexact computations. We then
analyze, at which points inaccuracies are introduced during the
model checking process. We discuss first ideas how, in spite of
these inaccuracies, reliable results can be obtained or at least the
user be warned about potential correctness problems: (1) usage
of exact (rational) arithmetic, (2) usage of interval arithmetic
to obtain safe approximations of the actual probabilities, (3)
provision of certificates which testify that the result is correct,
and (4) integration of a “degree of belief” for each sub-formula
into existing model checking tools.

I. INTRODUCTION

While for traditional decision problems arising in computer
science a binary true/false answer is intuitively understandable,
in the domain of probabilistic systems the interpretation of
probability values can be very cumbersome. But our nature
is inherently stochastic and hence we have to cope with
stochastic systems by modelling them, e. g., with discrete-time
Markov chains (DTMCs). At the very end of any method for
analyzing stochastic systems, there has to be a representation
of probabilistic values within the computer. Typically, the
architecture of today’s computers provide a floating-point
representation for real numbers, most prominently established
by the IEEE 754 standard specification [1].

Model checking as a verification method enables the sep-
aration of the system model from the properties that specify
the correct behavior of the system. Model checking has been
investigated very deeply in the last 25 years and has become a
mature verification methodology pushing forward the frontiers
for both large industrial systems (e. g., microprocessors) and
novel academic models (e. g., hybrid systems). In the last
10 years, stochastic model checking has been in the focus of
intense research and besides enormous advances w. r. t. proba-

∗This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www.avacs.org for more information.

bilistic models and logics that can be handled algorithmically,
it has also reached the usage within industrial applications.

There are several academic tools available for stochastic
model checking. We are only aware of two publications about
computing probabilities in a reliable way: [2] computes regular
expressions in a symbolic way from which the probabilities
can be derived using only addition and multiplication, which
can be performed with rational arithmetic. However, this
approach cannot cope with nested PCTL formulae and we
do not expect it to scale well. The second paper [3] deals
with performance analysis for compositional probabilistic I/O
automata, but without comparison to inexact arithmetic.

All other state-of-the-art tools like PRISM [4] and
MRMC [5], to name only two of the most popular ones, rely
on inexact floating-point arithmetic. Especially in the context
of probabilistic model checking this topic is often euphemized
by stating that the probability values of the model are derived
from natural observations which itself are inherently stochas-
tic. But this argument does not give the permission to allow
inadequate computations after the probability values of the
model were agreed to be the most accurate values available.
Recently, Haverkort et al. [6] gave a detailed experimental
analysis of the numerous effects caused by the usage of inexact
arithmetic for computing steady-state probabilities of large
Markov chains. But they do not analyze PCTL model checking
and they do not provide any solutions to the problems they
encountered.

The main topic of this paper is therefore to discuss the im-
pact of inexact computations on the result of model checking.
We will give an example for which at least two state-of-the-art
tools compute completely wrong probabilities—1.0 instead of
0.0. These results clearly reveal the demand for reliable results
either by exact computations, safe approximations of the
correct probabilities or—if possible—by providing certificates
for the correctness.

This paper consists of the following parts: First, we review
the basic definitions of discrete-time Markov chains (DTMCs),
the logic PCTL, and the algorithms for model checking PCTL
formulae on DTMCs. We motivate our investigation by pro-
viding an example for which inexact arithmetic is definitively
inappropriate. The next section is devoted to the analysis,
at which points of the model checking process inaccuracies

are introduced, and try to give ideas how these inaccuracies
can either be avoided or how reliable results can be obtained
in spite of inexact computations. The paper closes with a
conclusion and an outlook to future work.

II. FOUNDATIONS OF DTMC MODEL CHECKING

In this section we will briefly recall the definitions of discrete-
time Markov chains (DTMCs), the model we will focus
on in this paper, and the logic PCTL, which is commonly
used for the specification of properties. We will also sketch
the algorithms for checking if a DTMC exhibits a property
specified in PCTL.

A. Discrete-time Markov Chains

One of the simplest models in probabilistic model checking
are discrete-time Markov chains. They are essentially tran-
sition systems in which the transitions are labelled with the
probability to walk from its source state to the target state.
This probability is independent of the way the source state
was reached (so-called Markov property).

Definition 1 Let AP be a fixed set of atomic propositions.
A discrete-time Markov chain (DTMC) is a tuple M =
(S, P, L) such that S is a finite, non-empty set of states,
P : S × S → [0, 1] the matrix of transition probabilities,
and L : S → 2AP a labelling function which assigns each
state the set of propositions which are satisfied in that state.

P has to be a stochastic matrix, i. e., for each state s ∈ S
the condition

∑
s′∈S P (s, s′) = 1 has to be satisfied.

A path of M is a finite or infinite sequence π = s0s1s2 · · ·
of states such that P (si, si+1) > 0 for all i ≥ 0. We denote
the i-th state of π by πi (i. e., πi = si) and the i-th prefix by
π↑i= s0s1 · · · si. The number of states on a finite path π is
|π|. Paths is the set of infinite paths of M starting in state s.

Following Markov chain theory, we now define the proba-
bility space on the set of paths starting in state s0 ∈ S as the
unique measure on the σ-algebra where the basic cylinders are
induced by the finite paths starting in s0 and the probability
measure by

Prs0({π ∈ Paths0 |π↑n= s0s1 · · · sn︸ ︷︷ ︸
basic cylinder of s0s1 · · · sn

}) =
n−1∏
i=0

P (si, si+1).

We now illustrate the main concepts in the following
example:

1.0

0.9

0.1

0.95

0.05

1.0

init

send

error

ack

s0 s1

s2

s3

Fig. 1. A discrete-time Markov chain

Example 1 In Fig. 1, you can see a DTMC modelling a
very simple communication protocol. First, an initialization is
performed, then data blocks are sent and the process waits for
an acknowledgment. This normal operation can be interrupted
by an error, which occurs with probability 0.1 (when sending)
and 0.05 (when waiting for an acknowledgment). After an
error, the initialization has to be repeated.

Let us consider the finite path π = s0s1s2s1s2s1 which
is taken if two data packets are transmitted without being
interrupted by an error. Its probability is 1.0 · 0.9 · 0.95 · 0.9 ·
0.95 = 0.731025.

B. Probabilistic Computation Tree Logic

After the formal introduction of the models, we still need a
formal language to describe the properties which we want to
verify. The most common language is probabilistic computa-
tion tree logic (PCTL), which was introduced by Hansson and
Jonsson in [7].

In the following, we will briefly define syntax and semantics
of PCTL before we turn to the model checking algorithms.

Definition 2 (Syntax of PCTL) Let AP be a fixed set of
atomic propositions, a ∈ AP , on ∈ {<,≤, >,≥}, k ∈ N,
and p ∈ [0, 1]. PCTL state formulae are then given by

φ ::= true | a | ¬φ | (φ ∧ φ) | Ponp(ψ)

where ψ is a path formula. PCTL path formulae are created
by the following grammar:

ψ ::= X φ | φU φ | φU≤k φ.

Definition 3 (Semantics of PCTL) Let M = (S, P, L) be a
DTMC, a ∈ AP , on ∈ {<,≤, >,≥}, s ∈ S, and φ, φ1, φ2, ψ
PCTL (state/path) formulae. We define the satisfaction relation
� recursively as follows:

s � true
s � a iff a ∈ L(s)
s � ¬φ iff s 6� φ
s � (φ1 ∧ φ2) iff s � φ1 and s � φ2

s � Ponp(ψ) iff Prs
(
{π ∈ Paths |π � ψ}

)
on p

π � X φ iff π1 � φ

π � φ1 U φ2 iff ∃i ≥ 0 : (πi � φ2 ∧ ∀j < i : πj � φ1)

π � φ1 U≤k φ2 iff ∃i ≤ k : (πi � φ2 ∧ ∀j < i : πj � φ1).

C. Model Checking PCTL

Up to now, we have introduced discrete-time Markov chains
as our system models and the logic PCTL for the description
of desired properties. In this section we will show how to
compute the states which satisfy a given PCTL formula. We
will concentrate on the main principles which are necessary to
understand where inaccuracies are introduced. For more details
on PCTL model checking see e. g. [8], [9].

Like model checking for CTL, model checking for PCTL is
based on recursively traversing the syntax tree of the formula

bottom-up and computing the set Sat(φ) = {s ∈ S | s � φ}
for each state sub-formula φ. This can be done as follows
(a denotes an atomic proposition; φ, φ1, and φ2, PCTL state
formulae; ψ, a PCTL path formula; and p ∈ [0, 1], a real
number):

Sat(true) = S

Sat(a) = {s ∈ S | a ∈ L(s)}
Sat(¬φ) = S \ Sat(φ)

Sat
(
(φ1 ∧ φ2)

)
= Sat(φ1) ∩ Sat(φ2)

Sat
(
Ponp(ψ)

)
= {s ∈ S | Pr(s, ψ) on p}

Hereby, Pr(s, ψ) denotes the probability Prs
(
{π ∈

Paths |π � ψ}
)
. The remaining task is consequently the

computation of Pr(s, ψ). Depending on the path quantifier (X ,
U≤k, U), we distinguish three cases.

1) Next Quantifier (X): Given the set Sat(φ), the proba-
bility Pr(s,X φ) can be computed as follows:

Pr(s,X φ) =
∑

s′∈Sat(φ)

P (s, s′).

2) Bounded Until Quantifier (U≤k): We can characterize
the bounded until operator with the following recursive equa-
tion system:

Pr(s, φ1 U≤k φ2) = 1 if s ∈ Sat(φ2), Pr(s, φ1 U≤k φ2) =
0 if s 6∈ Sat(φ1) and s 6∈ Sat(φ2) or if k = 0 and s 6∈ Sat(φ2).
In all other cases, we have

Pr(s, φ1 U≤k φ2) =
∑
s′∈S

P (s, s′) · Pr(s′, φ1 U≤k−1 φ2).

The intuition behind this equation system is the following:
if s satisfies φ2, all paths starting in s fulfill ψ := φ1 U≤k φ2;
hence, the probability is 1. If s satisfies neither φ1 nor φ2, ψ
cannot be satisfied on any path starting in s; accordingly, the
probability is set to 0. The same holds if s does not satisfy φ2

and k = 0, such that no further steps may be taken. Otherwise,
we may walk one step and fulfill the formula in one step less.

3) Unbounded Until Quantifier (U): The unbounded until
operator can be characterized in a similar way as the bounded
operator. But in this case the characterization leads to a linear
equation system:

We partition the state space into three sets S0, S1, and S?

such that Pr(s, φ1 U φ2) = 1, if s ∈ S1, and 0, if s ∈ S0.
S0 contains all those states from which no path leads to a
φ2 state while passing only φ1-states. Conversely, S1 is the
set of φ1-states which do not have a path to a state in S0. S?

contains all states not in S0 or S1. These sets can be computed
efficiently using graph traversal algorithms, see e. g. [8].

The probability that in state s a path π is taken with π �
φ1 U φ2 is then given by the unique solution of the following
system of linear equations:

Pr(s, φ1 U φ2) =


1 if s ∈ S1

0 if s ∈ S0∑
s′∈S

P (s, s′) · Pr(s′, φ1 U φ2) if s ∈ S?.

The intuition behind this equation system is the same as in the
case of bounded until. The difference is that we do not have
to take a bound on the number of steps into account.

Such linear equation systems are usually solved using
iterative methods like Jacobi, Gauß-Seidel, or over-relaxation
methods. Starting with an initial estimation x0 of the solution,
they iteratively compute more precise approximations until
some convergence criterion is satisfied, e. g. until ‖x(i) −
x(i−1)‖ < ε for some ε > 0 and a norm ‖ · ‖.

The reasons for using iterative methods instead of e. g.
Gaussian elimination are the following: Stochastic model
checkers that rely on an explicit state space representation use
data structures for the probability matrix which are optimized
for sparse matrices. The application of direct numerical solu-
tion methods destroys the sparseness of the probability matrix.
Symbolic model checkers rely on an implicit state space
representation and use iterative methods because they can
exploit the compact symbolic representation more effectively
than direct methods, which have to modify single elements
of the matrix. Furthermore, Gaussian elimination is known to
be not numerically robust, i. e., rounding errors can cumulate
during the solution process, which is not the case for most
iterative methods.

D. Symbolic Methods for PCTL Model Checking

Algorithms which rely on an explicit representation of the
system are naturally restricted to quite a small number of
states. A method to overcome this problem is the usage of
symbolic data structures. Their advantage is that their size
is not directly related to the size of the represented state
space. For many practical examples, the size of the symbolic
representation is much smaller than the explicit representation
such that larger systems can be handled.

One of the most prominent symbolic data structures are
binary decision diagrams (BDDs) [10]. Since the details of
how the model checking algorithms can be modified to exploit
the symbolic representation efficiently are only of little impor-
tance for the understanding of the effects of inexact arithmetic,
we refer the reader to [11] and Parker’s PhD thesis [9] about
probabilistic model checking.

III. MOTIVATION

It is well-known that the usage of inexact arithmetic for
numerical computations can be problematic. For efficiency
reasons and because it is common sense that the models are
quite stable such that “nothing will go wrong”, IEEE 754
floating-point arithmetic [1] is nevertheless used by (almost)
all state-of-the-art tools for probabilistic model checking. We
will show now that this assumption is not always justified.

Fig. 2 shows a DTMC. Let 0 < γ ≤ 1/2. We want to
compute the probability with which we walk a path starting in
the initial state s1 of the DTMC that satisfies the PCTL path
formula

cU P≤1/2
(aU b)

with the meaning that c has to hold until we reach a state that
satisfies P≤1/2

(aU b). Since Pr(s1, aU b) = 1/2 + γ3 > 1/2

s1 s2

s3

s4

s5 s6
aa a

b

a

1

1− γ

γ

γ

1/2

1− γ

1

1 γ

1/2− γ

Fig. 2. A discrete-time Markov chain

probabilistic

const double gamma = 0.000001;

module sys
s: [1..6] init 1;

[] s=1 -> 1.0: (s’=2);
[] s=2 -> 0.5: (s’=3) + gamma: (s’=5)

+ (0.5-gamma): (s’=4);
[] s=3 -> 1.0: (s’=3);
[] s=4 -> 1.0: (s’=4);
[] s=5 -> gamma: (s’=6) + (1-gamma): (s’=4);
[] s=6 -> gamma: (s’=3) + (1-gamma): (s’=4);

endmodule

P=? [s=8 U (P<=0.5 [s=1 | s=2 | s=5 | s=6 U s=3])]

Fig. 3. PRISM input file for the DTMC shown in Fig. 2 (with γ = 10−6)

STATES 6
TRANSITIONS 10
1 2 1.0
2 3 0.5
2 4 0.499999
2 5 0.000001
3 3 1.0
4 4 1.0
5 4 0.999999
5 6 0.000001
6 3 0.000001
6 4 0.999999

#DECLARATION
a b c
#END
1 a
2 a
3 b
5 a
6 a

Fig. 4. MRMC input files for the DTMC shown in Fig. 2 (with γ = 10−6)

and no state is labeled with the property c, the formula above
is satisfied in state s1 with probability 0.

We took two state-of-the-art tools for probabilistic model
checking, namely PRISM 3.1.1 [4] and MRMC 1.2.2 [5], and
applied them to this DTMC. The input file for PRISM is given
in Fig. 3, the MRMC input files in Fig. 4.

To our surprise, both tools returned the incorrect probability
1.0 for this DTMC with γ = 10−6. Probabilities in the order of
magnitude of 10−6 are not uncommon for real-world systems,
e. g., when describing component failure probabilities.

The reason for this incorrect result is the floating-point
arithmetic. It provides about 15 correct decimal digits. To
represent 1/2 + γ3 = 1/2 + 10−18, a precision of at least 18
decimal digits would be necessary to obtain a value that is
strictly larger than 1/2. Therefore 1/2 +10−18 is rounded down
to 1/2. Now, the sub-formula P≤1/2

(aU b) is satisfied in state
s1. This however implies that the probability to take a path
from s1 which satisfies cU P≤1/2

(aU b) is 1.

In the following we will investigate in more detail, where
these inaccuracies are introduced during the model checking

process, and present ideas how to avoid them and how to
obtain reliable results in spite of inexact computations.

IV. OBTAINING RELIABLE RESULTS

We now turn our attention to the analysis of the problem
described above. We will first point out where inaccuracy is
introduced during the model checking process and how it can
be avoided.

A. Sources of Inaccuracy

To identify at which points inaccuracy is introduced during
the model checking process, we had a close look at the state-
of-the-art model checkers PRISM [4], which supports explicit
and symbolic model checking as well as a hybrid variant of
these two approaches, and the explicit tool MRMC [5]. We
have identified four major sources of inaccuracy. These are
not restricted to a specific tool, but they are inherent to all
state-of-the-art model checkers.

1) The floating-point arithmetic, which is used by all state-
of-the-art model checkers for PCTL. The floating-point
arithmetic is based on IEEE standard 754 [1] for 64
bit numbers. While the additions and multiplications are
carried out with higher precision internally, the result of
each arithmetic operation is rounded to fit into the 64-
bit representation. About 15 decimal digits (51 binary
digits) can be represented correctly. If the result is
not representable as a floating-point number with that
precision, the nearest representable number is chosen if
it is unique. If the result lies exactly in the middle of two
floating-point numbers, the one whose representation
ends with “0” is chosen (round-to-nearest-even). We
refer the reader to e. g. [12] for details on how the
rounding for floating-point numbers works.

2) The termination criterion for solving the linear equation
systems Ax = b for the unbounded-until quantifier.
There are mainly two kinds of criteria: The first one uses
the difference between two successive approximations,
i. e., for a given norm ‖ · ‖ on Rn, the algorithm
terminates if

‖x(k) − x(k−1)‖ < ε

or if the relative difference is smaller than ε:

‖x(k) − x(k−1)‖
‖x(k)‖

< ε.

These criteria are supported by PRISM. The other type
of termination condition uses the residual Ax(k) − b.
Then the iteration terminates if

‖Ax(k) − b‖ < ε.

3) For symbolic model checking, another reason for inaccu-
racy is located in the BDD package. In most packages
like Cudd [13], which is used by PRISM, there is a
constant δ > 0 such that a new leaf with value v is
only generated if there is no leaf with value v′ and
|v − v′| ≤ δ. The value of δ is chosen to be in the

order of the error by the floating-point arithmetic. Cudd
uses δ = 10−12 as default.

4) For the continuous-time variant of DTMCs, continuous-
time Markov chains (CTMCs), there is a further source
of inaccuracies: To evaluate the time-bounded until-
operator, uniformization is applied [14]. This reduces
the computation of the probability, that in a state the
formula φ1 U≤t φ2 is satisfied, to the evaluation of an
infinite sum. Since an exact evaluation is impossible, the
sum is truncated after a finite number of steps. The size
of the truncation error can be bounded using a theorem
of Fox and Glynn [15].

We will now present a few ideas how these inaccuracies can
be avoided or how correct answers can be obtained in spite of
inexact computations.

B. Exact Arithmetic

By using exact arithmetic, we can eliminate the first and
the third source of inaccuracy. The second source can only
be eliminated by using a direct solution method like Gaus-
sian elimination for the linear equation systems. As already
discussed above, these direct methods are very badly suited
for the solution of large sparse systems or when using a
symbolic data representation. They destroy the sparseness of
the matrix and require single entries in the matrix to be
manipulated. Thereby the compact symbolic representation
cannot be exploited and—making it still worse—the structure
of the matrix gets lost such that the size of the sparse matrix
representation and of the MTBDDs, resp., explodes.

In the setting of CTMCs, further inaccuracies remain: The
evaluation of the time-bounded next-state quantifier X≤t φ
(“after one step, which has to occur within time t, φ has to
hold”) requires the computation of e−λt [14] for some rational
number λ > 0, since the transitions are governed by a negative
exponential distribution. This value is irrational for almost all
values of t. Consequently, this cannot be done exactly using
rational arithmetic. Also the problem of computing an infinite
sum for the time-bounded until operator cannot be solved
using exact arithmetic.

We can conclude that the application of rational arithmetic
cannot yield absolutely correct probabilities, but they can be
approximated arbitrarily tightly. We have implemented a pro-
totypic PCTL model checker which can switch from floating-
point to exact arithmetic [16]. It uses the same algorithms
as PRISM and with floating-point arithmetic, it produces
results which are comparable with PRISM w. r. t. accuracy
and runtimes. Our experiments have clearly shown that exact
arithmetic is prohibitively expensive regarding computation
time and memory consumption.

C. Interval Arithmetic

A different idea is to compute safe intervals for the probabili-
ties of path formulae, i. e. intervals Iψ(s) = [lψ, uψ] such that
Pr(s, ψ) ∈ Iψ(s). Then a formula Ponp(ψ) holds for sure in
state s if ∀x ∈ Iψ(s) : x on p. Conversely, Ponp(ψ) is violated
for sure if ∀x ∈ Iψ(s) : x 6on p. In all other cases, nothing can

be implied about the validity of the formula. Consequently,
we have to cope with a three-valued interpretation of PCTL.
This logic was introduced in another context in [17].

How can such safe intervals be derived? The error intro-
duced by floating point arithmetic can easily be estimated
using interval arithmetic, even for the evaluation of the ex-
ponential function. Also the uniformization in the setting of
CTMCs is unproblematic, since the Fox-Glynn approximation
provides us with an error bound.

The second source of inaccuracy (solution of linear equation
systems) still remains. There are publications which investigate
exactly this problem, see e. g. [18]. The proposed solutions
are mostly based on estimating the approximation error from
the residual, such that they are essentially independent of
the solution method and the errors introduced by inexact
arithmetic.

Although we have not yet implemented this approach, we
expect that the memory consumption of the probability vectors
will roughly double, since two numbers for the interval bounds
have to be stored instead of one number. The runtime will be
higher by a small factor, because we need to derive lower and
upper bounds for the intervals, requiring two model checking
runs per sub-formula.

D. Certificates for the Correctness of the Result

One possibility to check whether a result is reliable or not is to
use algorithms which provide certificates for the correctness
of the result. A certificate is an output of the tool besides
the yes/no-answer which allows the user to check whether
the answer is correct. We want to illustrate the concept of
certificates with an example from a different domain:

Example 2 Consider the linear programming problem Ax =
b, x ≥ 0 with A ∈ Rn×m, b ∈ Rm, and variables x ∈ Rn. We
have to decide whether this system is satisfiable [19].

If it is satisfiable, an assignment for x, which satisfies all
constraints, is a certificate. Otherwise, we can use Farkas’
lemma [20]. It says that exactly one of the systems

Ax = b, x ≥ 0 and yTA ≥ 0, yT b < 0

is satisfiable. So, in case of unsatisfiability, an assignment for
y for which yTA ≥ 0 and yT b < 0 hold is a certificate.

For a property of the form P>p(φ1 U φ2) a certificate
consists of a finite set Π of finite paths satisfying φ1 U φ2 such
that Prs0(Π) > p [21], [22]. The certificate can be verified
easily using exact arithmetic, since only multiplication and
addition are necessary.

Example 3 A possible certificate for P>0.5(aU b) in state s1
of the DTMC from Fig. 2 is shown in Fig. 5.

Unfortunately, for properties of the form P≤p(φ1 U φ2) no
certificates are known up to now. On reason for this is that a
finite set of finite paths cannot testify that there are no further
paths satisfying φ1 U φ2 such that the probability mass p is
exceeded.

s1 s2

s3

s5 s6 s3

1

1/2

γ

γ γ

Fig. 5. Certificate showing that P
>1/2

(aU b) is satisfied in s1 of Fig. 2

E. Increasing the Confidence into the Result
In our example from section III, if the user knew that
P≤0.5(aU b) was satisfied in s1, because the probability
computed by the model checker was 0.5, it would be clear
that the answer has to be taken with care, since an arbitrarily
small change would flip the truth value.

For large systems with hundreds of thousands of states, it
is not practical to provide the user with all probabilities. But
instead a “degree of belief” can be introduced:

dbPonp(ψ) = min
{
|Pr(s, ψ)− p|

∣∣ s ∈ S}
The smaller dbφ is for a sub-formula φ of the formula under
consideration, the more likely it is that inexactness influences
the result of the model checking process. In our motivational
example, we have dbP≤0.5(aU b) = 0, which informs the user
about an extremely unreliable intermediate result.

The introduction of the degree of belief does not remove
any of the inaccuracies, but it is easy to integrate into existing
solvers and it gives the user at least a hint about potential
problems.

V. CONCLUSION

In this paper, we have shown that probabilistic model check-
ing, which is performed with inexact computations by all state-
of-the-art tools, can produce wrong results. We have seen a
small Markov chain, for which at least two of the most popular
model checking tools compute completely wrong probabilities.

We have analyzed at which points of the model checking
process inaccuracies are introduced. We have then presented
ideas how to obtain reliable results: (1) the usage of exact
(rational) arithmetic does not solve all the problems and has
costs which are too high for practical applications. (2) Interval
arithmetic is a solution that can produce reliable results but
there will be cases for which the model checker cannot give
an answer. (3) Certificates, i. e. data which testifies that the
answer of the tool is correct and which is easily checked
by the user, can only be provided for formulae of the form
P>p(φ1 U φ2) where φ1 and φ2 do not contain probabilistic
quantifiers and are thus restricted to a sub-logic of PCTL. (4)
The introduction of a “degree of belief”, which describes the
risk that the truth value of a sub-formula flips in a state due to
inexact computations, does not improve the results, but it can
give the user at least a hint about potentially wrong results.

Future work will consist of elaborating and implementing
the presented ideas. An experimental evaluation will have to
show their practical feasibility.

ACKNOWLEDGMENTS

We thank Holger Hermanns from the Saarland University for his
helpful comments.

REFERENCES

[1] IEEE Computer Society Standards Committee. Working group of the
Microprocessor Standards Subcommittee and American National Stan-
dards Institute, IEEE standard for binary floating-point arithmetic, ser.
ANSI/IEEE Standard 754-1985. Silver Spring, MD 20910, USA: IEEE
Computer Society, 1985.

[2] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in 1st Int. Colloquium on Theoretical Aspects of
Computing (ICTAC), ser. LNCS, vol. 3407. Guiyang, China: Springer,
Sept. 2004, pp. 280–294.

[3] E. Stark and G. Pemmasani, “Implementation of a compositional per-
formance analysis algorithm for probabilistic I/O automata,” in 7th Int.
Workshop on Process Algebra and Performance Modelling (PAPM),
Sept. 1999, pp. 3–24.

[4] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 2.0: A tool
for probabilistic model checking.” in 1st Int. Conf. on Quantitative
Evaluation of Systems (QEST). Enschede, The Netherlands: IEEE
Computer Society, 2004, pp. 322–323.

[5] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model
checker,” in 2nd Int. Conf. on Quantitative Evaluation of Systems
(QEST). IEEE Computer Society, 2005, pp. 243–244.

[6] A. Bell and B. R. Haverkort, “Untold horrors about steady-state prob-
abilities: What reward-based measures won’t tell about the equilibrium
distribution,” in Fourth European Performance Engineering Workshop
on Formal Methods and Stochastic Models for Performance Evaluation,
(EPEW), ser. LNCS, vol. 4748. Springer, 2007, pp. 2–17.

[7] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[8] F. Ciesinski and M. Größer, “On probabilistic computation tree logic,”
in Validation of Stochastic Systems, ser. LNCS, vol. 2925. Springer,
2004, pp. 147–188.

[9] D. Parker, “Implementation of symbolic model checking for probabilistic
systems,” PhD thesis, University of Birmingham, Great Britain, 2002.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[11] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska,
and M. Ryan, “Symbolic model checking for probabilistic processes,”
in 24th Int. Colloqium on Automata, Languages and Programming
(ICALP), ser. LNCS, vol. 1256. Springer, 1997, pp. 430–440.

[12] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Comp. Surv., vol. 23, no. 1, Mar. 1991.

[13] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.4.1.
University of Colorado at Boulder, 2005.

[14] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
checking algorithms for continuous-time Markov chains,” IEEE Trans.
Software Eng., vol. 29, no. 6, pp. 524–541, 2003.

[15] B. L. Fox and P. W. Glynn, “Computing Poisson probabilities,” Commun.
ACM, vol. 31, no. 4, pp. 440–445, 1988.

[16] R. Wimmer, A. Kortus, M. Herbstritt, and B. Becker, “Sym-
bolic model checking for DTMCs with exact and inexact arith-
metic,” Reports of SFB/TR 14 AVACS 30, 2007, ISSN: 1860-9821,
http://www.avacs.org.

[17] H. Fecher, M. Leucker, and V. Wolf, “Don’t know in probabilistic
systems,” in 13th Int. SPIN Workshop on Model Checking Software, ser.
LNCS, vol. 3925. Vienna, Austria: Springer, 2006, pp. 71–88.

[18] S. Oishi and S. M. Rump, “Fast verification of solutions of matrix
equations,” Numer. Math., vol. 90, no. 4, pp. 755–773, 2002.

[19] A. Schrijver, Theory of linear and integer programming, ser. Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons Ltd.,
1986, A Wiley-Interscience Publication.

[20] J. Farkas, “Theorie der einfachen Ungleichungen,” Journal für reine und
angewandte Mathematik, vol. 124, 1902.

[21] T. Han and J.-P. Katoen, “Counterexamples in probabilistic model
checking,” in Proc. of TACAS, ser. LNCS, vol. 4424. Springer, 2007,
pp. 60–75.

[22] ——, “Providing evidence of likely being on time: Counterexample
generation for CTMC model checking,” in 5th Int. Symp. on Automated
Technology for Verification and Analysis (ATVA), ser. LNCS, vol. 4762.
Springer, 2007, pp. 331–346.

