
Minimization of Large State Spaces
using Symbolic Branching Bisimulation

Ralf Wimmer Marc Herbstritt Bernd Becker

Institute of Computer Science,
Albert-Ludwigs-University,

79110 Freiburg im Breisgau, Germany
{wimmer,herbstri,becker}@informatik.uni-freiburg.de

Abstract: Bisimulations in general are a power-
ful concept to minimize large finite state systems
regarding some well-defined observational behav-
ior. In contrast to strong bisimulation, for branch-
ing bisimulation there are only tools available that
work on an explicit state space representation. In
this work we present for the first time a symbolic ap-
proach for branching bisimulation that uses BDDs
as basic data structure and that is based on the
concept of signature refinement. First experimental
results for problem instances derived from process
algebraic system descriptions show the feasibility
and the robustness of our approach.

1 Introduction

Bisimulations are used to minimize systems where
many states of the system have the same behav-
ioral characteristics. There exist many variants of
bisimulation like weak, strong, and branching bisim-
ulation. Especially branching bisimulation, as in-
troduced in [19, 13], is very useful in the domain of
process algebras where the key aspect is the obser-
vational behavior of the compositional model de-
scription. E.g., the underlying synchronization of
the modules is formally captured by introducing a
so-called τ -action that allows some modules to pro-
ceed by doing nothing whereby one concrete other
module is executing an observable action. This τ -
action itself is only a vehicle to formalize such a
compositional approach, but can also be used to
hide non-relevant actions. Branching bisimulation
can be seen as a coarsening of strong bisimula-
tion where the branching structure of the system
(e.g. respecting actions that bypass some modules)
is conserved. Furthermore, today’s design flow for
complex systems requires the application of high-
level modelling tools, e.g. Statemate [2]. There, to
handle the system complexity, symbolic methods
are applied, often by means of BDDs [6]. There-
fore it is desirable to apply bisimulation algorithms
already on the symbolic level, i.e., directly on the
BDDs that represent the state space.
Additionally, our long term goal is to apply quanti-
tive analysis in terms of probabilistic model check-
ing, and this requires at the moment a reduction to
explicit state space models.
Although (strong) bisimulation is often unneces-

sary in the context of model checking invariants
(see [11]), we like to point out that we do not
apply model checking during our proposed sym-
bolic branching bisimulation. Instead we apply
dedicated, non-trivial BDD-operations to the sym-
bolic transition relation, just in order to minimize
the state space. The hope is that afterwards, the
state space is so small that the system can be an-
alyzed quantitatively with current tools, e.g. [14],
that work on explicit state space representations.
We believe – and the experiments fortify this hy-
pothesis – that symbolic branching bisimulation is
a viable way in this context.
Furthermore, we don’t want to concentrate on pro-
cess algebraic system descriptions only but gener-
ally on labeled transition systems (LTSs), since this
makes our approach more flexible.
In particular we can handle instances where explicit
branching bisimulation tools like BcgMin [10] fail
except for the smallest instances. We provide ex-
perimental results to show the feasibility and the
robustness of our approach.

1.1 Related Work

There is a lot of work about implementing strong
bisimulation with BDDs (e.g. [4, 9]). But only little
or nothing is available about the implementation of
branching bisimulation symbolically using BDDs.
Nevertheless, we will review most related works to
point out the difference of our method compared to
existing bisimulation algorithms.
The main reference for branching bisimulation is
the work of Groote and Vaandrager [13]. Their
algorithm works on an explicit state space rep-
resentation whereby iteratively so-called splitters,
i.e., transitions that can be used for a block re-
finement, are computed. The Groote-Vaandrager-
Algorithm is publicly available, e.g. in the CADP
package [10, 12].
A first step towards symbolic computation of bisim-
ulations was done by Bouali et al. [4], but this ap-
proach is restricted to strong bisimulation. Indeed,
in [4] it is sketched very briefly how the approach
can be extended to branching bisimulation, but no
details and no experimental results are given. Ad-
ditionally, the method of Bouali et al. is designed
for dedicated compositional systems (i.e., it is not
based on a general LTS) and this issue is also ex-

ploited for their proposed strong bisimulation algo-
rithm. Thus, the approach of Bouali et al. seems
to be focused on their specialized setting, in ad-
dition the corresponding tool is only available as
a not well documented, obsolete binary executable
[5]. Taken together, it is not at all clear, how to lift
it to branching bisimulation.

Similarly, the work of [9] suggests a BDD-based
approach for model checking process algebras sup-
porting weak and strong bisimulation. Although
the approach is very smart regarding to the adap-
tion of CCS operators to BDDs, nothing is said
about branching bisimulation.

Another approach for symbolic bisimulations in
the context of stochastic process algebras was pre-
sented in [15] by Hermanns and Siegle, again fo-
cused on strong bisimulation. Branching bisimu-
lation is not further discussed. Also, their algo-
rithms are based on emulating the explicit Groote-
Vaandrager algorithm.

From a preliminary analysis we gained the in-
sight that a brute-force adoption of the Groote-
Vaandrager algorithm to the symbolic setting
would share some limitations of the explicit algo-
rithm, e.g., the single splitter computation. Our
hypothesis therefore is that such an adoption would
be not more efficient than the explicit algorithm it-
self.

Fortunately, we can propose a method that works
by some other means and is based on the concept of
signatures as introduced by Blom and Orzan in [3].
Their algorithm for the computation of branching
bisimulation of explicit state space representations
is designed to be applied in a distributed compu-
tation environment. In this work we explain how
signatures can be computed symbolically and why
the signature refinement algorithm for computing
the branching bisimulation can take advantage of
the symbolic state space representation in contrast
to e.g. [4].

Although the algorithm of Groote-Vaandrager is
provably optimal from a computational complexity
point of view in contrast to the algorithm of Blom
and Orzan, that has a worst-case complexity that is
one order of magnitude larger, the signature-based
approach of Blom and Orzan allows an algorithm
design that profits from the symbolic representa-
tion.

Taken together, this paper presents to the best of
our knowledge the first algorithm exploiting the
structure in a fully symbolic environment.

The outline of the paper is as follows. After review-
ing preliminaries in Section 2, our main contribu-
tion, the symbolic computation of the branching
bisimulation, is presented in Section 3. The evalu-
ation of our algorithm is analyzed and discussed in
Section 4. Finally, we conclude the paper in Section
5.

2 Preliminaries

In this section we will give basic definitions, nota-
tions, and algorithms to which we refer throughout
the rest of the paper.
In our setting, the state spaces we are looking at
are given as labeled transition systems.

Definition 1 A labeled transition system (LTS)
is a triple M = (S, A, T) where

• S 6= ∅ is a finite set of states,

• A 6= ∅ is a finite set of actions, including the
unobservable action τ ,

• T ⊆ S × A × S is a set of transitions,
i.e.,(s, a, t) ∈ T iff one can take a transition
from state s to state t by executing action a.

Because every bisimulation induces a partition of
the state space of an LTS, we need to define the
notion of a partition formally.

Definition 2 Let S be a finite set. A set P ⊆ 2S

is called a partition if the following conditions hold:⋃
B∈P

B = S and

∀B1, B2 ∈ P : B1 6= B2 ⇒ B1 ∩B2 = ∅

The elements of a partition P are called blocks.

A transition (s, a, t) ∈ T is called inert w.r.t. a
partition P , if s and t are elements of the same
block of P .
For a LTS M = (S, A, T) we use the following no-
tations:

• s
a−→ t for (s, a, t) ∈ T

• a∗−→ for the reflexive transitive closure of a−→

• a−→
P

for a transition that is inert w.r.t. the par-

tition P .

• a∗−→
P

for the reflexive transitive closure of a−→
P

• For a partition P , we denote by P (s) the block
of P that contains s, i.e. P (s) = {t ∈ S | ∃B ∈
P : s ∈ B ∧ t ∈ B}.

A branching bisimulation according to [19] can now
be defined as follows.

Definition 3 Given a LTS M = (S, A, T). Then,
a relation R ⊆ S × S is a branching bisimulation
if R is symmetric and for all s1, s2, t1 ∈ S the fol-
lowing condition is satisfied:
If (s1, t1) ∈ R and s1

a−→ s2 then

either a = τ and (s2, t1) ∈ R

or ∃t′1, t2 ∈ S : t1
τ∗−→ t′1

a−→ t2∧
(s1, t

′
1) ∈ R ∧ (s2, t2) ∈ R

Please note that a branching bisimulation is an
equivalence relation [1].

In [3], Blom and Orzan presented a novel ap-
proach for the distributed computation of branch-
ing bisimulation for explicit state space represen-
tations. Their algorithm is based on analyzing the
signatures of states w.r.t. the current partition. For
completeness, we review the definition and the ba-
sic algorithm of [3]. The signature of a state can
be seen as a fingerprint of the state. It collects the
possible actions that can be executed in this state.
Additionally, the unobservable action τ is taken
into account by ignoring sequences of τ -actions that
never leave the corresponding partition block of the
state. Then, a refinement of a partition can be com-
puted by dividing blocks by identifying states that
have the same signature. Formally, this is captured
in the following definition.

Definition 4 Let P = {B0, . . . , Bp−1} be a parti-
tion of the state space S. The signature sigP (s) of
a state s regarding the partition P is defined as

sigP (s) = {(a,Bi) | ∃s′, s′′ ∈ S :

s
τ∗−→
P

s′
a−→ s′′ ∈ Bi ∧ (a 6= τ ∨ s 6∈ Bi)}.

The refinement sigref(P) of a partition P concern-
ing the signatures of the states is defined as

sigref(P) =
{
{s′ ∈ S | sigP (s) = sigP (s′)}

∣∣ s ∈ S
}
.

As shown in [3], sigref yields a refined partition.
Using this partition refinement, one can apply a
fixpoint-algorithm (see Algorithm 1), for which
it was proven in [3] that it computes the coarsest
branching bisimulation.

Algorithm 1 Coarsest Branching Bisimulation
1: procedure BranchingBisimulation(M)
2: P ← {S}
3: repeat
4: P ′ ← P
5: P ← sigref(P)
6: until P = P ′

7: end procedure

As an example, let’s have a look at Fig-
ure 1. We start with an LTS that is
partitioned into two blocks, i.e., P 1 =
({s1, s2, s3, s4}, {s5, s6, s7, s8, s9}) = (p1

1, p
1
2).

Then, the signatures for the states w.r.t. P 1 are

sigP 1(s1) = sigP 1(s2) = sigP 1(s4) = {(b, p1
1)}

sigP 1(s3) = {(b, p1
2)}

sigP 1(s5) = sigP 1(s7) = {(a, p1
1)}

sigP 1(s6) = sigP 1(s8) = sigP 1(s9) = {(a, p1
1), (a, p1

2)}

With this, the final branching bisimulation for the
example has 4 blocks:

P 2 = ({s1, s2, s4}, {s3}, {s5, s7}, {s6, s8, s9}).

s1 s2 s3

s4 s5 s6

s7 s8 s9

τ ab

τ

τ

τ

τ

τ τ

τ

a

a

a

b

s1 s2 s3

s4 s5 s6

s7 s8 s9

τ ab

τ

τ

τ

τ

τ τ

τ

a

a

a

b

Figure 1: A LTS with an initial partition (top) and
its branching bisimulation quotient (bottom).

3 Symbolic Computation

Now we will turn to symbolic representations of la-
beled transition systems. To compute the coarsest
branching bisimulation of an LTS symbolically, we
have to go into details w.r.t. the BDD representa-
tion of the LTS itself, the symbolic computation of
signatures, the symbolic refinement, and finally the
computation of the bisimulation quotient regarding
a given partition of the state space.
We assume that the reader is familiar with BDDs
and the corresponding algorithms. For a compre-
hensive treatment see e.g. [20, 8].

3.1 Symbolic Representation

We have to represent the following sets: the state
space S, the transition relation T , the partition P ,
and the signatures sig. For the representation of the
partition we assign a unique number to each block.
We use a binary encoding for the states (using vari-
ables s for the current state, t for the next state and
x as auxiliary variables), the actions (variables a)
and the block numbers (variables k). Then, the
state space is encoded by a BDD σ(s) such that a
state s is contained in the state space S if σ(s) = 1.
Analogously, the transitions are represented as a
BDD T (s, a, t) with T (s, a, t) = 1 iff s

a−→ t. Ac-
cordingly, we have a BDD P(s, k) with P(s, k) = 1
iff s ∈ Bk. We use the same trick for the signatures
and create a BDD S(s, a, k) with S(s, a, k) = 1 iff
(a,Bk) ∈ sig(s).

Signature of
s and s′

s0

sn

s′
0

s′
n

v

Figure 2: States that have the same signature can
be identified by traversing the paths upwards start-
ing at the signature’s root node.

3.2 Computation of the Signatures

The algorithm for the symbolic computation of the
signatures for the states of an LTS regarding a par-
tition P is shown in Algorithm 2.

Algorithm 2 Computation of the Signatures
1: procedure Sig(transitions T , partition P)
2: reltrans(s, a, t) ← T (s, a, t) ∧ (a 6= τ ∨ ¬∃k :

(P(s, k) ∧ P(t, k)))
3: Tτ,inert(s, t)← T (s, a, t) ∧ ¬reltrans(s, a, t)
4: targets(s, a, k)← ∃t : (reltrans(s, a, t)∧P(t, k))

5: Cτ (s, t)← computeClosure(Tτ,inert)
6: S(s, a, k)← ∃t : (Cτ (s, t) ∧ targets(t, a, k))
7: return S
8: end procedure

In lines 2 and 3 the transition relation is split into
inert τ -transitions (Tτ,inert) and the remaining ones
(reltrans). Thus, reltrans contains all transitions
that satisfy the condition a 6= τ or connect two
different blocks of the current partition.
The next step is to substitute the target state of the
transition by its block number (line 4). To do so,
all those states must be taken into account that can
reach those states that have an outgoing relevant
transition by arbitrarily many inert τ -transitions.
For this, we have to compute the reflexive transi-
tive closure of these inert τ -transitions (see for ex-
ample [17] and line 5, respectively). The final step
is to add the states of the closure to the signatures.

3.3 The Refinement Operation

We assume that we have already computed the
BDD of the signatures of all states as described
above. Now, we will compute a new partition where
all states with the same signature are merged into
one block.
To do so, the variable order of the BDDs must be
restricted in the following way: the si-Variables are
placed at the beginning of the variable order. This
means that level(si) < level(aj) and level(si) <
level(kl) hold for all i, j and l.
Now, the following observation can be exploited for
the computation of the refined partition. Let s be

the encoding of a state and v the BDD node that
is reached when following the path from the BDD
root according to s. Then the sub-BDD at v is a
representation of the signature of s. All states with
the same signature as s lead to the BDD-node v.
To get the new block that contains s we only have
to find all paths that lead to v. Then we replace
the sub-BDD at v by the BDD for the encoding of
the new block number k. This approach is sketched
in Figure 2, and the corresponding algorithm is de-
picted in Algorithm 3.

Algorithm 3 Partition Refinement
1: procedure Refine(signatures S)
2: if S ∈ ComputedTable then
3: return ComputedTable[S]
4: end if
5: x← topVar(S)
6: if x = si then
7: low ← Refine(Sx̄); high ← Refine(Sx)
8: result ← ITE(x, high, low)
9: else

10: result ← BDDcnt(k); cnt + +
11: end if
12: ComputedTable[S]← result
13: return result
14: end procedure

The algorithm relies on a global variable cnt that
is set to 0 each time we call Refine. It contains the
number of the next block and is increased when a
new block has been found. BDDcnt(k) is a BDD
with exactly one path from the root node to the
1-leaf. The labels of the variables on this path are
the binary encoding of the value of cnt.
Furthermore, it relies on a dynamic programming
approach that stores all intermediate results in a so-
called ComputedTable. By this it can be detected
whether a node was already reached before. If a
node is reached that is contained in the Comput-
edTable, then the corresponding entry is returned.
Otherwise, if the node is not labeled with a state
variable si, the sub-BDD at this node represents
a signature that must be substituted with a new
block number. If the node is labeled with a state
variable, the algorithm is called recursively for the
two sons of that node.

3.4 Improvements

We experienced that in most cases the BDD of the
expression ∃k : P(s, k) ∧ P(t, k), that is used for
the computation of the inert τ -transitions, is con-
siderably larger than the BDD of P(s, k). This can
be avoided by computing the signatures and the re-
finement only for one block at a time. This means
that the function Sig gets an additional parameter
that contains the states of the block for which we
have to compute the signatures. Then a transition
is inert iff the source as well as the target state are
contained in this block.
This sequential refinement of the blocks enables us
to use a dedicated technique that we call block for-
warding. After the refinement of one block, the

current partition is updated with the result of this
refinement. Hence, during the refinement of the
upcoming blocks this information can be used al-
ready in the same iteration and not unless the next
iteration. This reduces the number of iterations
needed to reach the fixpoint significantly, and re-
sults in a large runtime speedup for all considered
benchmarks.

3.5 Extracting the Quotient

After applying Algorithm 1 within our BDD based
framework, we have to extract the bisimulation
quotient. Let P be a partition (given as a BDD)
with sigref(P) = P. To extract the bisimulation
quotient regarding this partition, we have to col-
lapse the states of each block into one new state
whose encoding is the same as the block number:

σnew(s) := [k → s](∃s : P(s, k))

Then, the new transition relation can be computed
as follows:

R(s, a, t) := [k → t](∃t : T (s, a, t) ∧ P(t, k))
Tnew(s, a, t) := [k → s](∃s : R(s, a, t) ∧ P(s, k))

The notation [k → t] means that the k-variables
must be renamed to the corresponding t-variables.

4 Experimental Results

We have implemented our approach in a tool called
Sigref using the CUDD BDD library [18]. For
generating symbolic LTS representations, we have
applied the stochastic process algebra tool CASPA
(see [16]) from which we extracted symbolic, i.e.
BDD, representations for a Kanban system [7]. The
process algebraic description of the Kanban system
consists of four parallel processes that are synchro-
nized among each other. The system itself can be
parameterized by a maximum number of workpieces
that each process can handle. Since we are not
aware of any available tool for symbolic branching
bisimulation, we compared our tool Sigref with
the explicit bisimulation tool BcgMin contained in
CADP [10]. BcgMin provides the explicit Groote-
Vaandrager algorithm. Since BcgMin requires as
input an explicit description of the transition sys-
tem, we had to generate a file containing all tran-
sitions explicitly (in the .bcg format).
We performed two series of experiments with two
different configurations of the Kanban system. In
the first configuration we have hidden all internal
process actions, such that only the synchronization
actions were visible. This kind of configuration
could be of interest when inter-process communi-
cation only is analyzed. In the second configura-
tion we have hidden all actions but the actions that
are related to the first of the four processes. The
motivation for this configuration is that one only
wants to analyze the first process and likes to ig-
nore the others. Our experiments were performed

on an AMD Opteron Dual Processor, running with
2.6GHz and 4 GB RAM. The results are depicted
in Table 1 and 2. We have set a memory limit of
3 GB. In each case we started with an initial parti-
tion containing one block with all states.
Column 1 denotes the Kanban parameter. Col-
umn 2 gives the number of states of the original
(non-minimized) transition relation including non-
reachable states, column 3 denotes the number of
states of the corresponding bisimulation quotient
(i.e. the minimized system). The running times
for Sigref and BcgMin are contained in column
4 and 7, respectively. Since the limiting factor for
the explicit algorithm is the memory requirement,
column 8 denotes the memory peak of BcgMin.
Please note that we have set a memory limit of
3 GB.1 In column 6 the maximal number of BDD
nodes created during the refinement process is dis-
played.
The memory requirements of Sigref grow very
moderately by an average factor of 1.69 (1.66) for
the first (second) configuration whereby the state
spaces grows by an average factor of 10.80 (10.80).
The mean factor for the running times of Sigref is
7.95 (9.31) for increasing Kanban parameter. This
suggests that the runtime is more closely related to
the state space size than to the memory require-
ment, which is not astonishing since the algorithm
must analyze every state of the state space in some
way to compute the refinement.
Nevertheless, the symbolic approach computes the
bisimulation for all but the largest two Kanban in-
stances in less than 90 minutes. But given enough
time Sigref is even able to minimize systems with
more than 4 billion states – a number far out of
reach for current explicit bisimulation tools. For
the smaller instances that both tools are able to
minimize, the runtimes of Sigref and BcgMin are
comparable, whereby Sigref is mostly faster.
In Table 3 we have compared Sigref regarding our
block forwarding technique. The results make clear
that block forwarding often shortens the number of
iterations immense. Hence, the overall runtimes are
drastically improved.

5 Conclusions

In this work we proposed a fully symbolic approach
for the computation of branching bisimulation. Our
results show that we are able to overcome limita-
tions of the explicit algorithm.
One main target for future work is to integrate
our approach into a fault-tree based analysis tool
for system dependability. For this we will con-
duct further research in direction of extending
the signature-based approach to other bisimula-
tions, e.g. safety bisimulation, and hopefully also
to stochastic variants thereof.

1A column entry ’memout’ means that the memory limit
was exceeded.

states # states time memory node peak time memoryp
original bisim. Sigref Sigref Sigref BcgMin BcgMin

1 256 24 0.02s 9 MB 16352 0.19s 3 MB
2 63808 206 0.58s 23 MB 435372 0.47s 8 MB
3 1024384 872 11.20s 59 MB 2212630 8.73s 92 MB
4 16021157 2785 1m 38s 63 MB 2313808 2m 46s 1457 MB
5 16772096 7366 9m 15s 67 MB 2483460 7m 48s 2365 MB
6 264515056 17010 40m 24s 76 MB 2704212 — memout
7 268430272 35456 4h 49m 36s 124 MB 5037438 — memout
8 4224876912 68217 11h 59m 00s 244 MB 11281858 — memout

Table 1: Results for the Kanban system where process internal actions are hidden.

states # states time memory node peak time memoryp
original bisim. Sigref Sigref Sigref BcgMin BcgMin

1 256 32 0.02s 9 MB 19418 0.17s 3 MB
2 63808 200 0.40s 15 MB 308644 0.53s 8 MB
3 1024384 800 4.54s 54 MB 1897854 10.46s 93 MB
4 16021157 2540 1m 13s 62 MB 2249422 3m 42s 1474 MB
5 16772096 6272 9m 49s 66 MB 2392502 13m 04s 2400 MB
6 264516992 14112 1h 28m 57s 74 MB 2561132 — memout
7 268430336 28800 9h 10m 15s 117 MB 4752300 — memout
8 4224885193 54450 46h 59m 33s 181 MB 7823410 — memout

Table 2: Results for the Kanban system where all but the actions related to the first process are hidden.

iterations time [sec]p
with without with without

1 4 5 0.02s 0.03s
2 6 8 0.58s 0.66s
3 7 11 11.20s 19.09s
4 8 14 1m 38s 3m 01s
5 8 17 9m 15s 17m 39s
6 8 20 40m 24s 2h 09m 41s
7 10 23 4h 49m 36s 13h 25m 44s

Table 3: Comparison of Sigref with and without
block forwarding for the same benchmarks as in
Table 1

References
[1] T. Basten. Branching bisimilarity is an equivalence

indeed! In Information Processing Letters, volume
58(3), pages 141–147, 1996.

[2] T. Bienmüller, W. Damm, and H. Wittke. The
STATEMATE Verification Environment - Making
It Real. In Proc. of CAV, pages 561–567, 2000.

[3] S. Blom and S. Orzan. Distributed branching
bisimulation reduction of state spaces. In Proc. of
2nd International Workshop on Parallel and Dis-
tributed Model Checking, 2003.

[4] A. Bouali and R. de Simone. Symbolic bisimula-
tion minimisation. In Proc. of CAV, volume 443
of LNCS, pages 96–108, 1992.

[5] A. Bouali, A. Ressouche, R. de Simone, and
V. Roy. The FC-tools User Manual.

[6] R. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[7] G. Ciardo and M. Tilgner. On the use of Kronecker
operators for the solution of generalized stochas-
tic Petri nets. Technical Report 96-35, NASA Re-
search Center, 1996.

[8] R. Drechsler and B. Becker. Binary Decision Dia-
grams – Theory and Implementation. Kluwer Aca-
demic Publishers, 1998.

[9] R. Enders, T. Filkorn, and D. Taubner. Generat-
ing BDDs for Symbolic Model Checking in CCS.
Distributed Computing, 6(3):155–164, 1993.

[10] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Ma-
teescu, L. Mounier, and M. Sighireanu. CADP: A

Protocol Validation and Verification Toolbox. In
Proc. of CAV, pages 437–440, 1996.

[11] K. Fisler and M. Y. Vardi. Bisimulation and model
checking. In L. Pierre and T. Kropf, editors,
CHARME, volume 1703 of LNCS, pages 338–341.
Springer, 1999.

[12] H. Garavel, F. Lang, and R. Mateescu. An
overview of CADP 2001. European Association
for Software Science and Technology (EASST)
Newsletter, 4:13–24, 2002.

[13] J. F. Groote and F. W. Vaandrager. An efficient
algorithm for branching bisimulation and stutter-
ing equivalence. In M. S. Paterson, editor, Au-
tomata, Languages and Programming, volume 443
of LNCS, pages 626–638. Springer, 1990.

[14] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and
M. Siegle. A markov chain model checker. In
S. Graf and M. I. Schwartzbach, editors, TACAS,
volume 1785 of Lecture Notes in Computer Sci-
ence, pages 347–362. Springer, 2000.

[15] H. Hermanns and M. Siegle. Bisimulation Algo-
rithms for Stochastic Process Algebra and Their
BDD-Based Implementations. In J.-P. Katoen, ed-
itor, ARTS, volume 1601 of LNCS, pages 244–264.
Springer, 1999.

[16] M. Kuntz, M. Siegle, and E. Werner. Symbolic
performance and dependability evaluation with
the tool CASPA. In M. Núñez, Z. Maamar,
F. L. Pelayo, K. Pousttchi, and F. Rubio, editors,
FORTE Workshops, volume 3236 of LNCS, pages
293–307. Springer, 2004.

[17] Y. Matsunaga, P. C. McGeer, and R. K. Bray-
ton. On computing the transitive closure of a state
transition relation. In Proc. of DAC, pages 260–
265, 1993.

[18] F. Somenzi. CUDD: CU Decision Diagram Pack-
age Release 2.4.1. University of Colorado at Boul-
der, 2005.

[19] R. J. van Glabbeek and W. P. Weijland. Branch-
ing time and abstraction in bisimulation seman-
tics. Journal of the ACM, 43(3):555–600, 1996.

[20] I. Wegener. Branching programs and binary de-
cision diagrams. SIAM Monographs on Discrete
Mathematics and Applications. Society for Indus-
trial and Applied Mathematics (SIAM), Philadel-
phia, PA, 2000. Theory and applications.

