
Sigref – A Symbolic Bisimulation Tool Box∗

Ralf Wimmer1, Marc Herbstritt1, Holger Hermanns2,
Kelley Strampp1, and Bernd Becker1

1 Albert-Ludwigs-University Freiburg, Germany
{wimmer|herbstri|strampp|becker}@informatik.uni-freiburg.de

2 Saarland University, Saarbrücken, Germany
hermanns@cs.uni-sb.de

Abstract. We present a uniform signature-based approach to compute
the most popular bisimulations. Our approach is implemented symbol-
ically using BDDs, which enables the handling of very large transition
systems. Signatures for the bisimulations are built up from a few generic
building blocks, which naturally correspond to efficient BDD operations.
Thus, the definition of an appropriate signature is the key for a rapid
development of algorithms for other types of bisimulation.
We provide experimental evidence of the viability of this approach by
presenting computational results for many bisimulations on real-world
instances. The experiments show cases where our framework can handle
state spaces efficiently that are far too large to handle for any tool that
requires an explicit state space description.

1 Introduction

The infamous state space explosion problem is an omnipresent phenomenon in
state-based verification. One promising approach to combat this problem is based
on bisimulation minimization, where the state space is compressed by building
the quotient under some appropriate notion of bisimulation. In the presence of
internal activities and composition operators the benefits of this technique are
particularly impressive [2–4]. The algorithmic workhorse for this minimization
is a partition refinement algorithm [5, 6].

Binary decision diagrams (BDDs) are another powerful approach to handle
extremely large state spaces. With BDDs such state spaces can be represented
symbolically in a compact way. It is well-known that only the application of
symbolic methods opened the gates for model checking of large systems [7].

This paper explores the seemingly obvious idea to combine BDDs and bisim-
ulation minimization. This idea is not new. To our knowledge, [8, 9] were the
first to apply BDD techniques to bisimulation minimization whereas Bouali [10]
introduced the term “symbolic bisimulation minimization”. Other recent work
? This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

in the context of efficient bisimulation minimization algorithms has focussed
on parallel implementations, most notably the work of Blom and Orzan [11],
who introduce a parallel, signature-based, branching bisimulation minimization
algorithm. A signature is a concise characteristic function for the bisimulation.

The basic notion of bisimulation is Milner’s strong bisimulation [12], which
does not abstract from internal activities. In the quest for such an abstraction,
very many weak bisimulation relations have been coined in the past 20 years
[12–20]. Van Glabbeek’s seminal overview paper [21] lists 28 different variations
in the spectrum between weak and branching bisimulation, and there are many
more, considering for instance similar variations for safety [20], progressing [19]
and orthogonal bisimulation [17]. When it comes to applying bisimulation min-
imization in practice, the first question is which of the many candidate bisimu-
lations to pick. There are some canonical ones (like ordinary weak or branching
bisimulation), but certain circumstances (such as maximal progress or priority
[22, 17]) may force one to opt for others. A second step is then to design an
appropriate minimization algorithm for the particular choice.

We attack the second of the above problems by means of an efficient, fully
symbolic and very flexible implementation of bisimulation minimization in the
style of [5]. The flexibility of our algorithm stems from the fact that it is paramet-
ric in the signature used, i. e., by providing the appropriate signature, one can
rapidly obtain a tailored, and efficient bisimulation minimization algorithm. For
this purpose, signatures are built up from some generic building blocks, which
naturally correspond to efficient BDD operations. We believe, that this approach
exploits the full potential of a symbolic implementation. To validate this claim
we provide experimental evidence with signatures for all the core bisimulations
mentioned above. The results show that our approach can compete with the
most efficient explicit algorithms but can handle much larger instances.

The paper is structured as follows. In Section 2 we introduce basic nota-
tions and definitions of the most important types of bisimulation. Additionally,
Section 2 gives an overview of all considered bisimulations by presenting refer-
ences to the original work as well as a discussion of algorithms that are differ-
ent to the approach presented in this work. Then, in Section 3 we present our
signature-based framework by stating the signatures for all bisimulations of in-
terest. Section 4 describes the implementation of our signature-based approach
that is implemented symbolically, i. e., by means of BDDs. Experimental results
and a discussion of them are presented in Section 5. Finally, Section 6 concludes
the paper and suggests topics for future work.

2 Preliminaries

Bisimulations typically define equivalent behavior of states in a discrete state
space. In general, either state-based systems are used or transition-oriented sys-
tems like labelled transition systems. In this work, we focus on the latter.

Definition 1. A labelled transition system (LTS) is a triple M = (S, A, T)
where S is a finite non-empty set of states, A is a set of actions that may

contain the so-called non-observable action τ , and T ⊆ S × A × S is a relation
that defines labelled transitions between states.

The usage of τ -actions depends on the application. E. g., it can serve as an
abstraction mechanism to hide irrelevant actions that are internal to the system
model and thus unobservable for the user. Also, in case of non-τ -actions that do
not impact the property to be verified, these actions may be mapped to τ .

A bisimulation partitions the original state space into disjoint parts called
blocks that contain those states that are equivalent regarding the applied bisim-
ulation. It is well-known that each partition induces an equivalence relation
and vice versa. Therefore, we do not distinguish between partitions and equiv-
alence relations. We use the following notations for a partition P and an LTS
M = (S, A, T):

– s
a−→ t for (s, a, t) ∈ T and s

a∗−→ t for the reflexive transitive closure of a−→.
– s

a−→
P

t if s
a−→ t and s and t are contained in the same block of P . Then, the

transition s
a−→ t is called inert.

– s
a∗−→
P

t for the reflexive transitive closure of a−→
P

.

Bisimulations are equivalence relations on the state space of an LTS, and will
be denoted in the following by B∗ ⊆ S × S whereby ∗ indicates the type of the
bisimulation. In the absence of τ -actions all the different notions of bisimulation
considered in this work are equivalent. Otherwise, there are several ways how
τ -actions can characterize the possible behavior of a state. We focus on the
following bisimulations:
– Strong Bisimulation [23, 13]
– Weak Bisimulation [13, 14, 12]
– Progressing Bisimulation [19]
– Branching Bisimulation [15]

– Orthogonal Bisimulation [17]
– Delay Bisimulation [18]
– η-Bisimulation [16]
– Safety Bisimulation [20].

Strong bisimulation treats τ -actions like any other action. It is due to Park
[23] and in a different formulation already to Milner [13]. Among others, it has
the important property to preserve the validity of CTL* formulae and thus all
interesting system properties.

Definition 2. Bs is a strong bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bs then s

a−→ s′ implies that there exists t′ ∈ S with t
a−→ t′ and

(s′, t′) ∈ Bs.

Based on the Kanelakis/Smolka algorithm [5], a symbolic algorithm for strong
bisimulation has been proposed by Bouali and de Simone [10]. Dovier et al. have
suggested an improvement in the form of a preprocessing step, tailored to non-
strongly connected systems [24]. Since it reduces the number of iterations needed
by both Bouali/de Simone’s and by our algorithm in the same way we do not
consider it further. There is also a symbolic O(n log n) algorithm for strong
bisimulation [25] which relies on backward pointers, which are not part of popular
BDD packages (e. g., CUDD [26]). Furthermore, the algorithm of Klarlund is
designed for strong bisimulation only, and thus it is not obvious how to extend
it to other kinds of bisimulation.

Weak Bisimulation was introduced by Milner (see [13, 14, 12]) to characterize
the observable behavior of a transition system.

Definition 3. Bw is a weak bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bw then s

a−→ s′ implies either a = τ and (s′, t) ∈ Bw or there

exist t′, t′′, t′′′ ∈ S with t
τ∗−→ t′

a−→ t′′
τ∗−→ t′′′ and (s′, t′′′) ∈ Bw.

A stronger version of weak bisimulation, called progressing bisimulation, was
obtained by Montanari and Sassone [19] by requiring that sequences of τ -steps
may be compressed but not omitted completely:

Definition 4. Bp is a progressing bisimulation if for all s, s′, t ∈ S and a ∈ A

the following holds: If (s, t) ∈ Bp then s
a−→ s′ implies that there exist t′, t′′, t′′′ ∈

S with t
τ∗−→ t′

a−→ t′′
τ∗−→ t′′′ and (s′, t′′′) ∈ Bp.

Please note that in the definition of progressing bisimulation a = τ is allowed –
even if it is an inert τ -step. This is the difference to weak bisimulation.

Branching bisimulation was introduced by van Glabbeek and Weijland [15] to
overcome the problem of weak bisimulation that it does not preserve the branch-
ing structure. Branching bisimulation is comparable to stuttering equivalence on
Kripke structures and preserves CTL* without next state quantifier.

Definition 5. Bb is a branching bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bb then s

a−→ s′ implies either a = τ and (s′, t) ∈ Bb or there

exist t′, t′′, t′′′ ∈ S with t
τ∗−−→
Bb

t′
a−→ t′′

τ∗−−→
Bb

t′′′ and (s′, t′′′) ∈ Bb.

The fastest known explicit algorithm for computing the coarsest branching
bisimulation of a transition system is that of Groote and Vaandrager [27].

Bergstra et al. [17] suggest a refinement of branching bisimulation called or-
thogonal bisimulation. While branching bisimulation allows sequences of τ -steps
not only to be compressed but even to be omitted completely, orthogonal bisim-
ulation does not. A state with a τ -transition cannot be orthogonally equivalent
to a state without τ -transition while they may be branching equivalent.

Definition 6. Bo is an orthogonal bisimulation if for all s, s′, t ∈ S and a ∈ A
the following holds: If (s, t) ∈ Bo then s

a−→ s′ implies if a 6= τ then there is a
t′ ∈ S with t

a−→ t′ and (s′, t′) ∈ Bo and if a = τ then there exist t′, t′′ ∈ S with

t
τ∗−−→
Bo

t′
τ−→ t′′ and (s′, t′′) ∈ Bo.

Delay bisimulation was introduced by Milner in 1981 [18].

Definition 7. Bd is a delay bisimulation if for all s, s′, t ∈ S the following
holds: If (s, t) ∈ Bd then s

a−→ s′ implies either a = τ and (s′, t) ∈ Bd or there

exist t′, t′′, t′′′ ∈ S with t
τ∗−→ t′

a−→ t′′
τ∗−−→
Bd

t′′′ and (s′, t′′′) ∈ Bd.

The notion of η-bisimulation was introduced by Baeten and van Glabbeek [16].

a

a

a

a

τ

τ

τ

00 01

10 11

0

a

t0t0

t1 t1

s0 s0 s0

s1

1

Fig. 1. An LTS and its symbolic representation

Definition 8. Bη is an η-bisimulation if for all s, s′, t ∈ S the following holds:
If (s, t) ∈ Bη then s

a−→ s′ implies either a = τ and (s′, t) ∈ Bd or there exist

t′, t′′, t′′′ ∈ S with t
τ∗−→ t′

a−→ t′′
τ∗−→ t′′′ and (t, t′) ∈ Bη and (s′, t′′′) ∈ Bη.

Safety Bisimulation has been introduced by Bouajjani et al. in [20]. It pre-
serves the reachability of actions, but not the branching structure of an LTS. It
is useful when verifying safety properties where only reachability of states is of
interest and not the way how they are reached.

Definition 9. Bsafe is a safety bisimulation if for all s, s′, s′′, s′′′, t ∈ S the
following holds: If (s, t) ∈ Bsafe then s

τ∗−→ s′ a−→ s′′ τ∗−→ s′′′ and a 6= τ imply that

there exist t′, t′′, t′′′ ∈ S with t
τ∗−→ t′

a−→ t′′
τ∗−→ t′′′ and (s′′′, t′′′) ∈ Bsafe.

A key concept of our algorithm is the usage of binary decision diagrams
(BDDs) [28] as a symbolic data structure for the representation of LTSs. BDDs
are acyclic directed graphs that represent boolean functions over a predefined set
of variables. They are obtained from binary decision trees by sharing subtrees as
much as possible. By fixing the variable order on all paths from the root of the
graph to a leaf, BDDs become a canonical representation of boolean functions.
There exist efficient algorithms for the synthesis of BDDs. Since the mid-1980s,
BDDs have become a standard data structure for automated analysis of large
systems on the symbolic level. For a comprehensive treatment of BDDs and BDD
algorithms, we refer to [29]. BDDs can be used for the representation of a finite
set M ⊆ {0, 1}n through its characteristic function χM : {0, 1}n → {0, 1} with
χM (x) = 1 iff x ∈ M . Fig. 1 shows an example of an LTS and the symbolic
representation of its transition relation as a BDD. The states are encoded using
two bits: The variables (s1, s0) are used for the present state and (t1, t0) for the
next state of a transition. The variable a denotes the transition label with a = 0
denoting τ .

3 Signature-based Computation of Bisimulations

In [11], Blom and Orzan have presented a distributed explicit algorithm for the
computation of branching bisimulation. It is based on the computation of signa-
tures of the states. A signature sig(s) can be considered as a kind of “fingerprint”

of the state s ∈ S that characterizes reachable transitions which are relevant for
the bisimulation. States with different signatures are not equivalent regarding
the considered bisimulation.

Starting with the initial partition P 0 = {S} of S, we compute for i = 0, 1, . . .
a new partition by putting those states into a block that have the same signature:

P i+1 = sigref(P i) := {{t ∈ S | sig(s) = sig(t)}
∣∣ s ∈ S}

until a fixpoint is reached, i. e., an n ≥ 0 with Pn = Pn+1. Using the signature
for branching bisimulation as given below, Blom and Orzan were able to show
that this algorithm indeed computes the coarsest branching bisimulation.

We now give signatures for all eight types of bisimulations as introduced
in Section 2 (see Fig. 2 for an illustration). The proofs of correctness can be
established in a similar way as in [11] for branching bisimulation. Due to page
limitation, these proofs are omitted, but are contained in [30]. In the following
B denotes a block of the current partition P .

– Strong Bisimulation:
sigs(s) = {(a,B) | ∃s′ ∈ B : s

a−→ s′}
– Orthogonal Bisimulation:

sigo(s) = {(a,B) | (a 6= τ ∧ ∃t ∈ B : s
a−→ t)∨

(a = τ ∧ ∃s′ ∈ S, s′′ ∈ B : s
τ∗−→
P

s′ τ−→ s′′)}
– Branching Bisimulation:

sigb(s) = {(a,B) | ∃s′ ∈ S, s′′ ∈ B : s
τ∗−→
P

s′ a−→ s′′ ∧ (a 6= τ ∨ (s, s′′) 6∈ P)}
– η-Bisimulation:

sigη(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s
τ∗−→ s′ a−→ s′′ τ∗−→ s′′′∧

(s, s′) ∈ P ∧ (a 6= τ ∨ (s, s′′′) 6∈ P)}
– Delay Bisimulation:

sigd(s) = {(a,B) | ∃s′ ∈ S, s′′ ∈ B : s
τ∗−→ s′ a−→ s′′ ∧ (a 6= τ ∨ (s, s′′) 6∈ P)}

– Progressing Bisimulation:
sigp(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s

τ∗−→ s′ a−→ s′′ τ∗−→ s′′′}
– Weak Bisimulation:

sigw(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s
τ∗−→ s′ a−→ s′′ τ∗−→ s′′′∧

(a 6= τ ∨ (s, s′′′) 6∈ P)}
– Safety Bisimulation:

sigsafe(s) = {(a,B) | ∃s′, s′′ ∈ S, s′′′ ∈ B : s
τ∗−→ s′ a−→ s′′ τ∗−→ s′′′ ∧ a 6= τ}

4 Symbolic Computation

We will now present how this signature-based algorithm described above can be
implemented symbolically. To do so, we explain in detail the BDD representation
of the LTS, the symbolic computation of the signatures, the symbolic refinement,
and finally the bisimulation quotient w. r. t. a given partition of the state space.

a

Bi Bk

s

a 6= τ

Bi Bk

s

τ ∗

τ

or

Bi = Bk allowed

a

Bi Bk

s

τ ∗

a 6= τ or Bi 6= Bk

(a) Strong (b) Orthogonal (c) Branching

a

Bi Bk

s
τ ∗

a 6= τ or Bi 6= Bk

τ ∗

a

Bi Bk

s τ ∗

a 6= τ or Bi 6= Bk

a

Bi Bk

s τ ∗ τ ∗

a arbitrary

(d) η (e) Delay (f) Progressing

a

Bi Bk

s τ ∗ τ ∗

a 6= τ or Bi 6= Bk

a

Bi Bk

s τ ∗ τ ∗

a 6= τ

(g) Weak (h) Safety

Fig. 2. Illustration of the signatures

4.1 Representation of the Data

We have to represent the following sets: the state space S of the LTS, its transi-
tion relation T , the partition P and the signatures sig. We use a binary encoding
for the states (using variables s for the present state, variables t for the next state,
and x as auxiliary variables) and the actions (variables a). Then, the state space
is represented by a BDD S with S(s) = 1 iff s ∈ S. Analogously, we have a
BDD T for the transition relation with T (s, a, t) = 1 iff s

a−→ t. We have cho-
sen an uncommon way for the representation of the partition P : We assigned a
unique number to each block of P (encoded using variables k) and represented
P by a BDD P with P(s, k) = 1 iff s ∈ Bk. All other symbolic algorithms
for bisimulations typically use a BDD P ′(s, t) with P ′(s, t) = 1 iff (s, t) ∈ P .
Our representation has two advantages: First, our experiments have shown that
mostly P ′ is much larger than P. Second, given T and P, it is easy to compute
the quotient w. r. t. P symbolically (see section 4.4). . We represent the signatures
accordingly and create a BDD σ with σ(s, a, k) = 1 iff (a,Bk) ∈ sig(s).

4.2 Computation of the Signatures

Now we describe the computation of the BDDs for the signatures of all eight
kinds of bisimulation. For the computation we provide several “ingredients”
which are listed in Table 1. The table contains a description of each operation
and an expression for the BDD-based implementation.

There exist several symbolic algorithms for the computation of the reflexive
transitive closure of a relation (e. g. [31]). We apply the iterative squaring method

of [32] to compute τ∗−−→
(P)

.

Operation BDD expression

τ -transitions T .Cofactor(a = τ)
inert τ -transitions T .Cofactor(a = τ) ∧ ∃k : P(s, k) ∧ P(t, k)
non-τ - or non-inert transitions T (s, a, t) ∧ ¬(inertτ (s, t) ∧ a ≡ τ)
reflexive transitive closure of R(s, t) Closure(R)
concatenation of R1(s, t) and R2(s, t) ∃x : R1(s, x) ∧R2(x, t)
substitute t in R(s, t) by its block number ∃t : R(s, t) ∧ P (t, k)

Table 1. Basic operations for the signature computation

Algorithm 1 Signature for Branching Bisimulation

1: procedure SigBranching
2: inert(s, t)← T .Cofactor(a = τ) ∧ ∃k : P(s, k) ∧ P(t, k)
3: rel(s, t)← T (s, a, t) ∧ ¬(inert(s, t) ∧ a ≡ τ)
4: return ∃x, t : Closure(inert(s, x)) ∧ rel(x, a, t) ∧ P(t, k)

Finally we can present the algorithm for the computation of the signatures.
As an example that uses all of the mentioned techniques, algorithm 1 sketches
the computation of the signature for branching bisimulation.

At first, all pairs of states that are connected by an inert τ -transition are
computed. In line 3 we extract all transitions that are either not inert or not
labelled with τ . In the third step we put things together: the arbitrary sequence
of inert τ -steps, the relevant transitions and the block numbers. The signatures
for the remaining bisimulations can be computed in a similar way. Please note
that everything that does not depend on the current partition, like the closure
of all τ -steps (needed for weak, progressing, safety, η-, and delay bisimulation),
can be computed as a preprocessing step.

4.3 Computation of the Refinement

We assume that we have already computed the BDD for the signatures of all
states as described above. Now, we have to compute the refined partition where
all states with the same signature are merged into one block.

The variable order of the BDD has to satisfy the following constraint: the si

variables must be placed at the top of the variable order, followed by the aj and
kl variables, i. e., level(si) < level(aj) and level(si) < level(kl) for all i, j, and l.

Then we can exploit the following observation: Let s be the encoding of a
state. If we follow the path given by s in the BDD, we reach a node v. The sub-
BDD at node v represents the signature of s. Furthermore, all states with the
same signature as s lead to v. To get the refined partition, we have to substitute
all nodes that represent the signature of a state s ∈ S by the BDD for the
encoding of a new block number k. This is sketched in algorithm 2.

The algorithm relies on a function newBlockNumber() that returns a BDD
with exactly one path from the root node to the leaf 1. The values of the variables
on that path are the binary encoding of a block number that has not been used
in the current iteration. It is reset each time we call refine.

Algorithm 2 Partition Refinement

1: procedure Refine(signatures σ)
2: if σ ∈ ComputedTable then return ComputedTable[σ]
3: x← topVar(σ)
4: if x = si then
5: low ← Refine(σ.Cofactor(x = 0)), high ← Refine(σ.Cofactor(x = 1))
6: result ← returnBDDnode(x, high, low)
7: else result ← newBlockNumber()
8: ComputedTable[σ]← result
9: return result

Furthermore, we use a dynamic programming approach to store all interme-
diate results in a so-called ComputedTable. By this, we can detect whether a node
was reached before. If we reach a node already contained in the ComputedTable,
then we return the stored result. Otherwise, if the node is labelled with a state
variable si, the algorithm is called recursively for the two sons. If the label of the
node is not a state variable, then the node is the root of a sub-BDD representing
a signature. This node must be substituted with a new block number.

4.4 Computation of the Quotient LTS

After we have reached the fixpoint of the signature refinement, we have to extract
the bisimulation quotient. It is defined as follows:

Definition 10. Let M = (S, A, T) be a labelled transition system. Let P =
{B1, . . . , Bm} be a bisimulation. Then the quotient of M w. r. t. P (denoted
M/P) is an LTS M/P = (SP , AP , TP) with SP = {B1, . . . , Bm}, AP = A, and
(B, a,B′) ∈ TP iff there are s ∈ B and s′ ∈ B′ with (s, a, s′) ∈ T .

Let P be a partition (represented as BDD) with sigref(P) = P. We use the
notation [k → s] to denote the renaming of the k-variables to the corresponding
s-variables. To extract the bisimulation quotient w. r. t. this partition, we use
the block numbers as encoding for the new states: SP = [k → s](∃s : P(s, k)).
Then, the transition relation can be computed as follows:

R(s, a, t) := [k → t](∃t : T (s, a, t) ∧ P(t, k))
TP (s, a, t) := [k → s](∃s : R(s, a, t) ∧ P(s, k))

4.5 Improvements

During our experiments we observed that the BDD for the expression ∃k :
P(s, k) ∧ P(t, k), which is used for the computation of the inert τ -transitions,
is considerably larger than the BDD for P(s, k). This expensive step can be
avoided by computing the signatures and the refinement only for one block at
a time. To do so, the function Sig gets an additional parameter for the states
for which we have to compute the signatures. Then, a transition is inert iff the

source state as well as the target state are contained in this block. We apply
this technique to all bisimulations where the signature depends on the current
partition (this is not the case for strong, safety, and progressing bisimulation).

The sequential refinement enables us to apply a dedicated optimization tech-
nique that we call block forwarding : After the refinement of one block, the current
partition is updated with the result of this refinement. Hence, during the refine-
ment of the remaining blocks this information can be used already in the same
iteration. Block forwarding substantially reduces the number of iterations to the
fixpoint. Both techniques result in a large speedup for almost all of our examples.

5 Experimental Results

We have implemented our approach in a tool, called Sigref, that relies on the
popular BDD-package CUDD [26]. For comparison, we also implemented the
strong bisimulation algorithm presented by Bouali/de Simone in [10]. Addition-
ally, we extended Bouali/de Simone’s algorithm to weak and branching bisimu-
lation, as it was briefly suggested in their paper. We were also able to extend
Bouali/de Simone’s algorithm to safety bisimulation. For comparison with bisim-
ulation tools requiring an explicit state space representation, we use BcgMin
[33] which is part of the protocol verification toolbox Cadp [34].

For the evaluation, we use examples stemming from two quite different do-
mains: compositional process algebraic system descriptions and Statemate de-
signs that are extended by failure-behavior. Regarding the meaning of the τ -
action, for process algebraic descriptions τ is typically used to hide synchroniza-
tion of the involved components. Our Statemate descriptions are designed to
allow a quantitive analysis of the malfunctioning of the system, and therefore
nominal non-failure-actions are exchanged by the τ -action, since only failure-
actions are of interest. In [35] you will find more about our approach for quan-
titative analysis of Statemate designs.

Kanban production system. Here, we use a process-algebraic description of a
Kanban system [36] that models a production environment with four machines
each having a parameterizable buffer of workpieces. From this description we gen-
erated a BDD representation of the transition system using the Caspa tool [37].
Caspa allows action-hiding, and therefore, as an example, we have hidden all
internal actions that are not involved in the synchronization of the machines.
This is the appropriate configuration when only inter-process communication
will be analyzed.

Table 2 shows details for the generated LTSs as well as the size of the bisim-
ulation quotient for all considered bisimulations. |S| (|T |) denotes the number
of states (transitions), respectively. For entries denoted with ’n. a.’, none of the
algorithms, i. e., Bouali/de Simone, BcgMin, or Sigref, were able to compute
the bisimulation quotient. All bisimulations result in impressive reductions of
the state space. E. g., for 8 workpieces, branching bisimulation reduces |S| by a
factor of nearly 62.000, and |T | by a factor of about 82.000.

p Original Strong Orthogonal Branching η Delay Progressing Weak Safety

1
|S| 256 148 52 24 24 24 52 24 24
|T | 904 472 111 42 42 42 111 42 42

2
|S| 63772 5725 1005 206 206 206 561 206 206
|T | 231424 30860 3556 552 552 552 1869 552 552

3
|S| 1024240 85356 8838 872 872 872 2643 872 872
|T | 4651520 601650 40708 2968 2968 2968 11015 2968 2968

4
|S| 16020316 778485 51805 2785 2785 2785 8964 2785 2785
|T | 74424320 6419550 278059 10932 10932 10932 42576 10932 10932

5
|S| 16772032 5033631 n. a. 7366 7366 7366 24643 7366 7366
|T | 133938560 46071311 n. a. 31795 31795 31795 127604 31795 31795

6
|S| 264515056 n. a. n. a. 17010 17010 17010 58463 17010 17010
|T | 1689124864 n. a. n. a. 78584 78584 78584 321931 78584 78584

7
|S| 268430272 n. a. n. a. 35456 35456 35456 124311 35456 35456
|T | 2617982976 n. a. n. a. 172382 172382 172382 716829 172382 172382

8
|S| 4224876912 n. a. n. a. 68217 68217 68217 242858 68217 68217
|T | 29070458880 n. a. n. a. 345128 345128 345128 1451590 345128 345128

Table 2. Size of the LTS for the Kanban system with different number of workpieces

1 2 3 4 5 6 7 8

Strong
Sigref 0.01 2.23 93.77 1814.81 22862.70 ML ML ML
bouali 0.07 152.69 13110.80 TL TL TL TL TL
BcgMin 0.14 1.36 99.08 2335.86 18164.83 ML ML ML

Orthogonal Sigref 0.01 6.02 388.79 16836.10 TL TL TL TL

Branching
Sigref 0.01 0.51 12.13 107.90 617.71 2685.59 15020.50 53725.40
bouali 0.01 0.12 0.93 5.71 25.33 77.15 770.83 141591.00
BcgMin 0.21 0.51 10.01 193.25 559.89 ML ML ML

η Sigref < 0.01 0.24 4.73 42.19 219.32 946.48 6636.97 22743.90
delay Sigref < 0.01 0.18 3.44 33.28 183.13 806.34 4736.58 13206.90
Progressing Sigref < 0.01 0.14 1.44 9.55 69.17 347.21 2400.08 5824.31

Weak
Sigref < 0.01 0.19 3.63 33.91 173.86 773.24 5711.58 14970.10
bouali < 0.01 0.11 0.89 5.49 25.05 71.83 622.29 146971.00

Safety
Sigref < 0.01 0.03 0.25 1.49 5.78 21.62 120.22 543.96
bouali 0.01 0.12 0.90 5.48 27.95 71.92 709.25 140730.00

Table 3. CPU runtimes of the three tools applied to the Kanban benchmark

Table 3 gives the runtimes3 of all three algorithms, i. e., the explicit tool
BcgMin, Bouali/de Simone’s BDD algorithm, and our signature-based approach
Sigref. Please note: BcgMin only provides strong and branching bisimula-
tion. Typically, algorithms that use an explicit state space representation are
faster than symbolic ones. Therefore, it is very interesting that Sigref is com-
petitive to BcgMin for both strong and branching bisimulation. However, in
contrast to BcgMin, Sigref is able to handle branching bisimulation for very
large instances, i. e., for 5 workpieces or more. Compared to the algorithm of
Bouali/de Simone, Sigref performs much more efficient, in particular for large
instances. Except strong and orthogonal bisimulation, Sigref is able to compute
all remaining kinds of bisimulation completely. Clearly, we have to admit that for
large instances Sigref requires a huge amount of time. However, these bisimula-
tions cannot be computed by either BcgMin or Bouali/de Simone’s algorithm.
As a summary, the results of Table 3 show that Sigref can efficiently handle
a large variety of bisimulations. Even compared to explicit state algorithms, Si-
gref performs very competitive, and from an application point of view much
more robust.

3 All experiments in this work were performed on an AMD Opteron 2.4 GHz CPU. We
have set a time limit of 160.000 seconds and a main memory limit of 2 GB. Entries
“TL” and “ML” mean that the time or memory limit was exceeded, respectively.

Input Original Strong Orthog. Branch. η Delay Progress. Weak Safety

etcs-1
|S| 1057 51 51 51 50 50 50 50 50
|T | 15058 749 749 749 731 731 731 731 1172

etcs-2
|S| 428113 1312 1312 1312 1154 1214 1102 1102 1102
|T | 16589262 48848 48848 48848 42291 45352 40540 40540 71298

etcs-3
|S| 158723041 35842 35842 35842 30173 31999 28451 28451 28451
|T | 16658393318 3128876 3128876 3128876 2628447 2808983 2492665 2492665 4459877

bs-p
|S| 184865921 1469 1469 1177 856 951 847 847 847
|T | 10025344274 60483 60483 42830 31970 36351 31700 31700 165312

ctrl
|S| 139623 14614 14615 9627 8077 8093 7427 7427 7427
|T | 11867888 1033582 1033582 653303 523989 525402 482866 482866 1005666

Table 4. Size of the Statemate benchmarks

Failure-enhanced Statemate descriptions. As a second benchmark suite we an-
alyzed LTSs that were generated from Statemate descriptions [38] that were
extended by some failure-behavior. The first example describes a train control
system stemming from the ETCS specification and models a scenario regard-
ing the communication between trains and the Radio Block Centers (RBCs)
(see [39] for details about ETCS which is part of ERTMS). The analysis tack-
les the problem of colliding trains on the same track. The example is scalable
in the number of trains whereby we used 1, 2, and 3 trains, resulting in three
benchmarks etcs-1, etcs-2, and etcs-3. Especially etcs-3 samples a realistic sce-
nario. Furthermore, we used an example, bs-p, from the ARP 4761 case study
[40] that models a braking system from an airplane. It is about the correctness
of the pilot’s braking pedal and the hydraulic pressure given to the wheels of the
airplane. The benchmark ctrl describes a redundancy controller of an industrial
avionics project. A detailed description of all benchmarks can be found in [35].

Table 4 shows for each Statemate example the size of the LTS and of the
corresponding quotient, depending on the applied bisimulation. Table 5 gives the
CPU runtimes for the different algorithms. The dominant performance of Sigref
is obvious. Only the computation of branching bisimulation for the ctrl example
shows an advantage of BcgMin. However, Sigref is still able to handle this
example. A rough estimate of the CPU runtimes of Bouali/de Simone’s algorithm
shows that it performs two orders of magnitude worse than Sigref. And for both
examples bs-p and ctrl, the algorithm of Bouali/de Simone is not able to compute
any of the provided bisimulations. Therefore, Table 4 again shows, but now in
a much more impressive manner, that Sigref is not only able to outperform
existing approaches, but that it is applicable to a wider range of applications.

To get an insight why Bouali/de Simone’s algorithm performs so badly, we
had a detailed look at the CPU runtimes and the size of the BDDs for the rep-
resentation of the partition during the iterative refinement. Figure 3 shows the
corresponding data for Sigref and the algorithm of Bouali/de Simone, respec-
tively. The left y-axis denotes the CPU runtime and the right y-axis depicts the
size of the BDD for the partition (in logarithmic scale). The x-axis corresponds
to the iterations during the refinement. It it obvious that the BDD size is much
more moderate for Sigref. This directly impacts the CPU runtime. The differ-
ence between Sigref and Bouali/de Simone’s algorithm is that Sigref relies on
a predicate P(s, k) for storing the information that state s is contained in block
k. The algorithm of Bouali/de Simone, however, uses a predicate P(s, t) denoting

etcs-1 etcs-2 etcs-3 bs-p ctrl

Strong
Sigref 0.04 8.96 958.93 21.44 106.73
bouali 0.20 1880.16 82749.40 TL TL
BcgMin 0.27 16.27 ML ML 848.94

Orthogonal Sigref 0.08 49.56 16706.20 348.85 3849.29

Branching
Sigref 0.06 49.76 20912.00 276.78 1701.22
bouali 0.31 2594.10 98897.90 TL TL
BcgMin 0.28 22.63 ML ML 378.55

η Sigref 0.18 133.59 16162.10 25992.50 1124.90
Delay Sigref 0.08 75.63 16336.60 1328.60 1026.80
Progressing Sigref 0.09 43.59 2177.10 13739.50 81.03

Weak
Sigref 0.12 99.55 13434.40 13938.40 956.00
bouali 0.43 4340.91 113336.00 TL TL

Safety
Sigref 0.11 42.62 2214.39 16653.60 76.29
bouali 0.38 4383.46 112802.00 TL TL

Table 5. Runtimes for the Statemate benchmarks

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8 9
 1

 10

 100

 1000

 10000

 100000

C
P

U
 ti

m
e

B
D

D
 s

iz
e

of
 p

ar
tit

io
n

iteration

bouali-CPU
bouali-BDD
sigref-CPU
sigref-BDD

Fig. 3. Bouali/de Simone vs. Sigref for branching bisimulation on the etcs2 example.

that state s and state t are contained in the same block. The advantage of Si-
gref’s predicate P(s, k) seems to be the sharing of the block number k, i. e., the
signature refinement algorithm only needs to efficiently decide whether there are
multiple states in a block k, but it is enough to implicitly store the information
which states are in the same block. Put another way, the inherent symmetry of
the predicate P ′(s, t) of Bouali/de Simone’s algorithm, i. e., P ′(s, t) ⇔ P ′(t, s), is
more than needed for our signature-based approach. This information overhead
results in huge BDDs, which consequently leads to bad runtimes.

6 Conclusion and Future Work

In this work, we have presented a uniform and easily extendible framework for the
computation of several kinds of bisimulation. We have evaluated our approach
on examples from process algebra as well as from Statemate descriptions. Fur-
thermore, we compared our algorithm to other state-of-the-art algorithms.

Our experiments show that in almost all cases our implementation Sigref
can handle much larger systems than other algorithms, thereby requiring less
time. We found that the algorithm of Bouali/de Simone suffers from the re-
dundant representation of partitions. On the other hand, Sigref gains from
dedicated optimizations, e. g. block forwarding. The experiments clearly show
that the signature-based approach coupled with BDDs outperforms other state-
of-the-art algorithms with respect to (1) the size of the system under analysis,
(2) the variety of applicable models, and (3) the CPU runtimes.

As future work, we will check whether Sigref can be extended by some input
language for signatures such that new types of bisimulation can be defined with-
out significant programming effort. Furthermore, we are investigating how the
signature-based approach can be extended to compute stochastic bisimulations
defined on Interactive Markov Chains (IMCs) [41].

Acknowledgments We would like to thank the whole AVACS::S3 team for its fruitful

cooperation. Especially, we’d like to thank Thomas Peikenkamp and Eckard Böde for

providing the Statemate examples. Additionally, we are deeply grateful to Markus

Siegle and Matthias Kuntz for the supply of the CASPA tool.

References

1. Wimmer, R., Herbstritt, M., Becker, B.: Minimization of Large State Spaces us-
ing Symbolic Branching Bisimulation. In: Proc. of IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS). (2006) 9–14

2. Chehaibar, G., et al.: Specification and Verification of the PowerScaleTM Bus
Arbitration Protocol: An Industrial Experiment with LOTOS. In: Proc. of FORTE.
Volume 69. (1996) 435–450

3. Giannakopoulou, D.: Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College, University of London (1999)

4. Graf, S., Steffen, B., Luttgen, G.: Compositional minimisation of finite state sys-
tems using interface specifications. Formal Asp. of Comp. 8(5) (1996) 607–616

5. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation 86(1) (1990) 43–68

6. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Jour. on
Computing 16(6) (1987) 973–989

7. Burch, J., et al.: Symbolic Model Checking: 1020 States and Beyond. Information
and Computation 98(2) (1992) 142–170

8. Bouajjani, A., Fernandez, J.C., Halbwachs, N.: Minimal model generation. In:
Proc. of CAV. Volume 531 of LNCS., Springer (1991) 197–203

9. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Ratel, C., Raymond, P.: Minimal
state graph generation. Science of Computer Programming 18 (1992) 247–269

10. Bouali, A., de Simone, R.: Symbolic Bisimulation Minimisation. In: Proc. of CAV.
Volume 663 of LNCS., Springer (1992) 96–108

11. Blom, S., Orzan, S.: Distributed Branching Bisimulation Reduction of State
Spaces. ENTCS 89(1) (2003) 990–113

12. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
13. Milner, R.: A Calculus of Communicating Systems. Volume 92 of LNCS. (1980)
14. Milner, R.: Lectures on a Calculus for Communicating Systems. In: Proc. Seminar

on Concurrency. Volume 197 of LNCS., Springer (1984) 197–220
15. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation

Semantics. Journal of the ACM 43(3) (1996) 555–600
16. Baeten, J., van Glabbeek, R.: Another Look at Abstraction in Process Algebra.

In: Proc. of ICALP. Volume 267 of LNCS., Springer (1987) 84–94
17. Bergstra, J.A., Ponse, A., van der Zwaag, M.B.: Branching time and orthogonal

bisimulation equivalence. Theor. Comp. Sci. 309 (2003) 313–355
18. Milner, R.: A Modal Characterization of Observable Machine-Behaviour. In: Proc.

of CAAP. Volume 112 of LNCS., Springer (1981) 25–34

19. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
CCS. Fundam. Inform. 16(1) (1992) 171–199

20. Bouajjani, A., et al.: Safety for Branching Time Semantics. In: Proc. of ICALP.
Volume 510 of LNCS., Springer (1991) 76–92

21. van Glabbeek, R.J.: The linear time – branching time spectrum II. In: Proc. of
CONCUR. Volume 715 of LNCS., Springer (1993) 66–81

22. Hermanns, H., Lohrey, M.: Priority and maximal progress are completely axioma-
tisable. In: Proc. of CONCUR. Volume 1466 of LNCS., Springer (1998) 237–252
(Extended Abstract).

23. Park, D.: Concurrency and automata on infinite sequences. In: GI Conf. on
Theor. Comp. Sci. Volume 104 of LNCS., Springer (1981) 167–183

24. Dovier, A., Gentilini, R., Piazza, C., Policriti, A.: Rank-based symbolic bisimula-
tion (and model checking). ENTCS 67 (2002)

25. Klarlund, N.: An n log n algorithm for online BDD refinement. In: Proc. of CAV.
Volume 1254 of LNCS., Springer (1997) 107–118

26. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1. University of
Colorado at Boulder (2005)

27. Groote, J.F., Vaandrager, F.W.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. In Paterson, M., ed.: Proc. of ICALP. Volume 443 of
LNCS., Springer (1990) 626–638

28. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Comp. 35(8) (1986) 677–691

29. Wegener, I.: Branching programs and binary decision diagrams. SIAM Monographs
on Discrete Mathematics and Applications. SIAM (2000)

30. Strampp, K.: Symbolische Berechnung von Bisimulationen. Diploma thesis, Albert-
Ludwigs-University Freiburg, Germany (2006)

31. Matsunaga, Y., McGeer, P.C., Brayton, R.K.: On computing the transitive closure
of a state transition relation. In: Proc. of DAC, ACM Press (1993) 260–265

32. Burch, J.R., et al.: Sequential circuit verification using symbolic model checking.
In: Proc. of DAC, ACM Press (1990) 46–51

33. Garavel, H., Hermanns, H.: On Combining Functional Verification and Perfor-
mance Evaluation using CADP. In: Proc. of FME. Volume 2391 of LNCS. (2002)

34. Fernandez, J.C., et al.: CADP: A Protocol Validation and Verification Toolbox.
In: Proc. of CAV. Volume 1102 of LNCS. (1996) 437–440

35. Herbstritt, M., Wimmer, R., Peikenkamp, T., Böde, E., Adelaide, M., Johr, S., Her-
manns, H., Becker, B.: Analysis of Large Safety-Critical Systems: A quantitative
Approach. Reports of SFB/TR 14 AVACS 8 (2006) ISSN: 1860-9821.

36. Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of
generalized stochastic Petri nets. Technical Report 96-35, ICASE (1996)

37. Kuntz, M., Siegle, M., Werner, E.: Symbolic Performance and Dependability Eval-
uation with the Tool CASPA. In: FORTE Workshops. Volume 3236 of LNCS.,
Springer (2004) 293–307

38. Harel, D., Politi, M.: Modelling Reactive Systems with Statecharts: The State-
mate Approach. McGraw-Hill (1998)

39. ERTMS: Project Website (May 16, 2006) http://ertms.uic.asso.fr/etcs.html.
40. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment. Aerospace Recommended Practice,
Society of Automotive Engineers, Detroit, USA (1996)

41. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.
Volume 2428 of LNCS. Springer (2002)

