
Towards Verification of Artificial Neural Networks ∗

Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker
Chair of Computer Architecture

Albert-Ludwigs-Universität Freiburg im Breisgau, Germany
{scheibler,winterel,wimmer,becker}@informatik.uni-freiburg.de

Abstract

We consider the safety verification of controllers obtained via machine learning. This is an
important problem as the employed machine learning techniques work well in practice, but
cannot guarantee safety of the produced controller, which is typically represented as an artificial
neural network. Nevertheless, such methods are used in safety-critical environments.

In this paper we take a typical control problem, namely the Cart Pole System (a. k. a. inverted
pendulum), and a model of its physical environment and study safety verification of this system.
To do so, we use bounded model checking (BMC). The created formulas are solved with
the SMT-solver iSAT3. We examine the problems that occur during solving these formulas
and show that extending the solver by special deduction routines can reduce both memory
consumption and computation time on such instances significantly. This constitutes a first step
towards verification of machine-learned controllers, but a lot of challenges remain.

1. Introduction

Machine learning [MRT12] is a powerful method to derive a controller automatically for systems
which are hard to handle otherwise: There may either be no closed-form description of the en-
vironment, or the optimal behavior cannot be determined, or the system has to adapt itself to
changing environments. The user specifies which variables describe the state space of the system
and the possible actions that can be used to control it. For so-called reinforcement learning [SB98],
additionally a reward (or, equivalently, cost) function is used which measures how desirable a certain
state is. Machine learning methods then explore the state space using the available actions. The
obtained information about the system is used to derive a controller which maximizes the reward.
Since exploring the whole state space is typically infeasible, the learning algorithms generalize the
information obtained by exploration to unexplored parts. When the learning phase is completed, the
result is a controller that is typically represented as an artificial neural network.

Such learned controllers are used successfully in many scenarios. Many of them are safety-critical;
examples are controlling autonomous driving [For02], deep-brain stimulation against epileptic
∗This work has been partially supported by the German Research Foundation (DFG) as part of the Transregional

Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (DFG, SFB/TR 14
AVACS, http://www.avacs.org/) and by the Cluster of Excellence BrainLinks-BrainTools (DFG, grant
number EXC 1086, http://www.brainlinks-braintools.uni-freiburg.de/)



seizures [KWB+14, BCP08, PMG+14], and robots [KCC13]. However, the learning algorithms
in general cannot provide any guarantees regarding the safety of the controller. Therefore, after
learning, a verification step should be included, which checks that the controller actually prevents
the system from running into an unsafe state. Nevertheless, only few works have addressed this
issue so far [Bor14, Gal14]. In this paper we present our first attempts to improve this situation.

We apply bounded model checking [BCC+03] to a typical control problem, namely the Cart Pole
System, also known as inverted pendulum [BSA83]: a cart moves left and right on a rail and has to
balance a loosely attached pole on top of it. Since both the neural network representing the controller
and the description of the physical environment are non-linear (they contain transcendental functions
like exp and cos), an SMT solver is needed which can handle such constraints. The state-of-the-art
SMT solver iSAT3 [SKB13] is one of the few solvers which can cope with transcendental functions.
It is based on interval deductions to exclude variable assignments which cannot satisfy the formula,
and is tightly integrated with a modern SAT-solver to handle the Boolean structure of the formula.

We first present the translation of the closed-loop system into an SMT formula by discretizing
the differential equation that describes the behavior of the cart pole using a standard Runge-Kutta
method. As experiments confirm, the problem of this approach is that for formula generation the
loops typically executed during the discretization have to be unrolled, leading to a large number
of auxiliary variables and constraints and consequently to high memory requirements and long
computation times. We solve this problem by extending the solver core with problem-specific
operations. Experiments confirm that this reduces the memory consumption significantly as well as
the computation times. However, this constitutes only the first step towards an efficient verification
of such controllers as in spite of our improvements the analysis is restricted to rather short time
horizons.
Structure of the paper In the following section, we introduce the Cart Pole System, define
artificial neural networks, and sketch how iSAT3 works. In Section 3 we describe the translation
of the controlled Cart Pole System into the iSAT3 formalism and analyze the problems with this
approach. In Section 4 we propose the introduction of user-defined operations to speed up the
solution of the BMC formulas. Section 5 presents our experimental results, and the paper finishes
in Section 6 with a conclusion and pointers to future work.

2. Preliminaries

In this section we first describe the system we want to analyze, namely a Cart Pole System, which is
a typical example from control theory and machine learning. We then define multi-layer perceptrons;
they are the variant of artificial neural networks that we use to represent controllers. Finally, we
describe the core mechanisms underlying the SMT-solver iSAT3 used in our studies for bounded
model checking.

2.1. Cart Pole System

A standard benchmark for machine learning is the Cart Pole system (or inverted pendulum) – a cart
that is attached to a rail moves left and right, trying to balance a loosely attached pole at right angle
on top of it. Several versions of the model exist, with more complex ones having the start position
with the pole hanging upside down, requiring the algorithm to first perform a ‘swing up’ move



Θt

Ft

m

mc

xt

`

Figure 1: Visualization of the Cart Pole Model

before starting the balancing phase. The model used here has the pole starting in an almost-upright
position and requires the cart to move to a certain area of the rail without losing balance of the pole.

The exact movements of the cart and pole are described by the following ordinary differential
equations, taken from [BSA83]. They describe the evolution of the current position xt of the cart as
well as the angle Θt of the pole, depending on the current time t ≥ 0 (cf. Figure 1):

Θt =
g · sinΘt + cosΘt · [

−Ft−m· `2 ·Θ̇
2
t ·sinΘt+µc·sgn(ẋt)
mc+m ]− µp·Θ̇t

m· `2
`
2 [

4
3 −

m·cos2(Θt)
mc+m ]

, (1a)

ẍt =
Ft +m · `2 · [Θ̇

2
t · sin(Θt)− Θ̈t · cos(Θt)−µc · sgn(ẋt)]

mc +m
, (1b)

The constant g≈ 9.81 m
s2 is the gravity acceleration of the earth, mc and m are the masses of the cart

and pole, resp., ` is the length of the pole, µc and µp are the coefficients of friction for the cart on
the rails and the pole on the cart, and Ft is the force applied to the cart’s center at time t. The value
of the external force Ft is the parameter which can be used to control the system. The current state
of the system is given by the vector (Θt ,Θ̇t ,xt , ẋt).

2.2. Artificial Neural Networks

The external force Ft in our cart pole example is controlled by an artificial neural network. It obtains
the current state of the system and returns the value of the force to be applied. The particular type
of neural network we use in this paper is a multi-layer perceptron:

Definition 1 (Multi-layer perceptron) A multi-layer perceptron is a weighted directed acyclic
graph G = (V,E,w) with V being a finite set of nodes, E ⊆V ×V the set of edges, and w : E→R≥0

the edge-weight function. Nodes I ⊆V without incoming edges are called input nodes, nodes O⊆V
without outgoing edges output nodes.

For a multi-layer perceptron G = (V,E,w) and a node v ∈ V we denote the set of predecessor
nodes of v by pre(v) and the set of successor nodes by succ(v). Given an input assignment val(v)
for the input nodes v ∈ I, we can assign a value to each node of the network by traversing it in
topological order, using the activation function of the nodes:

val(v) =
1

1+ exp
(

∑
u∈pre(v)

w(u,v) ·val(u)
) for v ∈V \ I. (2)



1
xt

ẋt

Θt

Θ̇t

Ft...
...

Figure 2: Visualization of a simple neural network with two hidden layers as used in this work (the edge
weights have been omitted for the sake of readability).

Other activation functions are possible. The output of the network is then given by the values
assigned to the output nodes O. Figure 2 shows an illustration of the neural network used to control
the Cart Poly System in our experiments.

Machine learning trains a multi-layer perceptron by adapting the weight function w in order to
minimize the difference between the actual output of the perceptron network and its expected output.
Standard algorithms to do so are the back-propagation algorithm [RHW86] and reinforcement
learning [SB98]. We omit the details about the learning, because in our scenario we are given
a readily trained multi-layer perceptron which computes the external force applied to the cart
(normalized to the interval [0,1]). For more details we refer the reader to the machine learning
literature, e. g., [Bis96].

2.3. SAT and SMT

The propositional satisfiability problem (SAT) addresses the question whether there exists an
assignment for the variables of a propositional formula such that the formula is satisfied (evaluates
to true). Programs handling this kind of problems are called SAT-solvers. Usually, SAT-solvers
expect formulas to be given in conjunctive normal form (CNF). A CNF consists of a conjunction of
clauses. Each clause is a disjunction of literals and each literal is a Boolean variable or its negation.
The Tseitin-transformation [Tse68] allows the conversion of arbitrary propositional formulas into
CNF.

In [DLL62] the DPLL method was proposed. In DPLL the search for a satisfying assignment
exploits that a CNF is satisfied if and only if all clauses are satisfied. If during the search process a
(partial) assignment of the variables results in an unsatisfied clause (a clause with all literals being
false), backtracking is performed in order to enter a different part of the search space. Additionally,
Boolean constraint propagation (BCP) is used to detect implied assignments. Everytime a clause
with n literals contains n− 1 literals being false, the remaining literal has to be true in order
to retain a chance to satisfy the formula. Moreover, today’s SAT-solvers do non-chronological
backtracking and add conflict clauses to the formula to prune the search space even further –
so-called conflict-driven clause learning (CDCL) [SS96].

SAT Modulo Theories (SMT) allows Boolean combinations of so-called theory atoms. A theory
atom is an arithmetic expression which can be evaluated to true or false, e. g., (x + y < 10).
Depending on the underlying theory such an expression may contain linear and/or non-linear
arithmetic. When doing eager SMT a given Boolean combination of theory atoms is completely



translated into an equi-satisfiable propositional formula. This formula is then passed to a SAT-
solver. In many cases such an approach is either infeasible (the CNF would become to large or
the translation itself would take to long) or not possible at all due to properties of the underlying
theory. Therefore, lazy SMT is mostly used. In lazy SMT, each theory atom is abstracted by a
literal, resulting in a Boolean abstraction of the original SMT formula. This abstraction is given to a
SAT-solver. If the abstraction is unsatisfiable, then the original SMT formula is also unsatisfiable. If
the SAT-solver returns a satisfying assignment, we employ a theory solver to check if the selected
truth values for the theory atoms are indeed a solution. If this is not the case, then a conflict clause
is added to the Boolean abstraction which contains the literals of the conflicting theory atoms. Thus,
the Boolean abstraction is lazily refined with additional knowledge. This scheme is also abbreviated
as DPLL(T) or CDCL(T) – with T being the theory used.

2.4. The iSAT algorithm, iSAT3

The iSAT algorithm [FHT+07, Her11] uses interval constraint propagation (ICP, see, e. g., [BG06])
to check the consistency of theory atoms. But in contrast to classical lazy SMT there is no clear
separation between the theory and SAT-solver part; instead ICP is tightly integrated into the CDCL
framework. This deep integration allows to share the common core of the search algorithms between
the propositional and the theory-related part of the solver. Therefore the iSAT algorithm goes beyond
CDCL(ICP).

The iSAT algorithm allows theory atoms to contain linear and non-linear arithmetic as well as
transcendental functions, e. g., (x+ y2 = z2) or (

√
x+ cosz < ey). Furthermore, three variable types

are supported: Boolean, integer-, and real-valued variables. The latter two types have to be declared
with a bounded initial interval. Before solving a given formula, each theory atom is decomposed
into simple bounds and primitive constraints by introducing fresh auxiliary variables similar to the
Tseitin-transformation. A simple bound imposes a lower or upper bound to a variable – either strict,
e. g., (x < 1) or non-strict (x≤ 1). Since we store these bounds as floating-point numbers, outward
rounding is used to get a safe interval enclosure. Furthermore, this decomposition enables us to rely
on a fixed set of primitive constraints which are used to apply ICP later on. A primitive constraint
consists of a unary or binary operator and the associated variables, e. g., (h = sinx) or (h = x+ y).
Applying ICP means, a so-called contractor is used to narrow the intervals of the variables occurring
in each primitive constraint in order to exclude definitive non-solutions1.

The CDCL framework consists of three building blocks: (1) decide, (2) propagate and (3) resolve
conflicts. The iSAT-algorithm builds on CDCL and extends it for the operation on integer- and
real-valued intervals in addition to Boolean variables. Firstly, deciding an integer- or real-valued
variable corresponds to splitting the interval of the variable and selecting the lower or upper part.
Secondly, in addition to BCP for Boolean variables, ICP is used to narrow the intervals of the
variables occurring in primitive constraints. Similar to BCP we use an implication queue for
ICP to keep track of all changed variables – primitive constraints containing these variables will
be processed by ICP. The propagation phase is finished if the BCP and ICP implication queues
are empty. And finally, conflict resolution has additionally to cope with conflicts occurring in

1For instance, if we have the primitive constraint (h = x+ y) and h ∈ [1,9], x ∈ [1,3] and z ∈ [4,10] then it is possible
to contract the interval of h. This is done by calculating x+ y with interval arithmetic and intersecting the result
with the current interval of h. In this example x+y would yield [5,13] resulting in [5,9] as the new interval for h. In
order to contract the intervals for x and y the primitive constraint is redirected accordingly and a similar calculation
is done. In this example x stays unchanged and y could be shrunken to [4,8].



inconsistent primitive constraints. A primitive constraint is consistent if the interval on the left-hand
side has a non-empty intersection with the resulting interval of the right-hand side – otherwise
the primitive constraint is inconsistent. For instance, (h = x+ y) with h ∈ [1,1] and x,y ∈ [0,1] is
consistent while it would be inconsistent with h ∈ [3,3], x ∈ [0,1] and y ∈ [−1,1].

In order to prevent infinite propagation sequences, we check for every newly deduced bound for
a variable if it has reasonable progress compared to the current bound of that variable (so-called
minimum progress) – if the progress is too small the new bound will be discarded. Furthermore,
interval splits are only performed if the considered interval is larger than the so-called minimal
splitting width. Due to the undecidability of the supported logic, the iSAT-algorithm may terminate
with an inconclusive answer. That means an interval box (so-called candidate solution) will be
returned which may contain a solution. To be precise, all primitive constraints have solutions in this
interval box (i. e., all primitive constraints are consistent), but it is not guaranteed that all primitive
constraints have a common solution point in that interval box.

In this paper we focus on iSAT3 [SKB13] – the third implementation of the iSAT-algorithm.
iSAT3 and its predecessors HySAT [HEFT08] and iSAT [EKKT08] share the same major core
principles of tightly integrating ICP into the CDCL framework – but they differ on a more technical
level in the handling of the simple bounds. While the core solvers of HySAT and iSAT operate on
simple bounds, the core of iSAT3 uses literals. This results in a different way of doing decisions:
HySAT and iSAT always perform interval splits when doing a decision – in contrast iSAT3 first
decides existing literals, before splitting intervals.

3. Translation into the iSAT3 input language

In a first attempt to verify properties of the Cart Pole System and its neural network controller, we
translated both components into the input language of iSAT3. The translation of the neural network
was directly possible, because all needed operations are natively supported by iSAT3.

For the translation of the Cart Pole System, we had to abstract the differential equations as
iSAT3 does not support these. However, we had access to a C++-implementation which was also
used to train the neural networks that were provided to us. In this implementation, the differential
equations (1a) and (1b) have been iteratively approximated using the Runge-Kutta-methods [But87]
– resulting in two nested loops (as seen in Algorithm 1 and Algorithm 2) computing the next-step
values of the parameters, given a fixed step size δt (20 ms in all examples used).
Since iSAT3 only supports total operations, we had to rearrange some constraints, e. g.,

ẍnew =
(h−m · l · Θ̈ · cos(Θ))− friccart

mc +m
(3)

is translated into iSAT3 syntax as follows:

x_pp’ * (m_c + m) = h - m * l * Theta_pp’ * cos(Theta) - fric_cart;

Primed variables (e.g. x_pp’) indicate the values computed during the current step and unprimed
variables refer to the values computed in the last step. Furthermore, since iSAT3 does not support
any loops, we had to unroll the ten iterations of the for-loop which lead to a large instance with over
400 constraints.



Algorithm 1 Auxiliary function, approximating the second-order derivatives in a given state.

2nd_deriv(x, ẋ, Θ, Θ̇, F t)
begin

h = F t +m · ` · Θ̇2 · sin(Θ) (1)

fricpole =
µp·Θ̇
m·` (2)

Θ̈new =
((m+mc)·g·sin(Θ)−cos(Θ)·h+cos(Θ)·µc·sgn(ẋ))−fricpole

4
3 (m+mc)·`·cos2(Θ)

(3)

friccart = µc · sgn(ẋ) (4)

ẍnew = (h−m·`·Θ̈·cos(Θ))−friccart
mc+m (5)

return (ẍnew,Θ̈new) (6)
end

4. Special Deduction Functions

While the translation of the Cart Pole System and the neural network to the input language of iSAT3
was easily doable, we observed a poor performance of the solver on these translated instances. This
is mainly due to two problems:

1. As mentioned in Section 2, newly deduced bounds need to have a reasonable progress
compared to the current bounds (minimum progress) in order to prevent infinite propagation
sequences. Of course, every discarded bound leads to a coarser interval. This could result in
additional conflicts occurring later on, forcing the solver to do further decisions and slowing
down the overall performance. To mitigate this problem, one could decrease the minimum
progress in order to prevent the solver from discarding bounds. But this comes at the cost of
millions of new literals (each representing a bound) to be present in the solver and blowing up
the implication graph. This could be tackled with implication graph compression as proposed
in [SB14] – nonetheless, the following problem would be still present.

2. An implication queue (IQ) is used to keep track of all variables changed. For every variable in
the queue we have to apply ICP to all primitive constraints containing this variable. This may
result in further changed variables. Depending on the structure of the original constraints,
variables could be enqueued in a bad order – i. e., an order where a variable is deduced
multiple times whereas a different order would require only one deduction per variable. For
example if we have the primitive constraints C1 : (h1 = x+h2), C2 : (h2 = x2). Now assume
x is changed and enqueued to the IQ. When x is dequeued from the IQ, we examine the
constraint C1. This results in new bounds for h1 – hence h1 is enqueued to the IQ. When
examining C2 we get stronger bounds for h2 as well – therefore h2 is enqueued too. Now
we would dequeue h1 from the IQ and proceed with all primitive constraints containing this
variable. If we now dequeue h2 from the IQ we have to examine C1 once more – yielding
again new bounds for h1. With a different ordering (h2 before h1) we would consider h1 only
once. This example illustrates that the order of the IQ impacts how many deductions are made.
Since the primitive constraints are deduced in all directions, it is not sufficient to just apply a
topological sorting. Unfortunately, the translated instances contain hundreds of constraints
with a structure as shown in the example. That means the overall deduction process has to
deal with a huge overhead.



Algorithm 2 Given the current state, NextState computes the successor state after δt time steps.

NextState(x0, ẋ0, Θ0, Θ̇0, F , ε = δt
10 )

begin
for i = 1 to 10 do (1)

(ẍ i
1,Θ̈

i
1) = 2nd_deriv(xi−1, ẋi−1,Θi−1,Θ̇i−1,F t) (2)

xi
1 = xi−1 + ε

2 · ẋ
i−1 (3)

ẋi
1 = ẋi−1 + ε

2 · ẍ
i
1 (4)

Θi
1 = Θi−1 + ε

2 · Θ̇
i−1 (5)

Θ̇i
1 = Θ̇i−1 + ε

2 · Θ̈
i
1 (6)

(7)
(ẍ i

2,Θ̈
i
2) = 2nd_deriv(xi

1, ẋ
i
1,Θ

i
1,Θ̇

i
1,F

t) (8)
xi

2 = xi−1 + ε

2 · ẋ
i
1 (9)

ẋi
2 = ẋi−1 + ε

2 · ẍ
i
2 (10)

Θi
2 = Θi−1 + ε

2 · Θ̇
i
1 (11)

Θ̇i
2 = Θ̇i−1 + ε

2 · Θ̈
i
2 (12)

(13)
(ẍ i

3,Θ̈
i
3) = 2nd_deriv(xi

2, ẋ
i
2,Θ

i
2,Θ̇

i
2,F

t) (14)
xi

3 = xi−1 + ε · ẋi
2 (15)

ẋi
3 = ẋi−1 + ε · ẍ i

3 (16)
Θi

3 = Θi−1 + ε · Θ̇i
2 (17)

Θ̇i
3 = Θ̇i−1 + ε · Θ̈i

3 (18)
(19)

(ẍ i,Θ̈i) = 2nd_deriv(xi
3, ẋ

i
3,Θ

i
3,Θ̇

i
3,F

t) (20)
xi = xi−1 + ε

6 · (ẋ
i−1 +2 · (ẋi

1 + ẋi
2 + ẋi

3)) (21)

ẋi = ẋi−1 + ε

6 · (ẍ
i
1 +2 · (ẍ i

2 + ẍ i
3 + ẍ i)) (22)

Θi = Θi−1 + ε

6 · (Θ̇
i−1 +2 · (Θ̇i

1 + Θ̇i
2 + Θ̇i

3)) (23)

Θ̇i = Θ̇i−1 + ε

6 · (Θ̈
i
1 +2 · (Θ̈i

2 + Θ̈i
3 + Θ̈i)) (24)

end for (25)
return (x10, ẋ10,Θ10,Θ̇10) (26)

end

Furthermore, if we look closer to the problem, then it is not needed to expose the whole internal
structure of the calculations of the Cart Pole System and the neural network as constraints to the
solver. Instead the solver should concentrate on these five important variables per unrolling depth:
the position xt and velocity ẋt of the cart, the angle Θt and the velocity Θ̇t of the pole and the action
Ft determined by the neural network. Everything else is an intermediate result – used to calculate
one of these five values. Therefore, we decided to implement dedicated deduction functions for the
neural network and the Cart Pole System. This also eliminates the problem of discarded bounds and
a badly ordered implication queue.

We have added five new functions to the iSAT3 input language: nncart_pole_angle,
nncart_pole_v, nncart_cart_pos, nncart_cart_v, and nncart_action. The first
four provide the computations needed for the next state of the Cart Pole System while the last
function returns the action computed by the neural network.



We expect that many other applications can benefit from such solver extensions: They can be
applied whenever a complicated function has to be expressed as a (large) set of simpler constraints
and auxiliary variables which are not referenced outside the function computation.

5. Experimental Results

We have run our experiments on a computer with 4 Quad-Core AMD OpteronTM 8356 processors,
running at 2.3 GHz with 64 GB DDR2 RAM. We have set a time limit of 900 seconds and a memory
limit of 8000 MB. Instances of the simple_property-series represent verification of a simple property,
which asks for the states reachable from a given input range and mainly involves deductions from
the input nodes to the output nodes, whereas instances of the complex_property-series verify a more
advanced property of the system at hand, which checks reachability of a certain set of states and
requires many deductions from output values to input values. The number appended represents to
which depth the solver has to advance in order to verify the given property. We encoded the instances
in two ways: (1) as described in Section 3 as a large number of constraints and (2) exploiting the
special deduction routines presented in Section 4.

Table 1 illustrates that the special deduction routines boost the performance of the solver on this
kind of instances by several orders of magnitude – while the plain translation can only handle up to
3 unrollings, the special deduction routines perform well even for hundreds of steps. Furthermore,
when the special deduction functions are used, the memory footprint is reduced significantly – the
number of variables indicates this. Every simple bound is represented as a literal in the solver and
therefore increases the number of variables. The more real-valued variables are declared in the
instance, the more simple bounds will be created during solving. Since the translated instances use
hundreds of constraints and declare just as many additional real-valued variables, it is not surprising
that they exceed the memory limit.

As mentioned in Section 2, we do outward rounding for every interval calculation to get a safe
enclosure of all possible solutions. Even if intervals were tight at the beginning, they could “blow
up” if a large number of interval operations is applied. This is even more the case with large
unrolling depths – in particular when the exponential function is used as it is done for the neural
network. Thus, the precision of a standard 64 bit double could be not enough to get reasonable
results. Therefore, we exploit the ability of iSAT3 to use MPFR arithmetic with a user-specified
mantissa width instead. The last column of Table 1 indicates which bitwidth was used to solve the
instance (a hyphen stands for standard double precision).

6. Conclusion

We have considered the problem of safety verification for controllers obtained by machine learning
techniques. Such controllers are typically represented using an artificial neural network. To ensure
its safety, we applied bounded model checking using the solver iSAT3, which supports the required
non-linear arithmetic.

We observed that even the smallest BMC instances could hardly be solved. One reason is the
strong non-linearity and non-invertability of the neural network: It contains nested exponential
functions, which makes in particular deducing input values from given output values very hard.

A further reason is the discretization of the environment and the decomposition of the constraints
into triplets which introduces a large number of auxiliary variables and constraints, which prevent



Table 1: Comparing the approach presented in Section 3 with the approach from Section 4

Instance Approach Section 3 Approach Section 4 Bit-Width
Time # Variables Time # Variables

simple_property_01.hys 2.07 46907 0.34 145 –
simple_property_02.hys 95.10 116497 0.36 253 –
simple_property_03.hys 660.12 187804 0.40 361 –
simple_property_04.hys timeout 258198 0.43 469 –
simple_property_05.hys timeout 311794 0.47 577 –
simple_property_10.hys memout (136.18) 16739789 0.70 1417 64
simple_property_50.hys memout (129.33) 16776270 3.01 6937 128
simple_property_100.hys memout (130.68) 16776270 5.94 13837 128
simple_property_500.hys memout (291.31) 16725363 75.32 69037 1024
complex_property_01.hys 6.06 49189 0.41 192 –
complex_property_02.hys 78.04 107691 0.48 330 –
complex_property_03.hys timeout 193361 0.98 477 –
complex_property_04.hys timeout 258535 2.88 637 –
complex_property_05.hys timeout 341588 3.80 775 –
complex_property_10.hys timeout 725342 1.74 1434 –

an efficient deduction. To overcome this latter problem we have extended the solver with problem-
specific deduction operators, allowing the user to directly describe the behavior of the neurons and
the environment without encoding them using primitive constraints. Experiments show that this can
give a speed-up of several orders of magnitude.

However, this still does not solve the problem of safety verification. In spite of the obtained speed-
up only rather small unrolling depths and very basic safety properties can be handled. Therefore,
we are investigating further optimizations like improved decision heuristics that are adapted to the
verification task as well as alternative methods based on Lyapunov’s stability theory.

References

[BCC+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Y. Zhu.
Bounded model checking. Advances in Computers, 58, 2003.

[BCP08] Douglas J. Bakkum, Zenas C. Chao, and Steve M. Potter. Spatio-temporal electrical
stimuli shape behavior of an embodied cortical network in a goal-directed learning
task. J. Neural Eng., 5:310–323, 2008.

[BG06] F. Benhamou and L. Granvilliers. Continuous and interval constraints. In Handbook of
Constraint Programming, Foundations of Artificial Intelligence, pages 571–603. 2006.

[Bis96] Christopher M. Bishop. Neural Networks for Pattern Recognition. Advanced Texts in
Econometrics. Oxford University Press, 1996.

[Bor14] Luca Bortolussi. Machine learning meets stochastic model checking. In Proc. of
EPEW, September 2014. (invited talk).

[BSA83] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Trans. on Systems,
Man, and Cybernetics, 13(5):835–846, September/October 1983.

[But87] John C. Butcher. The Numerical Analysis of Ordinary Differential Equations. Runge-
Kutta and General Linear Methods. (A Wiley-Interscience publication). Wiley, 1987.



[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, 1962.

[EKKT08] Andreas Eggers, Natalia Kalinnik, Stefan Kupferschmid, and Tino Teige. Challenges
in constraint-based analysis of hybrid systems. In Proc. of CSCLP, volume 5655 of
LNCS, pages 51–65. Springer, 2008.

[FHT+07] Martin Fränzle, Christian Herde, Tino Teige, S. Ratschan, and Tobias Schubert. Effi-
cient solving of large non-linear arithmetic constraint systems with complex boolean
structure. Journal on Satisfiability, Boolean Modeling, and Computation, 1(3-4):209–
236, 2007.

[For02] Jeffrey Roderick Norman Forbes. Reinforcement Learning for Autonomous Vehicles.
PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 2002.

[Gal14] Galois wins NASA award for formal methods in machine learning.
http://galois.com/blog/2010/12/galois-wins-nasa-award-for-
formal-methods-in-machine-learning/, November 2014.

[HEFT08] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino Teige. Analysis of hybrid
systems using HySAT. In Proc. of ICONS, pages 196–201. IEEE CS, 2008.

[Her11] Christian Herde. Efficient solving of large arithmetic constraint systems with complex
Boolean structure: proof engines for the analysis of hybrid discrete-continuous systems.
PhD thesis, Carl-von-Ossietzky-Universität Oldenburg, 2011.

[KCC13] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. Reinforcement learning
in robotics: Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

[KWB+14] Sreedhar Saseendran Kumar, Jan Wülfing, Joschka Boedecker, Ralf Wimmer, Martin
Riedmiller, Bernd Becker, and Ulrich Egert. Autonomous control of network activity.
In Proc. of the 9th Int’l Meeting on Substrate-Integrated Microelectrode Arrays (MEA),
July 2014.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. MIT Press, 2012.

[PMG+14] Eric A. Pohlmeyer, Babak Mahmoudi, Shijia Geng, Noeline W. Prins, and Justin C.
Sanchez. Using reinforcement learning to provide stable brain-machine interface
control despite neural input reorganization. PLoS ONE, 9(1), January 2014.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323(9):533–536, October 1986.

[SB98] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[SB14] Karsten Scheibler and Bernd Becker. Implication graph compression inside the SMT
solver iSAT3. In Proc. of MBMV, pages 25–36. Cuvillier, 2014.

[SKB13] Karsten Scheibler, Stefan Kupferschmid, and Bernd Becker. Recent improvements in
the SMT solver iSAT. In Proc. of MBMV, pages 231–241. Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Uni-
versität Rostock, 2013.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP – a new search algorithm for
satisfiability. In Proc. of ICCAD, pages 220–227, 1996.

[Tse68] Grigori S. Tseitin. On the complexity of derivations in propositional calculus. In
A. Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logics.
1968.


