
Minimally Invasive HW/SW Co-debug Live Visualization on
Architecture Level

Pascal Pieper

Cyber-Physical Systems, DFKI GmbH

Bremen, Germany

pascal.pieper@dfki.de

Ralf Wimmer

Concept Engineering GmbH

Freiburg im Breisgau, Germany

Albert-Ludwigs-Universität Freiburg

Freiburg im Breisgau, Germany

ralf@concept.de

Gerhard Angst

Concept Engineering GmbH

Freiburg im Breisgau, Germany

gerhard@concept.de

Rolf Drechsler

Cyber-Physical Systems, DFKI GmbH

Bremen, Germany

Institute of Computer Science, University of Bremen

Bremen, Germany

drechsle@informatik.uni-bremen.de

ABSTRACT

We present a tool that allows developers to debug hard- and soft-

ware and their interaction in an early design stage. We combine

a SystemC virtual prototype (VP) with an easily configurable and

interactive graphical user interface and a standard software debug-

ger. The graphical user interface visualizes the internal state of the

hardware. At the same time, the software debugger monitors and

allows to manipulate the state of the software. This co-visualization

supports design understanding and live debugging of the HW/SW

interaction. We demonstrate its usefulness with a case-study where

we debug an OLED display driver running on a RISC-V VP.

CCS CONCEPTS

• Hardware→ Simulation and emulation.

KEYWORDS

RISC V, debugging, virtual prototype, visualization

ACM Reference Format:

Pascal Pieper, Ralf Wimmer, Gerhard Angst, and Rolf Drechsler. 2021. Mini-

mally Invasive HW/SW Co-debug Live Visualization on Architecture Level.

In Proceedings of the Great Lakes Symposium on VLSI 2021 (GLSVLSI ’21),
June 22–25, 2021, Virtual Event, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION

Virtual prototypes (VPs) [5, 6] are an important tool for hardware/-

software co-design. A VP is typically a transaction-level model

(TLM), written in a high-level language like SystemC [7], which

abstracts from implementation details of the hardware. It models

the hardware to a level of detail such that it can execute software

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8393-6/21/06.

https://doi.org/10.1145/XXXXXX.XXXXXX

that is supposed to run later on the developed hardware. This way,

VPs allow to write software for a target system before the actual

hardware is finalized and produced, resulting in a shorter time-

to-market. Additionally, it also enables effective debugging early

in the design process, in particular of the often complex interplay

between hard- and software.

In this paper, we present an easily configurable graphical de-

bugging tool called RISCview. Its architecture is sketched in Fig. 1.

RISCview features a graphical user interface (GUI) that shows ab-

stract views of the (virtual) hardware. They are rendered automat-

ically using the industrial-strength drawing engine Nlview™ [1].

The schematics are annotated with live simulation data, i. e., the

current values of signals, busses, and registers while executing soft-

ware instructions. These annotations can include internal values

that are not accessible from the hardware’s interface via software

instructions, but still important for debugging.

The HW debugging GUI is connected via TCP to the executable

consisting of the virtual prototype and user-defined views of the

hardware structure. For establishing the connection to the debug-

ging GUI, RISCview provides a visualization interface that is linked

into the VP executable. This model/view scheme separates the VP

and the displayed information, minimizing the impact of adding our

framework to a virtual prototype. It also reduces the interference

Figure 1: Architecture of RISCview (in red) together with a

system under debug (in blue). Highlighted in green are the

user-defined parts that are necessary for the adoption.

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

with other automated testing systems. Additionally, we can flexibly

highlight areas of interest by dynamic reconfiguration of the views

without modifying the VP.

The VP exhibits a debugging interface such that a standard soft-

ware debugger like GDB [10] can be used to inspect and manipulate

the internal state of the software that is currently executed on the

VP. It allows to monitor variables, to set breakpoints etc.

The combination of the HW debugging GUI with a GDB instance

for the executed software gives the user deep insights into the

interplay between HW and SW. RISCview can be used, e. g., to aid

the integration process of new peripherals and matching software

drivers into VPs, to visualize the existing architecture at run-time,

and to analyze interrupt and timer correlations.

We evaluate our tool by debugging a hardware abstraction layer

(HAL) for a newly designed OLED-Screen shield for the RISC-

V processor board HiFive1
1
. Our experience shows clearly that

RISCview allows to find bugs in the HW/SW interaction more

efficiently than the available alternatives.

RelatedWork. While debugging tools for later design phases exist

both on the software side and on the hardware side, a lucid and

easy-to-use hardware visualization tool for early virtual prototypes

is not available yet. For instance, [8, 13] offer debugging tools for

systems on a chip (SoCs) at gate level later in the design process.

[13] emulates CPU and IPs by implementing a GDB interface to an

FPGA simulator, while [8] proposes a debug controller that can be

integrated in SoCs on the final silicon.

Both Rogin et al. [9] and Große et al. [3] propose SystemC IDEs

for low-level interactions with a focus on the signal layer. These

IDEs are incompatible with transaction-level models and do not

offer a live view of the system at run-time.

Since a virtual prototype is a software implementation – in our

case using the C++ class library SystemC –, it is also possible to

attach a software debugger like GDB [10] directly to the virtual

prototype and to step this way through the software model of the

hardware logic. Compared to our tool, this approach has the severe

drawback that it shows the variables of the SystemC implementa-

tion, but not a direct view of the modeled hardware; not to mention

of the software that is running on the VP.

In summary, the existing solutions are either too late in the design

process, provide no live view, or are not appropriate for debugging

the hardware/software interaction.

Main contributions of this paper are:
(1) an implementation-agnostic HW/SW visualization,

(2) early visual debug parallel to existing software tools,

(3) a live view of the system’s state during the debugging ses-

sion,

(4) a case-study showing that our approach is well suited for

finding bugs in the interaction of hard- and software.

Organization of the paper. In the following section we introduce

the building blocks of our tool and the relevant concepts for our

case-study. Then we go into details of RISCview’s architecture and

implementation in Sect. 3. Section 4 presents our case-study. Finally,

we summarize our contributions with an outlook to future work in

Sect. 5.

1
https://www.sifive.com/boards/hifive1

2 PRELIMINARIES

Here we explain the core concepts used in our tool and the case-

study.

SystemC. SystemC [7] is a virtual prototyping framework for C++.

It offers a class library to model hardware systems with modules

and ports in an event-driven simulation kernel. The main benefit

of SystemC is the flexible trade-off between timing accuracy and

simulation time, operating from abstract transaction-level modeling

(TLM) down to the register transfer level (RTL). This support for

multiple abstraction levels enables developers to refine the design

and even re-use the VP to verify the final hardware [2, 12].

TLM. SystemC TLM is a mechanism to speed up the simulation

time for the penalty of reduced timing accuracy (although retaining

cycle-accuracy is possible [11]).

RISC-V Instruction Set Architecture. For our case-study we ex-

tended the open-source RISC-V VP [4] in its HiFive mode. This

mode emulates the tinkering board HiFive1 of the company SiFive.

The processor board comes with peripherals such as buffered SPI,

DMA, and UART, which are all modeled in the virtual prototype.

The VP offers two ways to debug the system: A GDB connection

to the simulated CPU (software side) and a GDB session over the

SystemC executable itself (hardware side). While it is possible to

access the hardware IPs through a GDB session, the effort to gain in-

formation of interest is disproportionate because one has to access

variables through the SystemC kernel with its user-space schedul-

ing. The software GDB module inside the VP, however, is usable as

if the RISC-V binary was executed locally.

SPI. In the case-study, we use the Serial Peripheral Interface.

This protocol operates on three or four wires for data transmission

between a master device and one or multiple slave devices. The

bus master starts a transmission by activating the Chip Select (CS)
line of the target device, starting a clocking signal on the CLK line

in sync with its Master Out/Slave In (MOSI) line. Eight bits can be

transferred for each burst. Depending on the use-case, the Master
In/Slave Out (MISO) line may be used to transmit data from the

slave fully duplex. The master device has to actively poll slaves if

no additional bit lines are used.

Nlview. Nlview™ [1] is a commercial state-of-the-art library by

Concept Engineering GmbH for creating schematic diagrams for

electronic systems at different abstraction levels, ranging from tran-

sistor level via gate and RTL-level to system level. It is compatible

with different GUI frameworks like Tcl/Tk, Qt, WxWidgets, and

HTML5 canvas. Nlview provides APIs in C, Tcl, Java, Perl, and

Python. The automatically generated schematic layout can be mod-

ified and controlled both by the APIs and by human intervention.

Interactive circuit exploration is supported by Nlview’s incremental

schematic generation technology.

RISCview uses the Nlview Tcl/Tk widget to render views of

the hardware modeled in the VP together with simulation data

(see Fig. 5 for an example view). Nlview’s incremental navigation

features thereby allow to interactively explore the hardware views

and hide irrelevant parts.

https://www.sifive.com/boards/hifive1

3 IMPLEMENTATION

To extend an existing SystemC VP, the system designer needs to

add views for every IP module that shall be a part of the visualiza-

tion. Views are abstract representations of modules containing the

relevant information with high control over the module’s layout.

These representations act independently of the actual SystemC be-

havior, separating the view from the model as much as possible. The

views are automatically collected by the visualization interface. The
visualization interface translates the instantiated views and their

data into a live stream of commands for the debugging GUI via TCP.

During the simulation of the SystemC VP, the interface extracts

updated information via the registered views asynchronously.

In the GUI, the command translation layer receives the commands

from the visualization interface and generates appropriate API calls

of the visualization engine to render the model in a graphical rep-

resentation. This additional translation layer offers the flexibility

of using different visual styles or levels of detail. Adding other

visualization engines requires only implementing a different trans-

lation layer. In our case study, we chose the industry-proven Nlview

engine [1] that allows creating structure components and connec-

tions via Tcl/Tk commands. The combination allows an interactive

exploration of the underlying model, offering an auto routing of

individual nodes and a partial exploration to limit the view to the

relevant parts at run-time.

As already said, there are two GDB interfaces that can be used

simultaneously: A GDB session of the simulated CPU (software

side) and the SystemC executable itself (hardware side). The RISC-V

binary can be loadedwith GDB as a remote target to the SystemCVP.

The virtual CPU inside the VP then can be halted with breakpoints

and the virtual memory can be explored. Additionally, the actual

VP including its numerous IP models are written in C/C++ and thus

can also be debugged with the native GDB. Due to the visualization

interface running in an asynchronous thread, the hardware can be

inspected in real-time with both methods.

3.1 Symbols and Connections

A view has to implement at least two functions: getSymbol() and

update() (e. g., see Fig. 2). In getSymbol(), the view’s layout such
as size, shape, location of attribute fields and input/output pins

is defined. This function is only called once during instantiation

of the views. The actual values for the attributes are generated in

the update() function, which is periodically called by the visual-
ization interface (see Sect. 3.2). It may update the attributes of its

instance and the values of all connected pins. To display useful

information, the view needs a reference to the module it describes.

For convenience, we supplied an auto-generation compiler macro

for trivial views (non-templated models and no extra functions) to

speed up the design process. How the view accesses its model is up

to the designer and available interfaces; directly over class pointers,

indirect over function calls, or any other way that C/C++ allows.

Lastly, a Connection is a meta-element to connect two or more pins

and can display relevant data, which can be set by any symbol that

has connected pins to it.

1 const Symbol GPIOView :: getSymbol () {
2 Rect size = default_box; //100 x100 units
3 riscview ::Pin bus{"BUS", Direction ::INOUT ,
4 PinLocation{Orientation ::left , Point {0,1* size.y/5}}
5 };
6 riscview ::Pin o12{"12", Direction ::OUT ,
7 PinLocation{Orientation ::right ,

Point{size.x,1* size.y/5}}
8 };
9 [...]
10 std::map <std::string , Attribute > attrs {
11 //name , init value , lower left alignment , margin , size
12 {"regs", {"", Locator ::ll, {default_attrtextsize ,

size.y-default_attrtextsize},
default_textsize /3}},

13 };
14 return Symbol("GPIO", {bus , o12 , [...]} , size , attrs);
15 };
16 void GPIOView :: update () {
17 std:: string text = "VAL: " + toBin(model.value , 3);
18 instance.getPin("16")->getConnection ()->setText(model.port

& (1 << 10) ? "1" : "0");
19 instance.setAttribute("regs", text);
20 }

Figure 2: Example view building pins and attributes of a gen-

eral purpose I/O (GPIO) hardware module (cf. the resulting

symbol in Fig. 5)

1 #define GEN_DEFAULT_VIEW(CLASS)
2 struct CLASS##View : public Viewable {
3 static const Symbol symbol;
4 Instance instance;
5

6 static const Symbol getSymbol ();
7

8 CLASS &model;
9 CLASS##View(CLASS &model , string name = #CLASS);
10

11 void update () override;
12 };

Figure 3: Trivial class structure of a default view. Trailing

slashes are omitted for readability.

3.2 Visualization Interface

The visualization interface provides a library of usable layout ob-

jects (e. g., Symbol, Direction, Orientation, . . .), a registration

function for all views, and an own update thread. At program start-

up, the interface tries to connect to the command server of the

debugging GUI over a TCP connection. If no connection is pos-

sible, all further view-related function calls are ignored and the

SystemC program continues as normal. Otherwise, the registered

layout objects are serialized into individual commands and sent to

the command server.

Every module and connection needs to be defined in an elabora-

tion phase. This definition allows setting the size of themodule, loca-

tion and names of input or output pins, and the layout of attributes

along with a unique identification (see Fig. 4). These properties

cannot be changed after the instantiation to allow the visualiza-

tion engine to place modules in a space-efficient manner. When

the SystemC simulation starts, the update thread starts polling all

registered instances periodically and checks for changed attributes.

All changed attributes can be updated via their respective identi-

fication strings and are then serialized and sent to the command

server (see Sect. 3.3).

Note that the update thread is independent of the SystemC simu-

lation, and thus does neither affect nor is affected by the simulation

time. Since our implementation of SystemC
2
is single-threaded, the

impact of our proposed debugger on the simulation speed can be

neglected when run on a multicore system.

1 GPIO gpio0("GPIO0", INT_GPIO_BASE); // SysC HW-Model
2 RV_DEF_AND_ADD(GPIOView , gpio0); // View
3 SPI spi1("SPI1");
4 RV_DEF_AND_ADD(SPIView , spi1);
5 SS1106 oled ([...]);
6 RV_DEF_AND_ADD(SS1106View , oled);
7

8 riscview :: Connection gpio_oled_dc("GPIO -OLED -DC");
9 gpio_oled_dc.connect(gpio0_v.instance.getPin("16"));
10 gpio_oled_dc.connect(oled_v.instance.getPin("DC"));
11 riscview.add(gpio_oled_dc);
12 [...]
13

14 if(! riscview.connect ()) exit(-1); // connect with GUI
15 std:: thread updater ([& riscview]{ // start RISCview thread
16 while(true) {
17 ViewableRegistrar :: updateAll(riscview);
18 }
19 });
20 sc_core :: sc_start (); //start SysC thread

Figure 4: Excerpt of an initialization list ofHW-modules and

their views. RV_DEF_AND_ADD() is a compiler macro that in-

stantiates and registers a view, naming it with the suffix _v.

3.3 Debugging GUI

The debugging GUI is responsible for collecting visualization com-

mands and drawing appropriate structures. For interchangeability

of the graphical representation, the visualization commands are

based on Tcl/Tk. The GUI opens a server at start-up and listens for

incoming commands from the visualization interface. These com-

mands are then translated by the command translation layer into
API-calls to the graphics engine. The Nlview visualization engine

includes a placement algorithm to minimize the needed screen size

and concisely routes the connections between the components.

4 CASE STUDY

As a case study, we implemented an OLED display as a HWmodule

into an existing open source RISC-V Virtual Prototype (VP) [4] and

wrote a software driver to interface the display. The VP is able to

model the SiFive HiFive1 processor board including some of the

most used peripherals (i. e., UART, SPI, Timers). The SS1106 OLED

display driver is a multi-protocol driver (SPI 3-wire, SPI 4-wire, I
2
C

and others) supporting monochrome displays with up to 64× 132

pixels resolution. We chose the SPI 4-wire connection because it

has the fastest net transmission capabilities. To show the real-world

comparability, we also designed a PCB (printed circuit board) with

an OLED display and seven buttons. The PCB was designed such

that it can be stacked on top of the HiFive1 board.

2
https://www.accellera.org/downloads/standards/systemc

UART
TX: 00
RX: 00

7FFFBUS
IRQ

CLINT

mtime
00000D0400000D04
mtimecmp
0000000000000000

7FFFBUS
0CORE1

Memory

00 00 00 00 10 39 40 20
30 39 40 20 F0 38 40 20
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

7FFFBUS

Plic

Enabled Interrupts
0000000000000000
0000000000000000

Pending Interrupts
0000000000000000
0000000000000000

0CORE17FFF BUS
IRQ1
IRQ2
IRQ3
IRQ4

CPU

PC
20400A8A
x0
00000000
x1
20400D18
x2
80003FB0
x3
80000860
x4
00000000
x5
00000000
x6
C3500000
x7
00000000

x8
00000072

x9
00000000

x10
00000000

x11
00000001

x12
00000D04

x13
000B0A28

x14
10024000

x15
80000000

7FFF BUS
0CLT

0IRQ

GPIO

VAL: 111010110000111000101000

7FFF BUS 112
013

116

SPI

TX: 10 B0 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

RX:
CS: 02
IE: tx_ IP: _rx

7FFF BUS SPI

SS1106

CONTRAST_MODE_SET

COL: 02
PAG: 00

SPI

1 CS

1 DC

CAN

TX: 00
RX: 00

Status: 00

SPI

0 CS

Figure 5: Screenshot of the architecture view in RISCview.

Figure 6: Screenshot of the VP simulation with an active

OLED Display running an example program.

4.1 Display HWModel

We implemented amodel for the display-driver according to its data-

sheet
3
and connected it to the HiFive’s SPI peripheral (see Sect. 2).

The SPI 4-Wiremode requires a differentiation of command and data
bytes via a dedicated pin connected from the GPIO module to the

display. Commands may consist of one to three bytes and expect

up to two trailing value bytes. For instance, to set the display’s

3
https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf

https://www.accellera.org/downloads/standards/systemc
https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf

contrast, the command line has to be set low, and the byte 0x81
for set contrast along with the value (encoded in one byte) has to

be sent over SPI. Issuing multiple data bytes after a PAGE_ADDR
command are interpreted as consecutive pixel values, incrementing

the internal pixel pointer state. To aid with the design process, we

also created a view of display driver showing sent data, the last

command, and an excerpt of internal state. The implementation of

the view took only 23 lines of code (see Fig. 7).

1 GEN_DEFAULT_VIEW(SS106);
2 const Symbol SS1106View :: getSymbol () {
3 Rect size = default_box;
4 std::vector <nlv::Pin > pins = {
5 nlv::Pin {"SPI", Direction ::INOUT ,
6 PinLocation{Orientation ::left , Point{0, size.y/5}}},
7 nlv::Pin { "CS", Direction ::IN,
8 PinLocation{Orientation ::left , Point{0, size.y/2}}},
9 nlv::Pin { "DC", Direction ::IN,
10 PinLocation{Orientation ::left , Point {0,4* size.y/5}}},
11 };
12 std::map <std::string , Attribute > attrs {
13 {"command", {"", Locator ::lr,

{size.x-default_attrtextsize ,
1.5* default_textsize}, default_attrtextsize }},

14 {"regs", {"", Locator ::lr,
{size.x-default_attrtextsize ,
size.y-default_attrtextsize},
default_attrtextsize }},

15 };
16 return Symbol("SS1106", pins , size , attrs);
17 };
18 void update () {
19 std:: string text = "COL: " + toHex(model.state ->column)

+
20 "\nPAG: " + toHex(model.state ->page);
21 instance.setAttribute("command", ~model.last_cmd.op);
22 instance.setAttribute("regs", text);
23 };

Figure 7: Code to generate a view for the SS1106 Controller

(cf. Fig. 5).

4.2 Display SW Driver

The SW driver offers a set of high-order functions like set pixel at
position x and draw line from point x to y and translates them to

series of low-level commands for the display. It also manages the

values for GPIO-Pins and handles the SPI peripheral interface, both

over memory mapped I/O.

4.3 Debugging

During development of the software driver, we noticed undefined

behavior of the display during operationswith a high pixel-throughput.

Sometimes, the display glitched in a way that the image was dis-

torted or showed random artifacts (see Fig. 8).

Our first approach to finding this bug was starting the simulation

with a breakpoint on the software side in the display driver routine

that handles the SPI transfers. However, this did not yield any

results, because the simulation did not show any false behavior as

long as the breakpoint was active. Also, printing out the SPI bytes

over the serial monitor suppressed the undefined behavior. Our

second approach was to set a breakpoint in the display module

(hardware side) at the command interpretation state machine. We

noticed that the display driver got invalid command bytes that were

not implemented in the software driver. Also, the display got too

Figure 8: Glitched display showing only a partial image and

distorted lines. This simulation behaves exactly like the real

HiFive1 board with our custom PCB.

1 void mode_data(void) {
2 setPin(OLED_DC , 1);
3 }
4 void mode_cmd(void) {
5 setPin(OLED_DC , 0);
6 }
7 void setContrast(uint8_t contrast) {
8 mode_cmd ();
9 spi(0x81); // Command: next byte is contrast value
10 spi(contrast);
11 }
12 void oled_init () {
13 spi_init ();
14 // Initial setup
15 // Enable RESET and D/C Pin
16 GPIO_REG(GPIO_OUTPUT_EN) |= (1 <<

mapPinToReg(OLED_RES) | 1 <<
mapPinToReg(OLED_DC));

17 setPin(OLED_DC , 0);
18

19 // RESET
20 setPin(OLED_RES , 0);
21 sleep_u (10); // at least 10us
22 setPin(OLED_RES , 1);
23 sleep (100); // at least 100ms
24 // Initialize display to desired operating mode.
25 [...]
26 setChargePumpVoltage (0b10);
27 setContrast (0xff);
28 // Clear screen (overwrite entire memory with zeroes)
29 oled_clear ();
30 setDisplayOn (1);
31 }

Figure 9: Part of the original display software driver.

many consecutive data bytes, thus writing out of bounds of its page

buffer. We paused the execution of the SystemC executable with a

breakpoint, halting when the display detected an invalid command.

By inspecting the RISCview window (Fig. 8), we could see that the

TX-Queue of the SPI module still contained command bytes, but

the D/C-line was already set high (data mode). In this state, the

display’s state machine still expected a second command byte for

the contrast value (CONTRAST_MODE_SET). This observation led us

to the idea that the switch between data and command mode did

not wait until the whole SPI transmit queue was emptied. It also

explained why a debug print in the software driver suppressed the

problem; the time it takes to send text through the comparatively

slower UART was enough for the SPI TX queue to run empty.

The fix itself required only a few lines to change: Before switch-

ing between data- and command mode, wait for the lower SPI

transmit watermark (SPI_IP_TXWM) to indicate an empty transmit

queue (see Fig. 11).

GPIO

VAL: 111010110000111000101000

7FFF
BUS

1
12

0
13

1
16

00 00 00 00 00 00 00 00

SPI

TX: 10 B0 00 00 00 00 00 00

RX:
CS: 02
IE: tx_ IP: _rx

7FFF
BUS SPI

SS1106

CONTRAST_MODE_SET

COL: 02
PAG: 00

SPI

1
CS

1
DC

CAN

TX: 00
RX: 00

Status: 00

SPI

0
CS

Figure 10: Snapshot of a still command-populated TX queue,

although Data/Command line just toggled to data mode.

Note the populated TX buffer in the SPI peripheral, where the

top left byte is the first to be transmitted. The first two are still

commands: 0x10 for the contrast value and 0xB0 for the charge

pump voltage. Following bytes are all zeroes to clear the screen.

Additional status flags indicate that the RX queue is empty, chip

select (CS) is set to device 2 (ss1106), and the TX interrupt is enabled

but not pending.

1 void spi_complete () {
2 // Wait for interrupt condition.
3 while (!(SPI1_REG(SPI_REG_IP) & SPI_IP_TXWM))
4 asm volatile("nop");
5 // TX-Watermark is set while byte is still in transit
6 // One byte at 8KBit/s is one microsecond
7 sleep_u (1);
8 }
9 void mode_data(void) {
10 // not already in data mode
11 if(! getPin(OLED_DC)) {
12 // wait for SPI to complete before toggling
13 spi_complete ();
14 setPin(OLED_DC , 1);
15 }
16 }
17 void mode_cmd(void) {
18 // not already in command mode
19 if(getPin(OLED_DC)) {
20 // wait for SPI to complete before toggling
21 spi_complete ();
22 setPin(OLED_DC , 0);
23 }
24 }

Figure 11: Fixed part of the software driver.

4.4 Evaluation

If we had used just the normal GDB debugger, the underlying

problem would not have been clear. When the program is halted

at the memory interface of the display module, the access to the

state of the SPI module is hidden behind the stack-frames of the

different user-space threads of SystemC. The encountered bug was

also noticeable in the real hardware, which shows the accuracy of

our case-study.

5 CONCLUSION AND FUTUREWORK

This paper has presented a novel system for hardware/software

co-debugging that is applicable in an early stage of the development

with a minimal impact on design-time. Using a transaction-level

virtual prototype of the hardware, written in SystemC, it provides

a live view on the internals of the hardware design, while stepping

through the executed software using a state-of-the-art software

debugger like GDB. The integration into a project requires little

adaptation to the code-base with a flexible view on the hardware.

A case study with a modeled OLED-Display operated by a RISC-

V processor demonstrated the usefulness of our visualization for

finding bugs related to hardware-software interactions.

Our system opens up possible future work, including:

• Combining the system with a dynamic flow analysis frame-

work to visualize security policy violations and data flow in

real-time;

• Adding a static code analysis based on re-occurring SystemC

class patterns, which would enable automated visualization

of modules at the expense of displaying possibly irrelevant

information;

• Implementing a hardware-version of the visualization inter-

face to permit hardware debugging with the real hardware

in the same style as its VP.

ACKNOWLEDGMENTS

This work was supported in part by the German Federal Ministry of

Education and Research (BMBF) within the project SATiSFy under

contracts no. 16KIS0821K and 16KIS0825.

REFERENCES

[1] Concept Engineering GmbH. 2021. Nlview 7.3.11. https://www.concept.de.

[2] Mehran Goli and Rolf Drechsler. 2019. Scalable Simulation-based Verification of

SystemC-based Virtual Prototypes. In Euromicro Conf. on Digital System Design
(DSD). IEEE, 522–529. https://doi.org/10.1109/DSD.2019.00081

[3] Daniel Große, Rolf Drechsler, Lothar Linhard, and Gerhard Angst. 2003. Efficient

Automatic Visualization of SystemCDesigns. In Forum on Specification and Design
Languages (FDL). ECSI, 646–658.

[4] Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler. 2018. Extensible

and Configurable RISC-V based Virtual Prototype. In Forum on Specification and
Design Languages (FDL). 5–16. https://doi.org/10.1109/FDL.2018.8524047

[5] Vladimir Herdt, Daniel Große, Pascal Pieper, and Rolf Drechsler. 2020. RISC-V

based virtual prototype: An extensible and configurable platform for the system-

level. Journal of Systems Architecture 109 (Oct. 2020), 101756. https://doi.org/10.

1016/j.sysarc.2020.101756

[6] M. Holzer, B. Knerr, P. Belanović, M. Rupp, and G. Sauzon. 2004. Faster Complex

SoC Design by Virtual Prototyping. In Int’l Conf. on Cybernetics and Information
Technologies, Systems and Applications (CITSA). 305–309.

[7] IEEE Computer Society. 2015. IEEE Standard for Standard SystemC Language
Reference Manual. Standard IEEE 1666-2015. https://doi.org/10.1109/IEEESTD.

2012.6134619

[8] K. Lee, A. Su, Long-Feng Chen, Jia-Wei Jhou, J. Kuo, and M. Liu. 2011. A soft-

ware/hardware co-debug platform for multi-core systems. In IEEE Int’l Conf. on
ASIC. 259–262. https://doi.org/10.1109/ASICON.2011.6157171

[9] Frank Rogin, Christian Genz, Rolf Drechsler, and Steffen Rülke. 2008. An Inte-

grated SystemC Debugging Environment. In Embedded Systems Specification
and Design Languages. Lecture Notes in Electrical Engineering, Vol. 10. Springer,

59–71.

[10] Richard M. Stallman, Roland Pesch, Stan Shebs, et al. 2020. Debugging with GDB:
The GNU Source-Level Debugger (10th ed.). GNU. https://sourceware.org/gdb/

current/onlinedocs/gdb.pdf

[11] Lukas Steiner, Matthias Jung, Felipe S. Prado, Kirill Bykov, and Norbert Wehn.

2020. DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-Based DRAM

Simulator. In Int’l Conf. on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS). Springer, 110–126.

[12] S. Swan. 2006. SystemC transaction level models and RTL verification. In 43rd

ACM/IEEE Design Automation Conference. 90–92.
[13] Rüdiger Willenberg and Paul Chow. 2013. Simulation-based HW/SW co-

debugging for field-programmable systems-on-chip. In Int’l Conf. on Field-
Programmable Logic and Applications (FPL). IEEE, 1–8.

https://doi.org/10.1109/DSD.2019.00081
https://doi.org/10.1109/FDL.2018.8524047
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1016/j.sysarc.2020.101756
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/ASICON.2011.6157171
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf
https://sourceware.org/gdb/current/onlinedocs/gdb.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	3 Implementation
	3.1 Symbols and Connections
	3.2 Visualization Interface
	3.3 Debugging GUI

	4 Case Study
	4.1 Display HW Model
	4.2 Display SW Driver
	4.3 Debugging
	4.4 Evaluation

	5 Conclusion and Future Work
	References

