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Abstract 
Electrical stimulation of the brain is used to treat neurological disorders. Yet it is unknown how to find stimulation 
patterns that produce desired results with the least interference. Towards this goal, we tested a generic closed-
loop paradigm that autonomously optimizes stimulation settings. We used neuronal networks coupled to a rein-
forcement learning based controller to maximize response lengths.  
 

1 Background 
High-frequency electrical stimulation is effective 

in managing the symptoms of neurological disorders 
(Parkinson’s disease, dystonia). Major problems are: 
1) stimulation settings do not adapt to the needs, 2) 
undesired network responses result in serious side ef-
fects, and 3) non-optimal energy consumption necessi-
tates frequent battery replacement.  

Closed-loop paradigms that autonomously learn 
could be useful to optimize stimulation settings. We 
present a proof-of-concept in a simple control task. A 
controller had to find the optimal timing of electrical 
stimuli applied to a neuronal network in-vitro at one 
electrode to maximize the response length at another 
electrode of a microelectrode array (MEA). 

2 Methods  
The full parameter space for such a controller cur-

rently cannot be scanned in vivo. To develop concepts 
and techniques, we stimulated neuronal networks on 
MEAs. We trained a controller with reinforcement 
learning techniques (Q-learning, Watkin, C.J., Learn-
ing from Delayed Rewards, PhD thesis, Cambridge 
University, 1989) (fig.1). Following each spontaneous 
burst (SB), a training episode began. It ended with the 
controller either stimulating (rewarded) or being dis-
rupted by another SB (punished). During training (n = 
5, 1000 episodes) the controller learned an optimal 
stimulation time. The learned controller was then test-
ed in a 500 episode session. 

 
Fig. 1. Closed-loop experimental scheme 

3 Results 
Response length increases with the duration of 

pre-stimulus inactivity (fig. 2a, Weihberger et al. 
(2012), J.Neurophysiol 109:1764-1774). Our training 
data fits this exponential model indicating that the con-
troller was able to identify this underlying relationship. 
Overall, the fit parameter A varied across cultures with 
the longest response, while the parameter λ stayed 
around 1.44 ± 0.88 s-1 (n = 5). 

With increasing waiting periods SBs may occur 
before the stimulus. The controller learned the delay 
that minimized such disruptions. The ratio of the 
learned delay to the mode of the inter-burst interval 
(IBI) distribution of spontaneous activity was 0.98 ± 
0.33 (n = 5), suggesting that the learned delay was al-
ways very close to the most frequent IBI (fig. 2 b-d).  
 
4 Conclusion 

Coupling closed-loop configurations with ma-
chine-learning techniques are promising strategies to 
adjust stimulation parameters autonomously. A simple 
controller was able to 1) identify stimulus-response 
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Fig. 2 a) Response length vs. pre-stimulus inactivity (Adapted from Weihberger et al. 2012). b) Stimulus-response rela-
tions learned by the controller for a culture. The controller 'chooses' to mostly stimulate at the peak of the spontaneous IBI 
distribution, ~5s c). This improves the chances of evoking a consistent long response, without interruption by an interven-
ing SB. At the same time, the shift in the peak of the response length distribution for the testing session towards a longer 
response suggests that the learned delay also improved the response lengths, d). 

 

relationships, and 2) balance stimulus timing between 
response lengths and the probability of disruptions by 
spontaneous bursts. 
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