
Exploiting Different Strategies for the
Parallelization of an SMT Solver∗

Natalia Kalinnik1 Erika Ábrahám2 Tobias Schubert1

Ralf Wimmer1 Bernd Becker1

1 Albert-Ludwigs-University Freiburg
79110 Freiburg im Breisgau, Germany

{kalinnik | schubert | wimmer | becker}@informatik.uni-freiburg.de

2 RWTH Aachen
52056 Aachen, Germany

eab@informatik.rwth-aachen.de

In this paper we present two different parallelization schemes for the SMT solver
iSAT, based on (1) the distribution of work by dividing the search space into disjoint
parts and exploring them in parallel, thereby exchanging learnt information, and (2)
a portfolio approach, where the entire benchmark instance is explored in parallel by
several copies of the same solver but using different heuristics to guide the search.
We also combine both approaches such that solvers examine disjoint parts of the
search space using different heuristics. The main contribution of the paper is to
study the performances of different techniques for parallelizing iSAT.

1 Introduction

Recent trends in hardware design towards multi-core and multi-processor systems, computer
clusters, and supercomputers call for the development of dedicated parallel algorithms in order
to exploit the full potential of these architectures. In this paper we focus on the evaluation of
different parallelization schemes for SAT modulo theories (SMT) solvers.

The propositional satisfiability problem (SAT) poses the question if a propositional formula is
satisfiable, i. e., if there is an assignment mapping values to the variables in the formula such
that the formula evaluates to true. SAT-solvers are devoted to solve such questions.

Extending the propositional logic by embedding some theories, e. g., equalities, uninterpreted
functions, or theories over the reals, results in powerful logics and leads to the satisfiability
modulo theories (SMT) problem. SMT-solvers find applications in several verification domains,
for example in bounded model checking of hybrid systems, which serves us with benchmarks for
this paper.

In the last decade we could observe a massive increase in the efficiency of SAT- and SMT-
solvers. This success was mostly due to new efficient heuristics for and optimizations of the
sequential SAT-solving algorithms. The most prominent examples are conflict-driven non-
chronological backtracking and the usage of watches.

Though SAT- and SMT-solvers are subject of highly active research, less work was done on
techniques for their parallelization. We can identify two steams in the area mentioned first: One
class of parallel solvers, such as [13, 4, 7, 3] splits the search space dynamically into disjoint

∗This work was partly supported by the German Research Council (DFG) as part of the Transregional Collabo-
rative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).
See www.avacs.org for more information.

1

parts and assigns them to the available processes/threads. In contrast, the other class utilizes a
competitive approach by combining solvers with different heuristics and/or parameters [10] in a
single portfolio. Either way, both approaches make use of exchanging information in order to
examine the search space faster.

One of the few available parallel SMT-solvers is a parallel version of Z3 [6], which supports
decidable theories like linear arithmetic, and which is based on the competitive approach [18]:
multiple solvers with different heuristics explore the state space in parallel.

Another parallel solver is our SMT-solver Picoso [12], which supports the first order theory
over the reals extended with transcendental functions. The logic is very powerful, and allows to
formalize properties of systems with continuous components, like hybrid systems. The price
of this power, however, is the loss of decidability. Picoso is based on the parallelization of the
iSAT satisfiability checking algorithm [9], which uses interval arithmetic (cf. e. g., [14]).

Picoso can split the search space on demand into disjoint parts, which are examined in parallel.
This approach has already been investigated in [12]. The contribution of this paper is the
extension of the solver to support also the competitive approach. Furthermore, we implemented
a combination of both parallelization approaches in such a way that the search space is split
into disjoint parts, each of which is examined using a different heuristic. We describe the
adaptation of the above parallelization schemes for Picoso, and give an experimental evaluation
for benchmarks from hybrid systems analysis using bounded model checking (BMC). The rest of
the paper is structured as follows: Section 2 introduces the iSAT satisfiability checking algorithm.
Section 3 describes Picoso and the implemented parallelization approaches. Section 4 presents
our experimental results. We conclude our paper in Section 6.

2 iSAT

The iSAT algorithm [9] checks satisfiability of formulae being the boolean combination of
boolean variables and possible non-linear (including transcendental) arithmetic constraints
over bounded reals and integers. This algorithm tightly integrates SAT-solving based on the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [5] and interval constraint propagation
(see e. g. , [2]) enriched by enhancements like conflict-driven learning and non-chronological
backtracking.

iSAT formulae The input language of iSAT consists of arbitrary boolean combinations of
boolean variables (propositions) and non-linear arithmetic constraints over the reals and integers.
For simplicity, we restrict ourselves in this paper to the real domain.1

By the front-end of our constraint solver, these formulae are rewritten into equi-satisfiable
formulae in conjunctive normal form (CNF, a conjunction of clauses, each clause being the
disjunction of literals, whereas literals are possibly negated propositions and real constraints).
This rewriting applies the Tseitin-transformation [17].

Furthermore, all arithmetic constraints get decomposed into simpler (in)equations containing
at most 3 variables. This happens by introducing additional auxiliary variables for all inner
nodes of the constraint expressions. For example, sin (x · y) ≤ 2 gets decomposed into x · y = h1

∧ sin h1 = h2 ∧ h2 ≤ 2, where h1 and h2 are fresh auxiliary variables. After this transformation
the resulting equi-satisfiable formula contains (1) equations between a variable and a unary
(e. g., sin h1 = h2) or binary (e. g., x · y = h1) operator expressions over variables and (2) bounds
on variables (e. g., h2 ≤ 2).

1Since we assume that the variable domains are all restricted by both upper and lower bounds, the integer
case reduces to finite domains, and is therefore decidable. Note that boolean variables can be represented as
integers with domain [0, 1].

The iSAT algorithm Propositional SAT-solvers basically execute a loop consisting of (1)
making a decision, (2) propagating the decision, and (3) if a conflict occurred, resolving the
conflict.

Let us explain the SAT-procedure on an example. Assume a problem consisting of two clauses
(x ∨ y) ∧ (x ∨ y), where y stands for the negation of y. A solver could decide to search first for
solutions with x being false. Using the clause (x ∨ y), the solver would propagate that, under
the current decision, y must be true. Similarly, with (x ∨ y) it would propagate that y should
be false, leading to a conflict. Modern solvers use a resolution-based conflict analysis procedure
to resolve a conflict. The analysis yields a new clause called a conflict clause, that gets added
to the formula in order to prevent the solver from running into the same conflict again. In the
above example the solver would undo its decision about x and learn the conflict clause (x),
which now leads the search into the other half of the search space.

Since the domain is finite, the method is complete, i. e., either the solver finds a conflict-free
assignment, or after having tried all necessary cases, it concludes that the formula is unsatisfiable.

Now, let us switch from the propositional to the real domain. Usually, SMT-solvers adapt
the SAT-solving mechanism and combine it with other decision procedures for the given theory.
However, the logic we deal with is undecidable, so there is no (complete) decision procedure we
could embed.

The iSAT algorithm manipulates interval valuations, assigning an (open or closed, possibly
also point) interval from the real domain, a so-called box, to each variable, within which it
currently searches for a satisfying solution. Initially, all variables are bounded by an initial box.
A decision in iSAT consists of splitting a box into two halves, and deciding in which one to
search first. Propagation can, similarly to the propositional case, restrict the possible variable
values under the current decisions, leading to smaller boxes. A conflict occurs when the box
of a variable becomes empty. Similarly to the propositional case, iSAT learns a conflict clause
that prevents the solver from future conflicts having the same “reason”.

Let us again use a simple example for illustration. Let (x = y + z ∨ x > 8.0) be a clause
and let the current boxes for x, y, and z be [−5.0, 10.0], [3.2, 3.8], and [4.2, 5.0], respectively.
Assume that the solver decides to split the box of x at 8.0 and to search first for solutions from
[−5.0, 8.0]. By propagation, iSAT would recognize that the literal x > 8.0 cannot be satisfied
by any values from the box of x, and thus the literal x = y + z must be fulfilled in order to
satisfy the clause under the current decisions. From x = y + z we know that the value of x
must be in the interval of y + z, i. e., in [3.2 + 4.2, 3.8 + 5.0] = [7.4, 8.8]. By the intersection
with the current box [−5.0, 8.0] of x, we can compute a new, tighter interval for x without the
loss of any possible solutions, namely [7.4, 8.0]. We can further deduce from the redirection
z = x− y that z must be in [7.4− 3.8, 8.0− 3.2] = [3.6, 4.8] yielding the new box [4.2, 4.8] for z.
Such deduced new interval bounds may trigger further propagation steps. For efficiency and
termination reasons, we avoid long interval propagation chains with just negligible progress:
the propagation stops if a fixed point is reached or the progress of the newly deduced intervals
becomes negligible.

Due to undecidability, iSAT terminates with one of three possible answers: (1) it reports
satisfiability if it finds an interval valuation (which can also consist of point intervals) such that
all values from all intervals satisfy the formula, or (2) it reports unsatisfiability if all branches
lead to conflicts, or (3) it reports a valuation containing a potential solution.

Note that having the possibility of an “unknown”-answer, like the potential solution, is
unavoidable due to the undecidability of the logical domain. The source of such potential
solutions is the following: In general, equations like x = y · z can only be satisfied by point
intervals. However, reaching such point intervals by propagation cannot be guaranteed for
continuous domains. One option to mitigate this problem is to stop the search when all intervals
have a width smaller than a certain threshold, the so-called minimal splitting width, and to
return the found potential solution.

In [9] a comparison between iSAT and ABSolver [1], the only other SMT-based solver

addressing the domain of boolean combinations of non-linear arithmetic constraints over the
reals, is given. The results clearly outline, that iSAT yields orders of magnitude of speedup
compared to ABSolver, making it the number one choice for the algorithmic core of a parallel
solver, tackling the particular domain considered here.

3 Picoso

In this section we present in detail two conceptually different possibilities for efficient paral-
lelization of the SMT solver iSAT and their combination, yielding three different parallel solver
versions.

The first one, PicosoS (S for split), exploits parallelism by splitting the search space on demand
into disjoint parts. These parts are examined in parallel by different clients but using the same
variable ordering heuristic. PicosoS achieves load balancing by dynamic work stealing based on
the concepts of guiding paths and a volume-based heuristic: If one client gets idle, then it steals
a portion of work in form of a still unevaluated subproblem from another busy client.

PicosoAP (AP for algorithm portfolio) exploits parallelism by competition, thereby combining
copies of the sequential iSAT-solver in a static algorithm portfolio. All processes in PicosoAP

solve the whole problem in parallel with different variable ordering heuristics but without
problem splitting.

The third version, PicosoS+AP, is the combination of both the competition and the search
space splitting strategies. It employs dynamic partitioning of the search space based on work
stealing, whereby each client uses a different variable ordering heuristic. In all three versions of
Picoso the clients share information in form of conflict clauses.

The implementation of PicosoS, PicosoAP, and PicosoS+AP follows the well-known master/slave
(client) model. There is a parameterizable number of clients performing the search process and
a master process, which acts as a coordinator.

Whereas PicosoS was already investigated in [12], the novelty is the implementation and the
evaluation of PicosoAP and PicosoS+AP. To make the paper self-contained we summarize in the
next subsection the implementation of PicosoS.

3.1 PicosoS: Parallelization by Search Space Splitting

In PicosoS several clients (copies of iSAT) with the same heuristic perform the search process.
A master process manages the work distribution and controls the communication of conflict
clauses among the clients. Communication is centralized: there is no direct communication
between the clients, only between the master and the individual clients.

During the initialization phase all available clients read the same input formula and store the
problem clauses in their local database. The first client starts to solve the entire problem. All
other clients are idle and send work requests to the master.

When receiving a work request, the master selects a non-idle client (based on volume a
heuristic as described in detail in [12]) and asks it for a subproblem that has still to be solved.
The selected client determines such a subproblem according to the mechanism described below,
and sends it to the master which transfers it to the idle client. During the search process this
kind of work stealing is performed whenever a client has finished solving its current subproblem
with the result “unsatisfiable” and is run out of work.

Similarly to the sequential solver, PicosoS terminates (1) with “unsatisfiable”, if all clients are
idle, (2) with “satisfiable”, if a client was able to find a model, or (3) with “potential solution”,
if a client found a potential solution.

In the following we describe how the new subproblems are split off.

Problem Splitting The basic idea is to extend the concept of guiding paths, first introduced
in [19] for parallel SAT-solvers, to the richer and more complex framework of SMT solving. In

x ∈ [0, 6] y ∈ [2, 6] z ∈ [−1, 4]

Initial Intervals

Implication
x ∈ (3, 6]

x ∈ [0, 3] Client 1

Client 2
Decision

Figure 1: Search space partitioning at interval splitting points in PicosoS

our setting, a guiding path describes the current search process of a client solver, extended with
some information about which subproblems still need to be solved.

More formally, a guiding path of a solver is a sequence of bounds, consisting of all decisions
and propagated implications in chronological order with a flag attached to each sequence element.
The flag of a sequence element stores whether the subproblem corresponding to the subsequence
up to this element combined with the negation of this particular element still needs to be
checked. A new decision appends the chosen bound to the guiding path with its flag set to true,
since the decision is a box split, and the other half of the split box has not been handled yet.
Bounds which are implied by propagation are consequences of earlier decisions. Consequently,
the combination of earlier decisions with the negation of an implied bound is conflicting and
does not need to be checked: They are appended to the guiding path with the flag set to false.
In case of a conflict, backtracking removes also the undone decisions and implications from the
guiding path.

When a client is asked by the master for a subproblem, it is in principle free to pick any
bound with a true flag from its own guiding path to generate a new unevaluated subproblem.
However, for different reasons it is a good policy to select the top-most one (but other choices
would also be conceivable). The search space division is performed by returning to the master
the subproblem consisting of all bounds on the guiding path preceding the chosen bound as well
as the complement of the chosen bound. Since another client will solve this subproblem, the
sending client sets the flag of the selected bound to false. The client receiving the generated
subproblem sets all flags in its initial guiding path to false.

To illustrate the generation of subproblems as it is done in PicosoS, assume we have two
clients and a formula, consisting of three real-valued variables x, y, and z with initial intervals
x ∈ [0, 6], y ∈ [2, 6], and z ∈ [−1, 4]. Figure 1 shows this scenario. After determining the
implications forced by the initial intervals for x, y, and z, the first client starts the search process
by making a decision, e. g., splitting the interval of x into x ∈ [0, 3] and x ∈ (3, 6], and deciding
to evaluate the branch x ∈ [0, 3] first. This decision can be represented by the bound x ≤ 3
with flag true. As a consequence, the guiding path of the first client is as follows:

GP1 = [(x ≥ 0, false), (x ≤ 6, false), (y ≥ 2, false), (y ≤ 6, false),

(z ≥ −1, false), (z ≤ 4, false), (x ≤ 3, true)]

Client 2 is still idle and sends a work request to the master process, which asks client 1 to
provide an unevaluated subproblem. As described before, client 1 picks all bounds preceding
the first simple bound with a true flag (x ≤ 3) and the complement of that particular bound
(x > 3) to specify a new subproblem:

GP2 = [(x ≥ 0, false), (x ≤ 6, false), (y ≥ 2, false), (y ≤ 6, false),

(z ≥ −1, false), (z ≤ 4, false), (x > 3, false)]

As can be seen, GP2 contains the two bounds x ≥ 0 and x > 3. Since the latter one is stronger
than the first one, x ≥ 0 can be removed from the guiding path, resulting in:

GP ′
2 = [(x ≤ 6, false), (y ≥ 2, false), (y ≤ 6, false),

(z ≥ −1, false), (z ≤ 4, false), (x > 3, false)]

Finally, client 1 sets the flag of x ≤ 3 to false and sends GP ′
2 to the master, which forwards

it to client 2. In contrast to the boolean case, guiding paths usually contain atoms which are
implied by other atoms on the guiding path (like x ≥ 0 and x > 3 in the example above). They
are redundant and therefore removed automatically by the ceding client in order to reduce the
size of the message.

3.2 PicosoAP: Algorithm Portfolio Design

When the solver wants to split the box of a variable, a variable ordering heuristic is used to
determine that variable. The performance of iSAT on different problem instances depends
heavily on the chosen heuristic. Since none of the available heuristics performs well on all classes
of problems, executing different heuristics competitively in parallel is a promising approach to
make the solver more robust. The combination of different variable ordering heuristics in an
algorithm portfolio may result in better performance than the one which can be obtained by a
single heuristic.

General Architecture and Communication Structure During the initialization phase each
client reads the whole problem and starts the search using a different variable ordering heuristic.
The first client that finishes the search process determines the termination time of the portfolio.
This client sends a finish message to the master and reports the result of the search. When
receiving a finish message, the master stops all clients.

Variable Ordering Heuristics We have implemented several decision heuristics for the selection
of the next variable whose domain will be split into two sub-intervals. From the supported
heuristics we selected the 4 most successful ones to be considered in this paper:
• The Natural heuristic uses a static order which does not change during the solution process.
The order is determined by the order of variable creation. In our solver, the variables occurring
in the declaration are created first, then the auxiliary variables generated during the Tseitin
transformation and, at last, the auxiliary variables for arithmetic expressions (see Section 2).

• The BF+VSIDS heuristic splits boolean variables first (BF, Boolean First). If there is a choice
between boolean variables, the Variable State Independent Decaying Sum (VSIDS) heuristic
is used to select one of them. VSIDS prefers those variables which were recently involved in
conflicts. To have a measure for this property, VSIDS assigns an activity to each variable. For
each conflict, the activities of those variables which played a role in the conflict resolution get
increased by an increment value. To put larger weight on recent conflicts, the increment value
increases with each conflict. The activities and the increment value are scaled down from time to
time to prevent an overflow. For each decision, the variable with the highest activity is selected.

Though the approaches are similar, there is a difference between the VSIDS heuristic for
iSAT and for SAT-solving. In SAT-solving a decision assigns a value to a variable, and thus the
same variable cannot be chosen twice without an intermediate conflict. In iSAT a decision only
splits the box of a variable, and the same decision variable can be taken several times without
any conflict. Since the activities do not change when no conflict occurs, we want to avoid that
the most active variable is selected for all decisions until a conflict happens. Therefore we attach
to each variable a counter that keeps track of how often the variable acted as a decision variable
since the last conflict, and we put an upper bound on the counter value of decision variables.
We reset those counters when a conflict occurs or if all of them exceed the upper bound.

• The VSIDS+BF heuristic selects the variable with the highest activity according to the VSIDS
heuristic. If there are several candidates with the same activity, boolean variables are preferred.

• The static BMC-Forward heuristic sorts variables according to the timeframe they belong to.
The boxes of variables describing the initial configuration are split first, then those describing
the state after one transition and so on.

3.3 PicosoS+AP: Combination of Search Space Splitting and Algorithm
Portfolio Design

In order to improve the robustness of the search space division approach, PicosoS has been
modified to use the four different heuristics described in Section 3.2. At the beginning of the
search we assign to each solver client one fixed heuristic. Then the clients proceed with a
traversal of the search space as described in 3.1.

3.4 Sharing of Conflict Clauses

In sequential SAT-solving learning plays a very important role to prune the search space.
Generating and recording information in form of conflict clauses (also referred to as lemmas)
prevents the solver from visiting those parts of the search space that can be inferred to contain
no satisfying assignment. Thus, exchanging lemmas generated by one client with the other
clients can help all clients to prune the unexplored search space faster and by this to improve
the overall parallel solver performance. Nevertheless, exchanging conflict clauses is associated
with a communication overhead. Therefore in PicosoS , PicosoAP and PicosoS+AP clients share
only “short” conflict clauses, having a length less or equal to 6.

4 Experimental Results

The experiments were performed on a machine with four 2.3 GHz AMD processors and 32 GByte
of main memory, running Ubuntu 8.04.1x86 64 GNU/Linux. We set a time limit of three hours
for all experiments. The communication has been realized using MPICH2, an implementation
of the Message Passing Interface standard [15].

Benchmarks. For our measurements, we used a set of seven non-linear and one linear BMC
benchmarks. The non-linear ones are (1) a controller for train separation [11], (2) a model
of the discrete-continuous behavior of a golf ball on a miniature golf course, (3) a collision
avoidance protocol for air traffic management [16], (4) a model of a car parking assistant,
(5) an asynchronous arbiter modeled at the circuit level, (6) an oscillator circuit, and (7) a bus
protocol, where BMC is applied to check invariants of UsbPhy (Universal Serial Bus). The
linear benchmark models an elastic distance control of trains running on the same track [8].

For all benchmarks we created input formulae for the solvers by unrolling the modeled
transition systems a certain number of times. Thereby, we selected those successive depths for
which all sequential solvers with different heuristics need at least 5 s to compute a result and for
which at least one of the solvers (sequential or parallel version) does not exceed the time limit.
The final number of benchmark instances is 65. The solver runs for different unrolling depths
are independent from each other, i. e., no information (e. g., about conflicts) is shared between
different unrolling depths.

Solvers. We compare four different variants of our solver: 1) iSAT is the sequential version
which uses only one process and a fixed decision heuristic. 2) PicosoS is a parallel solver with a
parameterizable number of client processes. They split the search space into disjoint parts and
solve the subproblems in parallel using the same pre-defined decision heuristic. 3) PicosoAP is
also a parallel solver with a parameterizable number of processes. All processes in PicosoAP

solve the whole problem in parallel applying different heuristics, but without problem splitting.
4) In PicosoS+AP the search space is split dynamically into disjoint parts.

In all parallel versions, namely in PicosoAP , PicosoS and PicosoS+AP , the clients cooperate
with each other by exchanging derived conflict clauses.

Experimental Results. For the experimental results we have run the sequential solver iSAT
and the parallel solver PicosoS with each of the 4 available heuristics. Furthermore we have

Solver #Solved
∑

Time [s] Average time
∑

Time [s]
instances for all solved over all solved for the 31 instances

(out of 65) instances instances solved by all solvers

iSATNatural 49 31806.09 649.10 13152.30
iSATBF+VSIDS 38 19497.64 513.10 4753.40
iSATVSIDS+BF 46 30762.41 668.75 7340.20
iSATBMC-Forward 55 59728.75 1085.98 12078.28
PicosoS

Natural 60 65345.88 1089.10 2151.46
PicosoS

BF+VSIDS 43 29935.43 696.17 2994.33
PicosoS

VSIDS+BF 52 28002.18 538.50 2172.14
PicosoS

BMC-Forward 60 60533.67 1008.89 3305.94
PicosoS+AP 63 40631.89 644.95 1639.21
PicosoAP 64 43660.72 682.20 1399.88

Table 1: Experimental results for different solver configurations

run PicosoAPand PicosoS+AP. All the parallel solvers were run with four clients and one master
process, since only four sufficiently different decision heuristics are available.

Information about the time consumption of the different solver variants is given in Table 1.
The first column specifies the solver. The second column shows the number of instances that
could be solved before the time limit was exceeded, and the third one gives the sum of the
running times for all successfully solved instances (without adding up the time limit for the
unsolved instances). The fourth column lists the average running time for the successfully solved
instances. There were 31 instances that could be solved by all solvers. To get more comparable
data and better impression about the solvers’ efficiency, the sum of the running times for those
31 instances is given in the fifth column.

The first observation we make is that PicosoS is superior to iSAT with respect to the number
of solved instances. Furthermore, the portfolio solver PicosoAP listed in the last line is able to
solve more problem instances than the iSAT and PicosoS solvers.

The sum of the running times increases when more instances are solved. This holds also for
the average time, since those instances that could not be solved by all solvers are of course
the harder problems. As the portfolio solvers solve more of those hard instances, the fact that
the average running time of the portfolio solvers is in the lower area of the average running
times of the iSAT and PicosoS solvers shows, that the portfolio solvers are actually faster. This
conclusion can be seen more directly in the last column, listing the sum of the running times for
those 31 instances that could be solved by all solvers.

Figure 2(a) considers only those 31 instances and shows the comparison of PicosoS with the
same heuristics for each process and PicosoS+AP, where the clients apply different heuristics
to solve unevaluated subproblems. Thereby the vertical axis (time [s]) gives the sum of the
running times for all at the horizontal axis registered instances. As expected, we can observe
that PicosoS+AP is faster than all other PicosoS versions.

Figure 2(b) visualizes the results, again only for the 31 common instances, for the different
portfolio solvers. The figure shows us that PicosoAP is more robust than the other solver
PicosoS+AP, and that it achieves the best results. It is able to solve problems faster and, as
shown in Table 1, it can solve one more instance.

Table 2 shows the speedups yielded by the different parallel algorithms w.r.t. the sequential

iSAT versions. The speedup values are defined as
P

b∈B tseq(b)P
b∈B tpar(b)

, where B is the set of benchmarks

successfully solved by both compared solvers, and while tseq(b) and tpar(b) denote the running
times of the sequential and of the parallel solver for benchmark b ∈ B.

PicosoAP provides a good speedup between 3.39 and 9.39 depending on the heuristic chosen
for the sequential iSAT. The second best variant, PicosoS+AP, still provides a good speedup
between 2.89 and 8.02. Since we used 4 solver clients and one master, the medium results
indicate a linear speedup.

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30

ti
m

e
 [

s
]

benchmarks

Picoso
S

Natural

Picoso
S

BF+VSIDS

Picoso
S

VSIDS+BF

Picoso
S

BMC-Forward

Picoso
S+AP

(a) Comparing different PicosoS versions

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30

ti
m

e
 [

s
]

 # benchmarks

Picoso
S+AP

Picoso
AP

(b) Comparing different PicosoAP versions

Figure 2: Comparison of PicosoS and PicosoAP

Solver iSATNatural iSATBF+VSIDS iSATVSIDS+BF iSATBMC-Forward

PicosoS
Natural 6.11 2.20 3.41 5.61

PicosoS
BF+VSIDS 4.39 1.58 2.45 4.03

PicosoS
VSIDS+BF 6.05 2.18 3.37 5.56

PicosoS
BMC-Forward 3.97 1.43 2.22 3.65

PicosoS+AP 8.02 2.89 4.47 7.36
PicosoAP 9.39 3.39 5.24 8.62

Table 2: Speedups of the parallel version compared to the sequential solver

Our results outline that the combination of different heuristics for parallel SMT solvers
can dramatically improve the performance and robustness. In our experiments, the algorithm
portfolio design solver PicosoAP achieves the best results. There are at least two reasons for
its success. Firstly, solvers, especially for the non-linear domain, are very sensitive to changes
in the decision heuristics. If one heuristic performs well on a given benchmark, it is better
to use this good heuristic for the whole problem, as it is done by PicosoAP, and not to use
different heuristics for different subproblems, as it is the case for PicosoS+AP. Secondly, PicosoAP

produces less communication overhead compared to the search space splitting variants, since we
do not need to spend time for sending and receiving subproblems.

5 Future work

The scalability of the algorithm portfolio approach is limited by the number of available heuristics
and/or parameters. Also for the search space division approach, we expect that linear speedup
is not possible for a large number of processors due to the communication overhead. In future
work we therefore plan to combine the competitive and the search space division approaches in
Picoso.

Currently, we have already finished the first prototype for a combination of both approaches.
In its implementation we combine several PicosoS solvers in a portfolio. One PicosoS solver
manages a number of clients which employ the same decision heuristic. Different PicosoS solvers
have different heuristics; together they constitute a portfolio. All PicosoS solvers are able to
distribute conflict clauses among each other and maintain their own master, which is responsible
for work distribution and lemma exchange. All clients that belong to the same PicosoS solver
explore disjoint parts of the search space with the same heuristic. The portfolio terminates
as soon as one of the PicosoS solvers has finished the traversal of the search space. First
experimental results with this version are very promising.

As another possibility we plan to divide the search space dynamically into disjoint parts
and to let the processors solve the consequent parts competitively in parallel with different
heuristics. This reduces the communication between processors because the search space is split

into fewer parts. But, since the same subproblem is then solved by several solver instances using
different heuristics, the guiding path concept has to be generalized in order to split off further
subproblems when a set of processors becomes idle.

6 Conclusion

The results in this paper show that an SMT-solver for non-linear arithmetic can be parallelized
efficiently using two conceptually different techniques: by search space division and by an
algorithm portfolio approach. Thereby the use of different heuristics and lemma exchange is
essential to improve the performance and the robustness of the parallel SMT solver.

References
[1] A. Bauer, M. Pister, and M. Tautschnig. Tool-support for the analysis of hybrid systems and models. In

Int’l Conf. on Design, Automation, and Test in Europe (DATE), pp. 924–929, San Jose, CA, USA, 2007.
EDA Consortium.

[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints. In Handbook of Constraint
Programming, Foundations of Artificial Intelligence, chapter 16, pp. 571–603. Elsevier, Amsterdam, 2006.

[3] W. Chrabakh and R. Wolski. GridSAT: a system for solving satisfiability problems using a computational
grid. Parallel Computing, 32(9):660–687, 2006.

[4] G. Chu and P. J. Stuckey. PMiniSat – a parallelization of MiniSAT 2.0. Technical report, Department of
Computer Science and Software Engineering, University of Melbourne, Australia, Mar. 2008.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Comm. of the ACM,
5:394–397, 1962.

[6] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In 14th Int’l Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), vol. 4963 of LNCS, pp. 337–340, 2008.

[7] Y. Feldman, N. Dershowitz, and Z. Hanna. Parallel multithreaded satisfiability solver: Design and
implementation. ENTCS, 128(3):75–90, 2005.

[8] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model checking of hybrid systems.
Formal Methods in System Design, 30:179–198, 2007.

[9] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient solving of large non-linear arithmetic
constraint systems with complex boolean structure. Journal on Satisfiability, Boolean Modeling, and
Computation, 1, 2007.

[10] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean
Modelling and Computation, 6:245–262, 2009.

[11] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of hybrid systems using HySAT. In Int’l Conf. on
Systems (ICONS), pp. 196–201. IEEE CS, 2008.

[12] N. Kalinnik, T. Schubert, E. Ábrahám, R. Wimmer, and B. Becker. Picoso – A parallel interval constraint
solver. In H. R. Arabnia, editor, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, NV, USA, July 2009. CSREA Press.

[13] M. D. T. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In Asia and South Pacific Design
Automation Conference, pp. 926–931. IEEE CS, 2007.

[14] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, USA, 1966.
[15] M. Snir, S. Otto, D. Walker, J. Dongarra, and S. Huss-Lederman. MPI: The Complete Reference. MIT

Press, 1995.
[16] C. Tomlin and S. Sastry. Conflict resolution for air traffic management: A study in multi-agent hybrid

systems. IEEE Trans. on Automatic Control, 43:509–521, 1998.
[17] G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics

and Mathematical Logic, Part 2, pp. 115–125, 1970.
[18] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. A concurrent portfolio approach to SMT solving. In

A. Bouajjani and O. Maler, editors, 21st Int’l Conf. on Computer Aided Verification (CAV), vol. 5643 of
LNCS, pp. 715–720, Grenoble, France, 2009.

[19] H. Zhang, M. P. Bonacina, and J. Hsiang. PSATO: A distributed propositional prover and its application
to quasigroup problems. Journal of Symbolic Computation, 21(4):543–560, 1996.

