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Abstract. In this paper we investigate the generation of counterexamples
for discrete-time Markov chains (DTMCs) and PCTL properties. Whereas
most available methods use explicit representations for at least some
intermediate results, our aim is to develop fully symbolic algorithms. As
in most related work, our counterexample computations are based on
path search. We first adapt bounded model checking as a path search
algorithm and extend it with a novel SAT-solving heuristics to prefer
paths with higher probabilities. As a second approach, we use symbolic
graph algorithms to find counterexamples. Experiments show that our
approaches, in contrast to other existing techniques, are applicable to
very large systems with millions of states.

1 Introduction

Model checking is a very successful technique to automatically analyze the
correctness of a system. During the last two decades, a lot of work has been done
to develop model checking techniques for different kinds of systems like digital
circuits, hybrid and probabilistic systems.

One feature which made model checking for digital circuits a standard tech-
nology in industry is the ability to deliver a counterexample if a desired property
is violated. Counterexamples, which provide an explanation for the violation,
are indispensable for reproducing and fixing errors in the design. They are also
crucial for so-called CEGAR frameworks [1,2], in which the system is abstracted
for verification. In case the abstraction is too coarse, verification might yield a
spurious counterexample, which is used to refine the abstraction accordingly.

This paper addresses counterexample generation for probabilistic systems
modeled as discrete-time Markov chains (DTMCs) and properties formalized in
the logic PCTL [3]. Standard model checking algorithms for PCTL properties
of DTMCs are based on probabilistic reachability analysis: they compute the
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probability of reaching a given set of states by solving a linear equation system [4].
However, if a PCTL property is violated, e. g., if the probability to reach a set of
unsafe states is larger than a certain value, these model checking algorithms are
not able to return any information about the reason of the violation.

Therefore, in the last few years intensive research was carried out to develop
methods which allow to generate counterexamples for PCTL properties of DTMCs.
For digital circuits a single execution that leads from an initial state to a safety-
critical state suffices as a counterexample, for DTMCs a set of such executions
is required whose cumulated probability mass exceeds the maximally tolerated
value. While some of the available counterexample generation methods [5,6,7,8]
represent counterexamples as such sets of paths, other methods use alternative
representations: Counterexamples are represented as regular expressions in [8]
and as winning strategies for probabilistic games in [9,10]. In [11], abstractions of
strongly connected components of DTMCs are used. Most relevant for our work
is the representation of counterexamples as paths of a subsystem of the given
DTMC [12,13,14]. In [13] we proposed two methods to build such subsystems.
The global search starts with an empty subsystem, searches incrementally for
paths to be included and extends the subsystem with the states along the paths
and all induced transitions until the subsystem is large enough to violate the
given property. The local search not only finds further violating paths but also
path fragments which connect parts of already included paths.

Practically relevant systems are often too large to be represented explic-
itly, i. e., by enumerating all the states and transitions. To overcome this prob-
lem, large DTMCs can be represented symbolically by binary decision diagrams
(BDDs) [15,16]. Sets of states and transitions are encoded by acyclic graphs,
with the elements in the set being represented by paths in the graph. Symbolic
representations are often smaller by orders of magnitude than explicit ones.

Symbolic model checking has been successfully established for DTMCs [17,18].
However, there is still a lack of symbolic algorithms for counterexample generation.
In order to take full advantage of efficient representations of DTMCs and path sets,
the applied path search methods should work on symbolic representations without
using any explicit representations for intermediate results. In [5,6] approaches for
symbolic counterexamples are presented, but all paths forming a counterexample
are enumerated explicitly. For very large systems, this approach is not scalable,
as (1) a counterexample may consist of a very large or even infinite number of
paths. Their explicit representation has to be computed which may consist of
a very large number of states. An alternative symbolic path search algorithm
was introduced in [7]. This algorithm calculates the k most probable paths of a
symbolically represented DTMC. Although this algorithm is well-suited for fully
symbolic counterexample generation, due to some auxiliary data structures, the
memory requirements increase strongly with increasing k.

As mentioned above, most of the available counterexample generation ap-
proaches for DTMCs apply path search algorithms (e. g., k shortest paths search [8]
or heuristic search [12]). A suitable path search method which works on symbolic
system representations is bounded model checking, encoding paths of a given



length from the initial state of a DTMC to a target state by a formula such that
each satisfying solution corresponds to such a path. In [5,6], counterexamples are
generated by searching for solutions until enough paths have been found to form
a counterexample. The method in [5] encodes paths without their probabilities
in propositional logic and uses SAT-solving to find satisfying solutions. A disad-
vantage of this method is that it finds paths with fewer steps first, in contrast
to more probable ones. The approach [6] uses SMT-solving to search for paths
having at least a given minimal probability, which leads to longer running times
while more probable paths are found earlier.

In this paper we first adapt SAT-based bounded model checking to support the
ideas of local and global search from [13] and suggest a heuristic for SAT-solving
that allows to influence the SAT search to find more probable paths first, without
the need to invoke SMT-solving. Furthermore, we do not restrict the search to
paths of a fixed length as suggested by standard bounded model checking, but
search for paths whose length is between a given lower and upper bound.

As a second approach, we propose in this paper novel fully symbolic methods
based on BDDs for the generation of counterexamples for DTMCs and PCTL
properties. Our methods take as input a DTMC which is symbolically represented
by BDDs. The counterexample computation uses the algorithm from [7] to find
most probable paths of a DTMC. In our first BDD-based method, we combine
the symbolic k-shortest path search with the idea of global search from [13] to
compute a symbolically represented subsystem of the original DTMC, whose
paths form a counterexample. However, this suffers from very high memory
consumption, while by not enumerating the paths some computation time can be
saved. As our best approach, we adapt the idea for local search, also presented
in [13] which is applicable to systems with up to 1.2 · 108 states.

The contribution of this paper is the development of fully symbolic algorithms,
which overcome the main disadvantages of previous approaches:

– No explicit representation of states is needed during the counterexample
generation. This is crucial for handling large systems.

– In comparison to other approaches we are now able to generate counterexam-
ples for systems with millions of states.

– As in [12,13] the counterexample is not represented by an enumeration of
paths which yields a counterexample that is smaller by orders of magnitude.

In the next section we briefly introduce some theoretical foundations. Section 3
describes the general framework of our symbolic methods for counterexample
generation. The usage of SAT-based path search is described in Section 4 and the
application of BDD-based graph search algorithms in Section 5. These methods
are evaluated experimentally on some case studies in Section 6. We conclude our
work and discuss future work in Section 7.

2 Preliminaries

We introduce the basic definitions and concepts used in this paper. For more
details we refer to [4].



2.1 Discrete-Time Markov Chains and Critical Subsystems

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = (S, I, P, L)
with S being a finite set of states, I : S → [0, 1] ⊆ R with

∑
s∈S I(s) ≤ 1 an initial

distribution, P : S × S → [0, 1] ⊆ R a matrix of transition probabilities such that∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S, and L a labeling function with L : S → 2AP

with AP a denumerable set of atomic propositions.

Please note that we allow sub-stochastic distributions
∑
s∈S I(s) ≤ 1 and∑

s′∈S P (s, s′) ≤ 1 for all s ∈ S. Usually, these sums of probabilities are required
to be exactly 1. This can be obtained by defining M ′ = (S ∪ {s⊥}, I ′, P ′, L′)
with s⊥ a fresh sink state such that for all s, s′ ∈ S we have I ′(s) = I(s) and
I ′(s⊥) = 1 −

∑
s∈S I(s), P ′(s, s′) = P (s, s′), P ′(s, s⊥) = 1 −

∑
s′∈S P (s, s′),

P ′(s⊥, s⊥) = 1 and P ′(s⊥, s) = 0, and finally L′(s) = L(s) and L′(s⊥) = ∅.
For simplicity, in the following we restrict ourselves to DTMCs (S, I, P, L) hav-

ing a single initial state sI ∈ S with I(sI) = 1 and use the notation (S, sI , P, L).
Note that every DTMC having an arbitrary initial distribution can be transformed
to this form by adding a fresh unique initial state.

Assume in the following a DTMC M = (S, sI , P, L). We say that there is
a transition (s, s′) from a state s ∈ S to a state s′ ∈ S iff P (s, s′) > 0. A path
of M is a finite or infinite sequence π = s0s1 . . . of states si ∈ S such that
P (si, si+1) > 0 for all i. We call the transitions (si, si+1) to be contained in the
path π, written (si, si+1) ∈ π. We write πi for the ith state on path π; its position
is called depth. The length of a finite path π = s0 . . . sn is the number n of its
transitions.

We write PathsMinf for the set of all infinite paths of M , and PathsMinf (s) for

those starting in s ∈ S. Analogously, PathsMfin is the set of all finite paths of

M , PathsMfin(s) of those starting in s ∈ S, and PathsMfin(s, t) of those starting in
s ∈ S and ending in t ∈ S. A state t ∈ S is called reachable from another state
s ∈ S iff PathsMfin(s, t) 6= ∅.

The cylinder set of a finite path π of M is defined as Cyl(π) = {π′ ∈
PathsMinf |π is a prefix of π′}. To each state s ∈ S of M we associate the smallest

σ-algebra that contains all cylinder sets of all finite paths in PathsMfin(s). This

yields a unique probability measure PrMs (or short Pr) on the σ-algebra where
the probabilities of the cylinder sets are given by

Pr
(
Cyl(s0 . . . sn)

)
=

n−1∏
i=0

P (si, si+1) .

For finite paths π we set Prfin(π) = Pr
(
Cyl(π)

)
. For sets of finite paths

R ⊆ PathsMfin(s) we define Prfin(R) =
∑
π∈R′ Prfin(π) with R′ = {π ∈ R | ∀π′ ∈

R. π′ is not a prefix of π}.
The syntax of probabilistic computation tree logic (PCTL) [19] is given by4

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | P∼λ(ϕ U ϕ)

4 In this paper we only consider unbounded properties.



for (state) formulae with p ∈ AP , λ ∈ [0, 1] ⊆ R, and ∼ ∈ {<, ≤, ≥, >}. We
define the “finally”-operator ♦ and the “globally”-operator � in the usual way.

For a property P≤λ (ϕ1 U ϕ2) refuted by M , a counterexample is a set C ⊆
PathsMfin(sI) of finite paths starting in the initial state and satisfying ϕ1 U ϕ2

such that Prfin(C) > λ. For P<λ (ϕ1 U ϕ2), the probability mass has to be at
least λ. We consider only upper probability bounds; see [8] for the reduction of
lower bounds to this case.

The model checking and counterexample generation problems for P≤λ (ϕ1 U ϕ2)
can be recursively reduced to a reachability problem as follows: We transform
the DTMC M = (S, sI , P, L) to a DTMC M ′ = (S, sI , P

′, L) by removing all
outgoing transitions from states satisfying ¬ϕ1∨ϕ2, i. e., P ′(s, s′) = 0 if s satisfies
¬ϕ1 ∨ ϕ2 and P ′(s, s′) = P (s, s′) otherwise. Then M satisfies P≤λ (ϕ1 U ϕ2) iff
M ′ satisfies P≤λ (♦ϕ2). In the following we concentrate on this reduced problem.

Consider a DTMC M = (S, sI , P, L), a set of target states T ⊆ S and an
upper bound λ ∈ [0, 1] on the allowed probability to reach one of these target
states from the initial state sI . For notational convenience we write P≤λ(♦T )
for the property that the probability of reaching a target state from the initial
state is less or equal λ. We assume this property to be violated, i. e., the actual
probability of reaching T exceeds λ.

In [13] we proposed to represent counterexamples as so-called critical sub-
systems instead of large, possibly infinite sets of paths. Intuitively, a critical
subsystem is a part of the original system in which the given probability bound
is already exceeded.

Definition 2. A subsystem of a DTMC M = (S, sI , P, L) is a DTMC M ′ =
(S′, sI , P

′, L′) such that S′ ⊆ S, sI ∈ S′, P ′(s, s′) ∈ {P (s, s′), 0} and L′(s) = L(s)
for all s, s′ ∈ S′. We call such a subsystem M ′ of M critical for T ⊆ S and
λ ∈ [0, 1] ⊆ R iff S′ ∩ T 6= ∅ and the probability to reach a state in S′ ∩ T from
sI in M ′ is larger than λ.

Note that the set of all paths leading from the initial state sI to the set of
target states T inside the critical subsystem forms a counterexample.

2.2 Symbolic Representation of DTMCs

In this paper we use symbolic representations of DTMCs and generate symbolic
critical subsystems. Explicit means that the transition probabilities are repre-
sented as a sparse matrix, which contains one entry per transition with non-zero
probability. This representation is used, e. g., by the probabilistic model checker
Mrmc [20]. A symbolic DTMC representation encodes state and transition sets,
e. g., as paths in a graph or as solutions of a certain formula. Symbolic represen-
tations are often smaller by orders of magnitude than the explicit ones and allow
to reduce not only the memory consumption but also the computational costs
for operations on the data structures.

As a symbolic data structure for the representation of DTMCs we choose
binary decision diagrams [15] and multi-terminal binary decision diagrams [16].



Definition 3. Let Var be a set of Boolean variables. A binary decision diagram
(BDD) over Var is a rooted, acyclic, directed graph B = (V, nroot, E) with a finite
set V of nodes, a root node nroot ∈ V and edges E ⊆ V × V . Each node is either
an inner node or a leaf node. Leaf nodes n ∈ V have no outgoing edges and
are labeled with label(n) ∈ {0, 1}. Inner nodes n ∈ V have exactly two successor
nodes, denoted by hi(n) and lo(n), and are labeled with a variable label(n) ∈ Var.

A multi-terminal binary decision diagram (MTBDD) is like a BDD but it
labels leaf nodes n ∈ V with real values label(n) ∈ R.

Let B be a BDD over Var and V(Var) =
{
ν : Var → {0, 1}

}
the set of all

variable valuations. Each ν ∈ V(Var) induces a unique path in B from the root to
a leaf node by moving from each inner node n to hi(n) if ν(label(n)) = 1 and to
lo(n) otherwise. A BDD B represents a function fB : V(Var)→ {0, 1} assigning
to each ν ∈ V(Var) the label of the leaf node reached in B by the path induced
by ν. We often identify B with fB and write B(ν) instead of fB(ν). Analogously,
each MTBDD B represents a function fB : V(Var)→ R.

An (MT)BDD is ordered if there is a linear order < ⊆ Var × Var on the
variables such that for all inner nodes n either hi(n) is a leaf node or label(n) <
label

(
hi(n)

)
, and the same for lo(n). An (MT)BDD is reduced if all functions

rooted at the different nodes of the (MT)BDD are different. For a fixed variable
order, they are canonical data structures for representing functions f : V(Var)→
{0, 1} resp. f : V(Var)→ R [15]. In the following we assume all (MT)BDDs to
be reduced and ordered with respect to a fixed variable order.

By Var ′ we denote the variable set Var with each variable x ∈ Var renamed
to some x′ ∈ Var ′ such that Var ∩ Var ′ = ∅. Our algorithms use the standard
(MT)BDD operations union B1 ∪ B2, intersection B1 ∩ B2, variable renaming
B[x→ x′], and existential quantification ∃x. B for x ∈ Var , x′ ∈ Var ′.

BDDs and MTBDDs can be used to represent DTMCs symbolically as follows:
Let M = (S, sI , P, L) be a DTMC and Var a set of Boolean variables such that
for each s ∈ S there is a unique binary encoding νs : Var → {0, 1} with νs 6= νs′

for all s, s′ ∈ S, s 6= s′. For s, s′ ∈ S we also define νs,s′ : Var ∪ Var ′ → R
with νs,s′(x) = νs(x) and νs,s′(x

′) = νs′(x) for x ∈ Var , x′ ∈ Var ′. A target

state set T ⊆ S is represented by a BDD T̂ over Var such that T̂ (νs) = 1 iff
s ∈ T . Similarly for the initial state, Î(νs) = 1 iff s = sI . The probability matrix
P : S × S → [0, 1] ⊆ R is represented by an MTBDD P̂ over Var ∪ Var ′ such
that P̂ (νs,s′) = P (s, s′) for all s, s′ ∈ S. For an MTBDD B over Var we use Bbool

to denote the BDD over Var with Bbool(ν) = 1 iff B(ν) > 0 for all valuations ν.

This formalism is used, e. g., by the stochastic model checker PRISM [21],
whose benchmark set [22] is standard for DTMCs. These test-cases are modeled
in a guarded command language describing system components ; the global state
space and the transition probabilities are generated by parallel composition. The
transition matrices are usually sparse and well-structured with relatively few
different probabilities; therefore the symbolic MTBDD representation is in many
cases more compact by several orders of magnitude than explicit representations.
For more details we refer to documentation of PRISM.



3 Symbolic Counterexample Generation Framework

In this section we present our framework for the generation of probabilistic
counterexamples with symbolic data structures. We give an algorithm that
computes, for a symbolically represented DTMC as input, a critical subsystem,
which is again symbolically represented. As the most significant ingredient, this
algorithm needs a symbolic path search method, which returns paths of the
input DTMC. The critical subsystem is initially empty and is incrementally
extended with the states along found paths and with transitions between them.
Implementations of the path search method will be described in Sections 4 and 5.

Algorithm 1 Finding a critical subsystem

FindCriticalSubsystem(MTBDD P̂ , BDD Î, BDD T̂ , double λ)
begin

BDD States = ∅; BDD NewStates = ∅; MTBDD SubSys = ∅; (1)
if (ModelCheck(P̂ , Î, T̂) > λ) (2)

while (ModelCheck(SubSys, Î, T̂) ≤ λ) (3)
NewStates := FindNextPath(P̂ , Î, T̂ ,SubSys); (4)
if (NewStates 6= ∅) (5)

States := States ∪NewStates; (6)
SubSys := ToTransitionBDD(States) ∩ P̂ (7)

end if (8)
end while (9)

end if (10)
return SubSys (11)

end

The algorithm for finding a symbolic counterexample is depicted in Algo-
rithm 1. The parameters specify the input DTMC symbolically by the MTBDD
P̂ for the transition probabilities, the BDD Î for the initial state and the BDD
T̂ for the target states, as well as a probability bound λ which shall be exceeded
by the resulting critical subsystem. The local variable States is used to symboli-
cally represent the set of states which are part of the current subsystem, while
NewStates is used to store the states occurring on a path which shall extend the
current subsystem. The MTBDD SubSys stores the transition MTBDD of the
current subsystem. The algorithm uses the following methods:

ModelCheck(MTBDD P̂, BDD Î, BDD T̂) performs symbolic probabilistic model
checking [17,18] and returns the probability of reaching states in T̂ from
states in Î via transitions from P̂ .

FindNextPath(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) computes a path
leading through the DTMC induced by the transition MTBDD P̂ , the initial
state Î, and the set of target states T̂ . Which path is found next depends on
the current subsystem SubSys and therefore on the set of previously found
paths. Implementations of this method will be discussed in Sections 4 and 5.



ToTransitionBDD(BDD States) computes first the BDD States ′ by renaming
each variable x ∈ Var occurring in States to x′ ∈ Var ′ and returns the
transition BDD States ∩ States ′ in which there is a transition between all
pairs of states occurring in States, i. e., (States ∩ States ′)(νs1,s2) = 1 iff
States(νs1) = States(νs2) = 1.

The algorithm proceeds as follows. First, the three empty objects States,
NewStates , and SubSys are created in line (1). If ModelCheck(P̂ , Î, T̂) in line (2)
reveals that λ is exceeded then the reachability property is violated and the
search for a counterexample starts. Otherwise the algorithm just terminates. The
condition of the while-loop in line (3) invokes model checking for the current
subsystem described by SubSys and the original initial states and target states.
The loop runs until ModelCheck(SubSys, Î , T̂) returns a value which is greater
than λ. In this case, the current subsystem is critical. Please note, that in our
implementation we do not invoke model checking in every iteration. Depending
on the input system, we search for a certain number of paths until we invoke
this method. In every iteration, first the method FindNextPath(P̂ , Î, T̂ ,SubSys)
in line (4) returns a set of states which occur on a path through the system.
If this set is not empty, the current set of states is extended by these new
states in line (6). Afterwards, the current subsystem is extended in line (7):
ToTransitionBDD(States) generates a transition relation between all states found
so far. The intersection of the resulting BDD and the original transition MTBDD
P̂ represents a probability matrix P ′ ⊆ P which is restricted to transitions
between the states in States. These induced transitions define the updated
subsystem SubSys.

4 Searching Paths Using SAT Solving

In this section we present two implementations for the path searching method
(Algorithm 1) using bounded model checking and SAT solving. First, an existing
method which searches paths with certain lengths is adapted to our symbolic
framework. Second, we present a new method which searches for path fragments
that extend the subsystem. Finally, we describe a new SAT-solving heuristic
which guides the SAT solver to prefer more probable path fragments.

4.1 Adapting Bounded Model Checking for Global Search

In [5], a bounded model checking (BMC) approach for DTMCs was developed.
Starting with a symbolic representation of a DTMC by an MTBDD P̂ and BDDs
Î and T̂ as described before, first Tseitin’s transformation [23] is applied to
generate formulae in conjunctive normal form (CNF) from the BDDs. We will
denote the resulting CNF predicates by P̌ , Ǐ, and Ť , respectively.

The BMC formula built from the symbolic representation of a DTMC is
parameterized in k ∈ N and has the following structure:



BMC (k) = Ǐ(Var0) ∧
k−1∧
i=0

P̌ (Var i,Var i+1) ∧ Ť (Vark) (1)

where k is the length of the paths considered.
This formula depends on sets Var i = {σi,1, . . . , σi,m} of Boolean variables

which encode the ith state of a path of length k through the DTMC starting
in an initial state and ending in a target state. Each satisfying assignment ν of
formula (1) corresponds to such a path. If there is no satisfying assignment, there
is no such path with length k. We identify the assignment

(
ν(σi,1), . . . , ν(σi,m)

)
with the state si of the DTMC.

Since usually multiple paths need to be found in order to form a counterex-
ample, the solver has to enumerate satisfying solutions for BMC (k), k = 0, 1, . . .,
until enough probability mass has been accumulated. To exclude an already found
solution from further search, new clauses are added to the SAT solver’s clause
database. Consider a path πj = s0 . . . sk that was found in the jth iteration of

the search process. Let ν :
⋃k
i=0 Var i → {0, 1} be the corresponding satisfying

assignment. The path πj is uniquely described by the following formula:

k∧
i=0

σ
ν(σi,1)
i,1 ∧ σν(σi,2)

i,2 ∧ · · · ∧ σν(σi,m)
i,m , (2)

where σ1
i,j = σi,j and σ0

i,j = ¬σi,j . To exclude πj from the solution space of
BMC (k), its negation is built and added to the solver’s clause database:

k∨
i=0

m∨
j=1

σi,j
1−ν(σi,j) . (3)

This ensures that for a new path at least one state variable has to be differently
assigned than for path πj .

Every time the SAT solver returns a new satisfying assignment, the probability
of the underlying path is computed and the path is saved. This proceeds until the
probability of all paths found exceeds the bound λ. The resulting counterexample
is therefore a set of explicitly represented paths whose cumulated probability
mass exceeds the probability bound. If no further satisfying assignment can be
found, the path length k is increased by one and the search process gets restarted.

We adopt this procedure for our framework for generating a symbolically
represented critical subsystem. Instead of computing the probability of single
paths, the BDD state representation of each new path is computed and returned
to Algorithm 1. This is done in form of a callback, as we do not want to restart
the solver after each iteration. If model checking reports that the probability
mass of the generated subsystem is high enough, the procedure stops.

In general, termination is guaranteed as the SAT solver finds all possible paths
of length k. Eventually, the subsystem will consist of all states that are part of
paths from initial to target states. This subsystem induces the whole probability



mass of reaching a target state in the original system. As the algorithm only
starts if the probability bound is exceeded, the probability mass of this system
will also exceed the bound. Therefore, the algorithm always terminates.

4.2 Adapting Bounded Model Checking for Fragment Search

The previously described approach of using the SAT solver to find paths leading
from the initial state of the DTMC to the target states is now extended according
to the local search approach described in [13]. We aim at finding path fragments
that extend the already found system iteratively.

The intuition is as follows: In the first search iteration, the CNF formula
given to the SAT solver is satisfied if and only if the assignment corresponds to a
path of maximal length n through the input DTMC leading from the initial state
sI to a target state t ∈ T . This path induces the initial subsystem. Subsequently,
this system is extended by paths whose first and last states are included in the
current subsystem, while all states in between are fresh states.

For this we need to consider already found states for all possible depths
0 ≤ d ≤ n. For a state s let νds : Vard → {0, 1} be the unique assignment of Vard
corresponding to state s.

We introduce a flag fds for each state s and each depth d. This flag is assigned
1 if and only if the assignment of the state variables at depth d corresponds to
the state s:

fds ↔ (σ
νd
s (σd,1)
d,1 ∧ · · · ∧ σν

d
s (σd,m)
d,m ) . (4)

The next variable Kd
j describes the whole set of states which have been found

in the iterations 0, 1, . . . , j of the search process (again in terms of the variables
Vard for depth d). Note, that these are exactly the states of the current subsystem
SubSys after iteration j. We set Kd

−1 := false. Assume that in iteration j of the
search process path πj = s0s1 . . . sn is found. We then define

Kd
j ↔

(
Kd
j−1 ∨

n∨
i=1

fdsi

)
. (5)

In the first search iteration we need a formula which is true iff the variable
assignment corresponds to a path of maximal length n leading from the initial
state to a target state of the DTMC:

Ǐ(Var0) ∧
n∨
i=0

Ť (Var i) ∧ (6a)

n−1∧
i=0

[(
¬Ť (Var i)→ P̌ (Var i,Var i+1)

)
∧
(
Ť (Var i)→ (Var i = Var i+1)

)]
. (6b)

Assume that ν is an assignment corresponding to the path π = s0s1 . . . sn.
Formula (6a) states, that the first state s0 is the initial state and that one of
the states s0, . . . sn is a target state. Formula (6b) ensures, that if a state si is



not a target state, a transition will be taken to the next state. Contrary, if si is
a target state, all following state variables will be assigned si which creates an
implicit self loop on this state. In the context of the original system, this path
ends with a target state sn.

For the following iterations j > 1, we need the previously defined variables
Kj
d:

K0
j−1 ∧ P̌ (Var0,Var1) ∧ ¬K1

j−1 ∧
n∨
d=2

Kd
j−1 (7a)

∧
n−1∧
d=1

[(
¬Kd

j−1 → P̌ (Var i,Var i+1)
)
∧
(
Kd
j−1 → Var i = Var i+1

)]
. (7b)

Formula (7a) ensures that the first state s0 of a solution path πj = s0 . . . sn
is contained in the set K0

j−1 of previously found states, that a transition is taken
from this state to a not yet found state s1 and that one of the following states
sd, d ≥ 2, is again contained in Kd

j−1. Formula (7b) enforces transitions from all
not yet found states si to si+1. If si was already included in previous paths then
all following states are assigned as si.

Termination is guaranteed, as the length of the paths is bounded by n. If
no further satisfying assignments are found, this number has to be increased.
However, the diameter, i. e., the longest cycle-free path of the underlying graph,
is an upper bound on the length of loop-free paths from sinit to target states.
Therefore, n needs to be increased only finitely many times, such that a critical
subsystem is always determined in finite time.

4.3 SAT Heuristic for Finding More Probable Paths

A drawback of the SAT-based search strategies is that paths are found without
considering their probability beforehand. If paths or transitions with higher
probabilities are preferred, the process can be accelerated. We therefore try to
modify the variable selection of the SAT solver.

SAT solvers have efficient variable selection strategies, i. e., strategies to decide
which variable should be assigned next during the search process. We adjust the
choice of the value the solver assigns to the selected variable, in order to prefer
paths with higher probabilities.

The decision how to assign a variable is based on the transition probabilities.
If a variable σi+1,j is to be assigned at depth 0 < i + 1 ≤ n, its value partly
determines si+1, being the target state of a transition from si. We choose the
value for σi+1,j which corresponds to the state si+1 to which the transition with
the highest probability can be taken (under the current assignment).

Example 1. Assume the following DTMC:
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Let the states of the DTMC be encoded by three propositional variables and
assume that the solver partially assigned the state variables for the ith and the
(i+ 1)th time instance as follows:

σj,1 σj,2 σj,3
l1 0 0 0
l2 0 0 1
l3 0 1 0
l4 0 1 1
l5 1 0 0

︷ ︸︸ ︷
σi,1

σi,2
σi,3

0 0

σi+1,1
σi+1,2

σi+1,3

︷ ︸︸ ︷si si+1

The ith state si is determined to be l1 or l2. For si+1 still all states are
possible. The first bit of the (i+ 1)th state, as indicated by the arrow, should be
assigned next. We would choose to set the bit to 0, because in this way we do
not exclude the most probable eligible transition from l1 to l3.

5 Searching Paths Symbolically

In this section we use symbolic graph algorithms to implement the path search
(Algorithm 1) by which a critical subsystem of a DTMC is built. We first recall
how one can find the k most probable paths through a symbolically represented
DTMC. We call this the symbolic global search as the most probable paths
through the whole system are found. We embed this procedure into our symbolic
counterexample search. Afterwards we present a new search method which
symbolically searches for the most probable path fragments that extend the
current subsystem. We call this approach the symbolic fragment search.

5.1 Symbolic Global Search

The goal of this procedure is to find paths leading from the initial state to a
target state ordered by their probability, starting with the most probable path.
As usually classical graph algorithms are used, this is also referred to as the k
shortest path search, although this corresponds to the k most probable paths.
Utilized for a counterexample search, the value of k is not fixed beforehand but
the search terminates if enough probability mass is accumulated [8].

In [7], a symbolic version of the k shortest path search was presented. The core
components are the calculation of the actual shortest path and a transformation
of the DTMC such that the shortest path in the altered system corresponds
to the second shortest path in the original system. We adapt this method for



symbolic counterexample computation for DTMCs. The resulting algorithm is
depicted in Algorithm 2.

Algorithm 2 The global search algorithm for symbolic DTMCs

SymbolicGlobalSearch(MTBDD P̂ , BDD Î, BDD T̂ , MTBDD SP)
begin

if (SP 6= ∅) (1)
(P̂ , Î, T̂ ) := Change(P̂, Î, T̂, SP); (2)

endif (3)
SP := ShortestPath(P̂, Î, T̂); (4)

return SP ; (5)
end

Parameters are as usual P̂ , Î and T̂ as well as an MTBDD SP to store the
path computed in the last iteration. The following methods are used (for details
on the MTBDD operations we refer to the appendix of [7]):

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) computes the most probable path
leading from a state of Î to a state of T̂ via transitions from P̂ and returns
the MTBDD representation SP of this path. For this method, a set-theoretic
variant of Dijkstra’s algorithm is used.

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SP) changes the DTMC (P̂ , Î, T̂ )
to a new one such that the shortest path in the new DTMC corresponds
to the second shortest path of the original DTMC(for the basic algorithm
cf. [24]). The core idea of the symbolic implementation is to add an additional
state variable that indicates a copy (when set to 1) or the original state
(when set to 0). The MTBDD P̂ is therefore extended by two variables: One
for the source and one for the target state.

The original algorithm works with a fixed number k of search iterations. We
modified this method to be incremental, i. e., the resulting P̂ and SP after an
iteration step are input for the next iteration. If the SP parameter is empty, the
first shortest path is computed (line 4). Otherwise, the system is modified to
exclude the previously found path (line 2). On the modified system, a new search
is performed, yielding the next shortest path (line 4).

As in our framework the termination condition lies inside the symbolic
counterexample algorithm (see Algorithm 1), we call Algorithm 2 as often as
needed to form a counterexample. We use the MTBDD SP as a parameter
in order to determine, what the next shortest path is. Note that in this case
Algorithm 1 has to call the search method with the last shortest path instead of
the current subsystem and it also has to transform the resulting shortest path
MTBDD SP to a state set BDD (see the method ToStateBDD(·) on page 14).

Finally, this procedure yields a critical subsystem induced by a finite number
k of paths. The paths are ordered w. r. t. to their probability. Note that the



MTBDD resulting from the iterative application of the Change()-method grows
rapidly and renders this method not applicable to systems which require a large
number of paths, as our test cases will show.

5.2 Symbolic Fragment Search

In contrast to the previous approach, where we search for whole paths through
the system, we aim now at finding most probable path fragments. Intuitively, first
a base path is found being the most probable path from the initial state to one
of the target states of the input system. This path forms the initial subsystem.
Afterwards, the subsystem is incrementally extended by finding the most probable
path fragment that connects states from the current subsystem. This approach
was successfully implemented for explicit graph representations [13] and is now
adapted to symbolic representations. The algorithm is depicted in Algorithm 3.

Algorithm 3 The fragment search for symbolic DTMCs

SymbolicFragmentSearch(MTBDD P̂ , BDD Î, BDD T̂ , MTBDD SubSys)
begin

MTBDD SP ; (1)
BDD SubSysStates; (2)
if (SubSys = ∅) (3)

SP := ShortestPath(P̂, Î, T̂); (4)
else (5)

SubSysStates := ToStateBDD(SubSys); (6)
SP := ShortestPath(P̂ \ SubSys, SubSysStates, SubSysStates); (7)

end if (8)
return ToStateBDD(SP) (9)

end

We need an MTBDD SP to store the path which is computed and a BDD
SubSysStates which stores the states of the current subsystem. The following
methods are used:

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) uses a set-theoretic variant of Dijk-
stra’s algorithm as in Section 5.1.

ToStateBDD(MTBDD SubSys) computes for the transition MTBDD SubSys a
BDD describing all states that occur as source state or target state for
one of the transitions of SubSys. When SubSys is defined over the variables
Var = {x1, . . . , xn} and Var ′ = {x′1, . . . , x′n}, this is done by first building the
set OUT := ∃x′1, . . . , x′n. SubSysbool of all states with an outgoing transition.
Afterwards, the set IN ′ := ∃x1, . . . , xn. SubSysbool of states with ingoing
transitions is built. These resulting BDDs have to be defined over the same
variable set, therefore we perform a variable renaming for the set of states
with ingoing transitions: IN := IN ′[x′1 → x1] . . . [x′n → xn]. Building the
union IN ∪OUT yields the needed BDD.



The symbolic fragment search checks whether the parameter SubSys is empty,
which means, whether this is the first search iteration. If this is the case then the
base path leading from the initial state sI ∈ Î to one of the target states t ∈ T̂
is computed by invoking the shortest path search. The resulting path, stored
in the BDD SP , is transformed into a state BDD and returned to the symbolic
model checking framework (see Algorithm 1). If SubSys is not empty then a part
of the subsystem has already been determined. In this case, we compute the
state BDD SubSysStates by invoking ToStateBDD(SubSys). The shortest path
algorithm is called to find the most probable path from a state in SubSysStates
to a state in SubSysStates inside the DTMC induced by P̂ without using direct
transitions from SubSysStates to SubSysStates . Note that, since we seach for the
most probable such path, this path will not contain any SubSysStates states
between the starting and ending ones.

6 Case Studies

We developed prototypes in C++ for all approaches described in this paper using
the BDD package CUDD [25] and the SAT solver MiniSat [26]. All experiments
were performed on a QuadCore Intel CPU (2.66 GHz) with 8 GB RAM. We
present results for the Probabilistic Contract Signing protocol [27] and the
CROWDS protocol [28]. We used the PRISM models [22] of both protocols.
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Fig. 1. BDD sizes

Probabilistic Contract Signing
is a network protocol targeting
the fair exchange of critical in-
formation between two parties A
and B. In particular, whenever B
has obtained A’s commitment to
a contract, B shall not be able
to prevent A from getting B’s
commitment. The PCTL property
P≤0.5

(
♦ [knowA∧¬knowB ]

)
we are

investigating describes an unfair sit-
uation where A knows B’s secrets
while B doesn’t know A’s secrets.
The target states in our model carry
corresponding labels. The model
size is scaled by the number of data
pieces to exchange and the size of each data piece.

The CROWDS protocol aims at anonymous communication in networks,
where a crowd of n users is divided in good members and bad members. A good
member delivers a message to its destination with probability 1−pf and forwards
it to another member, randomly chosen, with probability pf . This guarantees
that no bad member knows the original sender of the message. Each session
describes the delivery of a message to a sender. If a user is identified twice
by a bad member, anonymity is no longer guaranteed. This is called positively



Crowds protocol Contract Signing protocol

# states 18817 198199 485941 1058353 50445495 33790 156670 737278

model checking 0.426153 0.716089 0.807731 0.871703 0.85054 0.515625 0.515625 0.503906

probability threshold 0.25 0.35 0.4 0.4 0.2 0.5 0.5 0.5

Symb global # states 630 622 622 622 1013 6804 24006 13222
# paths 1019 978 977 979 738 512 326 733
prob. 0.149138 0.14843 0.14843 0.14843 0.117311 0.5 0.318359 0.0447388
time (s) TO TO TO TO TO 1871.82 TO TO

Symb fragment # states 600 1611 2415 2884 10239 6927 38247 139980
# paths 201 1359 555 835 2641 521 521 8192
prob. 0.25659 0.350066 0.401258 0.400333 0.201197 0.508789 0.508789 0.5
time (s) 12.18 169.93 276.41 413.15 2830.55 26.61 740.15 972.57

BMC classic # states 1241 1205 1241 1241 1558 6684 37464 139302
# paths 140822 127845 126318 129960 43250 513 513 8193
prob. 0.175123 0.173481 0.173651 0.1746 0.0994408 0.500977 0.500977 0.500061
time (s) TO TO TO TO TO 20.17 410.61 367.1

SAT global # states 908 997 997 997 1583 6825 38025 139302
# paths 231359 295240 258860 253733 238894 520 520 8193
prob. 0.250057 0.261859 0.26189 0.261859 0.179294 0.507812 0.507812 0.500061
time (s) 3492.98 TO TO TO TO 23.1 449.1 411.42

SAT fragment # states 6757 9079 8581 16038 10158 6684 9131 11875
# paths 1973 2446 2211 4434 2728 3074 1956 604
prob. 0.250548 0.165949 0.0764908 0.0866818 0.0653038 0.500977 0.0715447 0.0378418
time (s) 805.68 TO TO TO TO 3584.47 TO TO

SAT fragment + H # states 2489 7535 19132 19662 5898 6684 8254 7009
# paths 700 2166 5573 5556 1704 3073 1807 537
prob. 0.2858817 0.350044 0.0971835 0.0648511 0.0562423 0.500977 0.092741 0.038967
time (s) 192.33 4172.44 TO TO TO 5152.11 TO TO

Fig. 2. Results for crowds and contract signing (TO > 2h)

identified (Pos). The PCTL property we consider is P≤p(♦Pos). The models are
parameterized in their size by the number of sessions and the size of the crowd.

In Figure 2 we have collected a number of results we achieved on different
instances of the described case studies. For the input data, we list the number of
states (# states), the actual model checking result of reaching target states (model
checking) and the probability threshold. We tested the methods for symbolic
counterexample generation described in this paper as well as the bounded model
checking approach, which computes a set of paths [5]:

– Symb global: The symbolic global search approach, Section 5.1
– Symb fragment: The symbolic fragment search approach, Section 5.2
– BMC classic: The standard bounded model checking approach for DTMCs

as described in [5]
– SAT global: The global search approach using SAT solvers, Section 4.1
– SAT fragment: The fragment search approach using SAT solvers, Section 4.2
– SAT fragment + H: The SAT-based fragment search approach together with

the SAT heuristic preferring more probable paths, Section 4.3

For the resulting critical subsystems we present the number of states, the
number of performed path searches (# paths), the probability of this system
(prob), and the computing time in seconds (time (s)). The timeout (TO) was
defined as 2 hours. All results which were finished within this time are printed in
boldface. For unfinished cases we give the results that were achieved so far. Note
that the probability for these unfinished benchmarks lies under the probability
threshold. In Figure 1 we present the number of MTBDD nodes for original



instances of the CROWDS-protocol w. r. t. the number of explicit nodes presented
by these MTBDDs. The figure shows, that the number of nodes highly increases
while the number of nodes for the subsystems stay relatively constant.

The results show that the symbolic fragment search outperforms all other
approaches by far on our benchmarks sets. We can compute critical subsystems for
benchmarks consisting of millions of states. A result could still be computed for a
system having over 1.2 · 108 states in about 3 hours. The explicit counterexample
algorithms described in [13,29] were faster on small benchmarks but explicit
approaches are not applicable to benchmarks as large as presented here.

7 Conclusion and Future Work

In this paper we presented a new framework for the generation of probabilistic
counterexamples for symbolic DTMC representations. We suggested several
methods, while the symbolic fragment search turned out to be the best alternative.
Our experiments showed that using our framework the size of possible input
systems for counterexample generation is increased by orders of magnitude.

In the future we want to integrate this symbolic framework into the COMICS
tool [29] for counterexample generation for DTMCs. The adaption of the hier-
archical abstraction techniques presented in [13] would increase the usability of
counterexamples even for very large systems. It would also be interesting to see if
using an SMT solver instead of a SAT solver would accelerate the search process.
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