
The COMICS Tool – Computing Minimal
Counterexamples for DTMCs

Nils Jansen1, Erika Ábrahám1, Matthias Volk1, Ralf Wimmer2,
Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-University Freiburg, Germany

Abstract. This paper presents the tool COMICS 1.0, which performs
model checking and generates counterexamples for DTMCs. For an input
DTMC, COMICS computes an abstract system that carries the model
checking information and uses this result to compute a critical subsystem,
which induces a counterexample. This abstract subsystem can be refined
and concretized hierarchically. The tool comes with a command line
version as well as a graphical user interface that allows the user to
interactively influence the refinement process of the counterexample.

1 Introduction

Discrete-time Markov chains (DTMCs) are widely used to model safety-critical
systems with uncertainties. Model checking probabilistic computation tree logic
(PCTL) properties can be performed by prominent tools like Prism [1] and
Mrmc [2]. Unfortunately, the implemented numerical methods do not provide
diagnostic information in form of counterexamples, which are very important for
debugging and are also needed for CEGAR frameworks [3].

Although different approaches [4,5,6] were proposed for probabilistic coun-
terexamples, there is still a lack of efficient and user-friendly tools. To fill this gap,
we developed the tool COMICS, supporting SCC-based model checking [7] and, in
case the property is violated, the automatic generation of abstract counterexam-
ples [5], which can be subsequently refined either automatically or user-guided.

While most approaches represent probabilistic counterexamples as sets of
paths, we use (hierarchically abstracted) subgraphs of the input DTMC, so-called
critical subsystems. The user can refine abstract critical subsystems hierarchically
by choosing system parts of interest which are to be concretized and further
examined. All computation steps of the hierarchical counterexample refinement
can be guided and revised. Though refinement can be done until a fully concrete
counterexample is gained, it seems likely that the user can gain sufficient debug-
ging information from abstract systems considering real-world examples with
millions of states. The tool’s graphical user interface (GUI) permits visualization,
reviewing and creation of test cases.

The only other available tool we are aware of is DiPro [8], which supports
both DTMCs and CTMCs but no abstract counterexamples, which is crucial for

the handling of large systems. It also does not allow the user to influence the
search by using his or her expertise. Comparative experiments show that we can
compute reasonably smaller counterexamples in shorter time with our tool.

In Section 2 we give a brief introduction to the methods implemented in our
tool. We describe the features and architecture and report on benchmarks in
Section 3. We conclude the paper in Section 4. The tool, a detailed manual, and
a number of benchmarks are available at the COMICS website3.

2 Foundations

In this section we briefly explain the algorithms implemented in COMICS (see [5]
for more details). We use the standard definitions for DTMCs and PCTL.

Model checking time-unbounded PCTL properties for DTMCs can be reduced
to the following problem: Given a DTMC M with one initial state sI and a set
of target states T , decide whether the probability to reach T from sI is below an
upper bound4 λ ∈ [0, 1] ⊂ R. In case this bound is violated, a counterexample
can be given as a set of finite paths of M leading from sI to T with a cumulated
probability mass greater than λ.

In [7] we proposed a model checking approach for DTMCs based on hierar-
chical abstraction. The result is an abstract DTMC, which represents the total
probabilities of reaching target states from the initial state by single transition
probabilities. The abstraction is hierarchically refinable, where the refinement of
an abstract state might again contain abstract states. Based on this approach, in
[5] we presented a method to compute and represent counterexamples as critical
subsystems, consisting of subsets of the original DTMC’s states and transitions
such that the probability of reaching target states from the initial state within the
subsystem still exceeds the probability bound λ. We compute these subsystems
using path searches on the abstract DTMCs: either the global search (GS), which
searches for most probable paths from sI to T , or the local search (LS), which
connects fragments of already found paths to extend the current subsystem.
Abstract subsystems can be refined by selecting and concretizing abstract states
and performing path search again to reduce the number of concretized states and
transitions in the subsystem.

3 The COMICS Tool

COMICS can be used either as

SccMC GUI

Concretize
CritSubSys

Global Search Local Search

Path Set

Global Search

DTMC DTMC

Result

Result

Fig. 1. Architecture of COMICS

a command-line tool or with
a GUI, the latter allowing the
user to actively influence the
process of finding a counterex-
ample. The program consists
of approximately 20 000 lines
of code in five main compo-
nents (see Fig. 1). The GUI is implemented in Java, all other components in C++.
The user may select exact or floating point arithmetics for the computations.

3 http://www-i2.informatik.rwth-aachen.de/i2/comics/
4 We only consider unbounded PCTL properties.

http://www-i2.informatik.rwth-aachen.de/i2/comics/

Fig. 2. Screenshot of COMICS’s GUI with an instance of the crowds protocol

SccMC performs model checking for an input DTMC and returns an abstract
DTMC to Concretize or to GUI. Concretize selects and concretizes some states,
either automatically or user-guided via the GUI. CritSubSys can be invoked on
the modified system to compute a critical subsystem using GS or LS. The result
is given back to Concretize for further refinement or returned as the result.
Heuristics for the number of states to concretize in a single step as well as for
the choice of states are offered. It is also possible to predefine the number of
concretization steps. Counterexample representations as sets of paths and as
critical subsystems are offered. The first case yields a minimal counterexample [4].
The GUI provides a graph editor for specifying and modifying DTMCs. A large
number of layout algorithms increase the usability even for large graphs. Both
concrete and abstract graphs can be stored, loaded, abstracted, and concretized by
the user. As the most important feature, the user is able to control the hierarchical
concretization of a counterexample. If an input graph seems too large to display,
the tool offers to operate without the graphical representation. In this case the
abstract graph can be computed and refined in order to reduce the size. Fig. 2
shows one abstracted instance of the crowds protocol benchmark [9], where the
probability of reaching the unique target state is displayed in the information
panel on the right as well as on the edge leading from the initial state to the
target state. The initial state is abstract and can therefore be expanded.

Fig. 3 provides a comparison with DiPro [8]. We applied our tool using GS,
LS and the k-shortest path (kSP) approach [4] to the crowds protocol and the
probabilistic contract signing protocol [10] for different probability thresholds all
smaller than the model checking result (total prob.). We measured the size of
the counterexample (states), the probability of reaching target states (prob.) and
the computation time excluding the initial model checking. TO denotes timeout,
MO out of memory and ERR wrong result. On the crowds protocol, GS performs
best, while LS computes in general smaller counterexamples. kSP is the fastest
method for contract signing, however, the representation of the result consists of
a huge number of paths instead of a small subsystem of the input DTMC.

crowds contract signing

states 3515 18817 198199 485941 1058353 33790 156670 737278 1654782

transitions 6035 32677 198199 857221 1872313 34813 157693 753663 1671165

total prob. 0.2346 0.4270 0.7173 0.809 0.8731 0.5156 0.5156 0.5039 0.5039

prob. threshold 0.15 0.23 0.25 0.35 0.4 0.4 0.5 0.5 0.5 0.5

GS # states 629 1071 2036 5198 5248 5250 6827 37601 140034 369448
prob. 0.1501 0.2301 0.25 0.3503 0.4002 0.4001 0.5 0.5 0.5 0.5
time (s) 0.02 0.38 0.38 7.97 16.36 18.78 0.36 2.98 238.82 605.81

LS # states 182 900 943 4180 6368 6657 37377
prob. 0.1501 0.2302 0.2501 0.3501 0.4 TO 0.5 0.5 MO MO
time (s) 0.14 1.11 6.1 619.06 2455.46 8 54.58

kSP # states 1071 6827 37601 140034 369444
prob. 0.15 TO TO TO TO TO 0.5 0.5 0.5 0.5
time (s) 6.58 1.93 0.13 0.69 1.49

DiPro # states 938 2901 3227 9005 13311 74751
prob. 0.1675 0.2334 0.254 0.3533 ERR ERR 0.5 0.5 MO MO
time (s) 2.02 7.06 7.87 44.34 1210 7114

Fig. 3. Results for crowds and contract signing (TO > 2h)

4 Conclusion and Future Work

We presented version 1.0 of our tool COMICS which generates abstract, hierarchi-
cally refinable counterexamples for DTMCs. In the future, we will integrate the
computation of minimal critical subsystems [6] and the adaption of our approaches
to symbolic data structures. We are also working on an incremental version of
the Dijkstra algorithm for path search and on compositional counterexamples.

References

1. Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Volume 6806 of LNCS, Springer (2011) 585–591

2. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2) (2011) 90–104

3. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Proc. of CAV.
Volume 5123 of LNCS, Springer (2008) 162–175

4. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2) (2009) 241–257

5. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.P., Becker, B.:
Hierarchical counterexamples for discrete-time Markov chains. In: Proc. of ATVA.
Volume 6996 of LNCS, Springer (2011) 443–452

6. Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.P.: Minimal critical
subsystems for discrete-time Markov models. In: Proc. of TACAS. LNCS, Springer
(2012)

7. Ábrahám, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.: DTMC model
checking by SCC reduction. In: Proc. of QEST, IEEE CS (2010) 37–46

8. Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro – A tool for
probabilistic counterexample generation. In: Proc. of SPIN. Volume 6823 of LNCS,
Springer (2011) 183–187

9. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1) (1998) 66–92

10. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6) (2006) 561–589

	The COMICS Tool – Computing Minimal Counterexamples for DTMCs
	Nils Jansen, Erika Ábrahám, Matthias Volk, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker

