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Abstract

In this paper we consider the problem of checking whether a partial implementation can
(still) be extended to a complete design which is equivalent to a given full specification. In
particular, we investigate the relationship between the equivalence checking problem for
partial implementations (PEC) and the validity problem for quantified Boolean formulae
(QBF) with so-called Henkin quantifiers. Our analysis leads us to a sound and complete
algorithmic solution to the PEC problem as well as to an exact complexity theoretical
classification of the problem.

1. Introduction

Finding errors in system designs as early as possible is of utmost importance to reduce devel-
opment costs and time-to-market. Therefore the verification of incomplete or partial system
designs has received a lot of research efforts during the last decade [11, 12, 9, 6, 10, 7, 8, 15].
Assume we are given a system design such that some parts are so-called “black boxes”, i. e.,
modules the internal structure of which is not known. The reasons for having such black boxes
are 1) parts of the system are still to be implemented, 2) parts which are supposed not to
influence the validity of some properties have been removed to simplify the verification task
(e. g., multiplier or memory modules), and 3) parts are removed to enable the localization of
errors: If parts of the design have been removed and for all possible implementations of the
removed parts the error does not disappear, the remaining parts must be erroneous.
Regarding black boxes, research focuses on checking whether a partial design can be extended
such that it is equivalent to a given specification, i. e., whether the specification can be realized.
We call this the partial equivalence checking problem (PEC). If it turns out that there is no
feasible extension, the available parts are erroneous and must be fixed. This helps to detect errors
in an early stage of a design.
As in [11], we consider here the case that the partial design is a combinational circuit containing
black boxes and the specification is a combinational circuit as well. Generalizations to sequential
circuits (based on bounded model checking) may be performed as in [6].
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A series of approximative and exact methods to solve PEC is presented in [11]. If approximative
algorithms report that there is no black box implementation for the partial design, such that the
specification can be realized, the desired functionality is indeed not realizable. However, if the
algorithms reports realizability, this can be due to the approximative character of the method,
and the desired functionality may nevertheless be unrealizable. The algorithms in [11] are based
on solving SAT or QBF formulations of PEC. The SAT formulations in general can be solved
efficiently, but they provide rather coarse approximations. Their accuracy is improved in several
steps, leading to QBF formulations that can solve PEC for one black box exactly. The authors of
[11] additionally give a characterization of PEC realizability, which is exact also for multiple
black boxes. However, this characterization does not imply a feasible algorithmic method for
solving the problem.
We show that for solving PEC with multiple black boxes exactly, an extension of QBF called
dependency quantified Boolean formulae (DQBF) can be used. A DQBF is a propositional
formula with Henkin-quantifiers [5]. With these quantifiers one can explicitly specify the
universally quantified variables on which the existential ones depend—in contrast to QBF
without Henkin quantifiers, where an existentially quantified variable depends on all other
quantifiers appearing on the left of this variable in the prefix. The first algorithmic approach that
considers DQBF is stated in [3]. The algorithm is based on the QBF-extension QDLL for the
search-based DLL [2] algorithm for SAT.
We additionally answer the question about the complexity of PEC. This has been an open problem
so far. We do this by showing that PEC is equivalent to DQBF. A direct consequence of this is
that PEC lies in the same complexity class as DQBF, namely both are NEXPTIME-complete.
The remainder of the paper is structured as follows. In Section 2 we give the foundations of
DQBF and equivalence checking of partial designs. In Section 3 we prove the equivalence of
both and show how to translate a partial design into a DQBF. We give some pointers for current
and future applications in Section 4. Section 5 concludes the paper and provides hints on future
work.

2. Foundations

We introduce dependency quantified Boolean formulae and partial equivalence checking.

2.1. Dependency Quantified Boolean Formulas

A propositional formula ϕ over a set of variables V in conjunctive normal form (CNF) is a
conjunction of clauses. A clause c is a disjunction of literals, usually written as a set of literals
c = {l1, . . . , ln}. A literal l is either a variable X ∈V or its negation ¬X .
For a vector A = (A1, . . . ,Ak) of Boolean variables we also write ∀A as an abbreviation for
∀A1 . . .∀Ak and accordingly for ∃A.

Definition 1 A dependency quantified Boolean formula (DQBF) has the following structure:

∀X1∀X2 . . .∀Xn∃Y1(S1)∃Y2(S2) . . .∃Ym(Sm).ϕ(X1, . . . ,Xn,Y1, . . . ,Ym)



with S1, . . . ,Sm ⊆ {X1, . . . ,Xn} and ϕ(X1, . . . ,Xn,Y1, . . . ,Ym) a quantifier-free propositional for-
mula in CNF (also called matrix), containing only the variables X1, . . . ,Xn,Y1, . . . ,Ym.

A quantified Boolean formula (QBF) in the traditional sense is a DQBF such that S1⊆ S2 · · · ⊆ Sm.
Usually such a QBF is written with a quantifier prefix where ∃Y1 follows directly after ∀S1, ∃Y2
directly after ∀(S2 \S1), etc.
The truth value of a DQBF is typically defined in terms of Skolem functions for the existential
variables.

Definition 2 Let Fk = { f : Bk→ B} denote the set of all Boolean functions with k arguments.
A DQBF

∀X1∀X2 . . .∀Xn∃Y1(S1)∃Y2(S2) . . .∃Ym(Sm).ϕ(X1, . . . ,Xn,Y1, . . . ,Ym)

with dependency sets Si ⊆ {X1, . . . ,Xn} for i = 1, . . . ,m is satisfiable iff there are functions
si ∈F|Si| for i = 1, . . . ,m such that

ϕ(X1, . . . ,Xn,s1(S1),s2(S2), . . . ,sm(Sm))

is a tautology (i. e., satisfied for all assignments of X1, . . . ,Xn).

Deciding whether a DQBF is satisfied is known to be NEXPTIME-complete [1], while deciding
QBF is “only” PSPACE-complete [13].

Example 1 Consider the following DQBF:

∀X1 ∀X2 ∀I ∃Y1(X1, I) ∃Y2(X2, I).
((

I⊕X1∧X2
)
∨
(
Y1∧Y2 ≡ (X1⊕X2)

))
It is satisfied for Skolem functions s1(X1, I)=X1∧ I for Y1 and s2(X2, I)=X2∧ I for Y2. Replacing
Y1 and Y2 with their Skolem functions yields:

∀X1∀X2∀I.
((

I⊕X1∧X2
)
∨
(
X1∧ I∧X2∧ I ≡ (X1⊕X2)

))
We have to show that the matrix is satisfied for all assignments of X1, X2, and I. Simple
transformations yield:((

I⊕X1∧X2
)
∨
(
X1∧ I∧X2∧ I ≡ (X1⊕X2)

))
is a tautology

iff
((

I ≡ X1∧X2
)
⇒

(
(X1∧ I∨X2∧ I)≡ (X1⊕X2)

))
is a tautology

iff
(
(X1∧X1∧X2 ∨ X2∧X1∧X2)≡ (X1⊕X2)

)
is a tautology

iff
(
(X1∧ (X1∨X2) ∨ X2∧ (X1∨X2))≡ (X1⊕X2)

)
is a tautology

iff
(
(X1∧X2 ∨ X2∧X1)≡ (X1⊕X2)

)
is a tautology

iff
(
(X1⊕X2)≡ (X1⊕X2)

)
is a tautology.

The last formula is obviously a tautology. Thus, the original DQBF is satisfied with the given
Skolem function.
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Figure 1: The notations for PEC

2.2. Partial Equivalence Checking

First, we introduce notations for partial combinational circuits P:

• X1, . . . ,Xn are the primary inputs of the circuit.

• BB1, . . . ,BBm are the black boxes of the circuit in topological order1.

• Ii = (Ii,1, . . . , Ii,pi) are the inputs of BBi (i = 1, . . . ,m).

• Yi = (Yi,1, . . . ,Yi,li) are the outputs of BBi (i = 1, . . . ,m).

• Ii, j = Fi, j(X1, . . . ,Xn,Y1, . . . ,Yi−1) is the Boolean function defining the input j of BBi. We
write Ii = Fi(X1, . . . ,Xn,Y1, . . . ,Yi−1) for the vector of functions defining Ii,1, . . . , Ii,pi .

• R(X1, . . . ,Xn,Y1, . . . ,Ym) is the output function of the circuit.

These notations are illustrated in Figure 1.

1To guarantee that the circuit is combinational, we assume that BB1, . . . ,BBm are in topological order, i. e., BBi
does not depend on BB j for i < j.
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Figure 2: Combination of the partial design with the specification

Definition 3 Partial Equivalence Checking (PEC) considers the following decision problem:
Given a partial combinational circuit P and a specification S, which is a combinational circuit
(without black boxes). Are there implementations of the black boxes such that the partial circuit
becomes equivalent to the specification? If these implementations exist, we say the PEC is
satisfied, otherwise unsatisfied.

We combine P and S into a single partial circuit C such that there is an implementation of P
which is equivalent to S iff there is an implementation of the combined circuit such that the
single output of C is 1 for all assignments of its primary inputs. To do so we require the output
function R for C to be 1. This is illustrated in Figure 2.

Example 2 Consider the partial circuit in Figure 3. The dashed part on the left-hand side is the
partial design to be checked, the XOR-gate on the right-hand side is the specification. They have
been combined into a single circuit by connecting their outputs with an equivalence gate. The
property which is to be checked is: Can the two black boxes be implemented such that the partial
circuit becomes equivalent to the XOR-gate?

3. PEC and DQBF

In this section we show that deciding PEC is equivalent to deciding DQBF. To do so, we specify
a linear transformation from DQBF to PEC and vice versa, and show for both cases that the
DQBF is satisfied if and only if the corresponding PEC is satisfied.

Lemma 1 Any DQBF can be translated into an equivalent PEC with linear effort.

Proof: Consider a DQBF

ψ = ∀X1∀X2 . . .∀Xn∃Y1(S1)∃Y2(S2) . . .∃Ym(Sm).ϕ(X1, . . . ,Xn,Y1, . . . ,Ym)
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with S1, . . . ,Sm ⊆ {X1, . . . ,Xn} and its matrix ϕ(X1, . . . ,Xn,Y1, . . . ,Ym) in CNF.

The matrix ϕ can be easily transformed into a circuit C(ϕ) with inputs X1, . . . ,Xn and Y1, . . . ,Ym
with at most a linear increase in size. The input Yi of C(ϕ) is the output of a new black box BBi
in the PEC. The inputs of BBi are exactly the signals in Si. Requiring the output of C(ϕ) to
be constantly 1 is equivalent to comparing the incomplete circuit P with the 1-function as the
specification S. The translation is illustrated in Figure 4.
If the DQBF ψ is satisfied, then there exist Skolem functions si, depending on the variables in Si,
for all Yi such that

∀X1∀X2 . . .∀Xn : ϕ(X1, . . . ,Xn,s1(S1),s2(S2), . . . ,sm(Sm))

is satisfied, i. e. ϕ is a tautology. These Skolem functions can be used as implementations of the
black boxes.



On the other hand the PEC is satisfied, if there exist implementations for all black boxes BBi
such that the requirements hold. The Boolean functions corresponding to these implementations
can be used as Skolem functions for the DQBF.
Following directly from the construction of the PEC, Skolem functions si for all variables Yi
exist, such that φ is satisfied, if and only if implementations for all BBi exist, such that the PEC
is satisfied. Therefore any DQBF can be translated with linear effort into a PEC and the DQBF
is satisfied iff the PEC is satisfied. �

Lemma 2 Any PEC can be translated into an equivalent DQBF with linear effort.

Proof: Consider a PEC with black boxes BB1, . . . ,BBm. We assume that the partial circuit and
the specification have already been combined into a single circuit with the requirement that the
output has be to constantly 1. We follow the notations introduced in Section 2.2, i. e., a black
box BBi has outputs Yi,1, . . . ,Yi,li and inputs Ii,1, . . . , Ii,pi etc.
We assume w. l. o. g. that Yi∩ I j = /0 for all i, j. That means no output of a black box is directly
connected to an input of another black box. Since we will need to use universal quantification
for black box inputs, but existential quantification for black box outputs, having Yi ∩ I j 6= /0
would lead to a contradiction. If our assumption is violated, i. e., Yi∩ I j 6= /0, we can insert a
buffer between BBi and BB j to separate the outputs of BBi and the inputs of BB j. Since a buffer
“computes” the identity function buffer(x) = x, this does not change the functionality of the
circuit and causes at most a linear blow-up of the circuit.
We first construct the quantifier prefix of the DQBF. The primary inputs X1, . . . ,Xn and the black
box inputs I1, . . . , Im are universally quantified, all other variables are existentially quantified.
The dependency set of black box outputs Yi contains exactly the inputs Ii of BBi. Hence the
quantifier prefix is

∀X1 . . .∀Xn∀I1 . . .∀Im∃Y1(I1) . . .∃Ym(Im) .

If the black boxes are not directly connected to the primary inputs but to internal signals we
have to take into account that not all possible combinations of values may arrive at the inputs
of the black boxes. Since we use a universal quantification for the black box inputs we have to
ensure that our formula is satisfied if the value of the black box inputs Ii deviates from the values
obtained as a function Fi(X1, . . . ,Xn,Y1, . . . ,Yi−1).

ϕ(X1, . . . ,Xn, I1, . . . , Im,Y1, . . . ,Ym) =
(
I1 6≡ F1(X1, . . . ,Xn)

)
∨·· ·

∨
(
Im 6≡ Fm(X1, . . . ,Xm,Y1, . . . ,Ym−1)

)
∨R(X1, . . .Xn,Y1, . . . ,Ym) .

This formula is not necessarily given in CNF. By applying Tseitin transformation [14], which is
essentially introducing auxiliary variables for the internal signals of the circuit, one can obtain a
CNF ϕ ′ that is satisfiability equivalent to ϕ and whose size is linear in the size of ϕ . Let A be
the vector of these auxiliary variables, which are existentially quantified in the quantifier prefix.
Their dependency set encompasses all universally quantified variables.



The resulting DQBF is:

ψ = ∀X1 . . .∀Xn∀I1 . . .∀Im∃Y1(I1) . . .∃Ym(Im)∃A(X1, . . . ,Xn, I1, . . . , Im).

ϕ
′(X1, . . . ,Xn, I1, . . . , Im,Y1, . . . ,Ym,A) .

As in Lemma 1 ψ is satisfied if we can replace all Yi(Ii) with Skolem functions si(Ii) such that
ϕ ′ is a tautology. The Skolem functions si exists if and only if there are implementations for the
black boxes BBi of the PEC, such that the PEC is satisfied. Therefore any PEC can be translated
with linear effort into a DQBF and the PEC is satisfied iff the DQBF is satisfied. �

We illustrate this transformation with an example:

Example 3 Consider again the PEC shown in Figure 3. The corresponding DQBF has already
been given in Example 1:

∀X1 ∀X2 ∀I ∃Y1(X1, I) ∃Y2(X2, I).
((

I⊕X1∧X2
)
∨
(
Y1∧Y2 ≡ (X1⊕X2)

))
The primary inputs X1 and X2 as well as the input I of the black boxes have to be universally
quantified. The outputs Y1 and Y2 are existentially quantified. Signal Y1 depends on X1 and I,
since BB1 has exactly these signals as inputs. For the matrix we require that either the input I
is inconsistently assigned (I⊕X1∧X2) or the requirement has to be satisfied, i. e., Y1∧Y2 ≡
(X1⊕X2). A solution of the PEC is obtained by replacing both BB1 and BB2 by a NAND-gate.

Following Lemma 2, the formulation of a PEC as DQBF leads to a new approach for solving
this problem. A first algorithmic approach to solve DQBF is stated in [3].
We have shown that for each PEC P there is a DQBF Q with size linear in the size of P such that
P is satisfiable iff Q is true. Conversely, for each DQBF Q there is a PEC P such that the size
of P is linear in the size of Q and Q is true iff P is satisfiable. This is captured in the following
theorem:

Theorem 1 PEC and DQBF are equivalent.

Proof: Lemma 1 gives a polynomial-time transformation from DQBF to PEC, Lemma 2 a
polynomial-time transformation from PEC to DQBF. Therefore both problems are equivalent.�

Corollary 1 PEC is NEXPTIME-complete.

Proof: PEC is NEXPTIME-hard, since DQBF is NEXPTIME-hard [1] and Lemma 1 holds. PEC
is in NEXPTIME, since DQBF is in NEXPTIME [1] and Lemma 2 holds. Therefore PEC is
NEXTIME-complete. �

The transformation of PEC to DQBF enables us to benefit from recent advances in solver
technology to solve PEC. At the same time, a growing number of relevant applications for DQBF
will push the development of efficient solvers, making it possible to verify increasingly complex
designs.



4. Applications

We have shown the equivalence of DQBF and PEC for circuits with multiple black boxes. Such
circuit designs get more and more important as today’s nanoscale design processes incorporate
pre-designed intellectual property(IP)-cores from different vendors. Such a design flow gets
increasingly common especially when designing complex systems-on-a-chip (SoC) [4]. In such
cases, only the expected functionality of the externally designed IP-core is given based on the
specifications. However, due to design bugs or a malicious modification, the real circuitry may
differ from the expected behavior. In addition, the detailed netlist of the IP-core may not be
given at all.
Proving that there exist no implementations of the external IP-cores that lead to a violation
of security or safety properties is an important question in such designs. Based on the PEC
formulation shown in Section 2.2 such properties can be expressed as follows. The SoC is
modelled with the external IP-cores as black boxes and checked for equivalence against a
representation of the circuit with the inverted property. The system is safe, if the resulting
PEC-instance is proven to be unsatisfiable. Otherwise an implementation of the IP-cores exists
that leads to a violation of the property.

5. Conclusion and future work

In this paper we have shown that combinational equivalence checking for partial circuits (PEC)
and checking the satisfiability of dependency quantified Boolean formulae (DQBF) are equivalent.
We have given both a linear transformation from PEC to DQBF and vice versa. This also answers
the open question about the complexity of PEC, namely we have shown that PEC is NEXPTIME-
complete.
As future work we plan to develop an efficient DQBF-solver that can be used to solve the
equivalence checking problem in those cases where QBF is not accurate enough. In doing so,
we will extend first ideas from [3] and we will investigate other approaches going beyond a
generalization of QDLL approaches. Furthermore we will expand our approach to bounded
model checking on sequential circuits.
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