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Abstract—We consider the partial equivalence checking prob-
lem (PEC), i. e., checking whether a given partial implementation
of a combinational circuit can (still) be extended to a complete
design that is equivalent to a given full specification. To solve PEC,
we give a linear transformation from PEC to the question whether
a dependency quantified Boolean formula (DQBF) is satisfied.

Our novel algorithm to solve DQBF based on quantifier
elimination can therefore be applied to solve PEC. We also present
first experimental results showing the feasibility of our approach
and the inaccuracy of QBF approximations, which are usually
used for deciding the PEC so far.

I. INTRODUCTION

Verification of incomplete (or partial) system designs has
received a lot of research efforts during the last decade [1],
[2], [3], [4], [5]. In a partial system design some parts are
so-called black boxes, i. e., modules of which the internal
structure and behavior is not known. The concept of incomplete
or partial designs can be used, 1) if parts of the system
have not been implemented yet, 2) if the complexity of the
verification task is too high and therefore some parts which
are supposed not to influence the validity of some properties
(e. g., multiplier or memory modules) have been removed to
make verification feasible, and 3) if a designer wants to localize
errors (then one can remove parts of the design and if for all
possible implementations of the removed parts the error does
not disappear, the remaining parts must be erroneous).

For circuits with black boxes (i. e. circuits where parts of
the implementation are not (yet) available), we ask whether
the implementation is equivalent to the specification for some
realization of the black box parts. If this is the case, then we call
the specification realizable. We call the corresponding problem
the partial equivalence checking problem (PEC). If it turns out
that there is no feasible extension, the already implemented
parts are erroneous. This helps detecting errors in an early stage
of a design.

As in [1], we assume that the specification and the partial
design are combinational circuits, where the partial design
additionally contains black boxes. There are also existing
generalizations to sequential circuits (based on bounded model
checking) [4], which we do not consider in this work.

Several approximate and exact methods to solve PEC are
presented in [1]. If an approximate algorithm reports that
there is no implementation for the black boxes, such that the
specification can be realized, the desired specification is indeed
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not realizable. However, if such an algorithm is not able to
prove unrealizability, this can be due to the approximate nature
of the method, and the desired functionality may nevertheless
be not realizable. The algorithms in [1] are based on solving
SAT or QBF formulations of PEC. The SAT formulations are
efficient to solve, but also rather inaccurate due to a coarse
approximation. Their accuracy is improved in several steps,
leading to a QBF formulation that can solve PEC for a single
black box exactly. The authors of [1] additionally give an
exact characterization of realizability of PEC for multiple black
boxes. However, no feasible algorithmic method for solving
the problem is given.

We show that for solving PEC with multiple black boxes
exactly, an extension of QBF called dependency quantified
Boolean formulae (DQBF) can be used. A DQBF is a propo-
sitional formula with a quantifier prefix containing Henkin-
quantifiers [6]. In QBF an existentially quantified variable
depends on all universal quantifiers appearing on the left
of this variable in the prefix, defining a linear order on
the variables. Contrarily, in DQBF the universally quantified
variables on which an existential one depends are specified
explicitly, allowing partially ordered quantifier prefixes.

In [7] the complexity of PEC is proven by showing that PEC
is polynomially equivalent to DQBF. Therefore PEC lies in the
same complexity class as DQBF, namely both are NEXPTIME-
complete.

The first algorithmic approach that considers DQBF is stated
in [8], but no detailed experimental evaluation is given. The
algorithm is based on the QBF-extension QDLL [9] for the
search-based DLL [10] algorithm for SAT. In [11] an algorithm
is presented which evaluates QBF by encoding the function
tables of the Skolem functions for the existential variables
into a propositional SAT-formula. In principle this can also be
applied to solve DQBF [12].

In the QBF domain 1.) variable elimination based algorithms
tend to be beneficial and 2.) And-Inverter graphs (AIG) [13] as
symbolic representation of circuit related verification problems
turn out to be fruitful [14], [15]. Also there is no DQBF solver
publicly available so far. Hence, in this paper we present a new
approach for solving DQBF by using variable elimination [16],
give some details of our implementation using AIGs, and show
that our algorithm is sound and complete.

In the experiments with a prototypical implementation of
our DQBF algorithm we check both artificial and realistic PEC
instances for realizability using exact DQBF and approximate
QBF formulations. The results show the inaccuracy of QBF in
comparison with DQBF, demonstrating clearly that QBF gives



incorrect results in a significant number of cases.
The remainder of the paper is structured as follows. In

Section II we give the foundations of equivalence checking
of partial designs and DQBF. In Section III we show how
to translate a partial design into a DQBF. Then we state
an algorithm to solve DQBF and give proof for its sound-
and completeness in Section IV. Finally we present first
experimental results in Section V and conclude the paper in
Section VI.

II. FOUNDATIONS

In this section we introduce dependency quantified Boolean
formulae and equivalence checking for partial circuits.

A. Dependency Quantified Boolean Formulae
Let V := {v1, . . . , vn} be a set of Boolean variables. A variable
assignment for V is a function ν : V → {0, 1}. We denote the
set of variable assignments for V by AV .

If ϕ is a Boolean expression containing the variable v ∈ V ,
and ψ an expression not containing v, we denote by ϕ[ψ/v]
the expression that results from ϕ by replacing each occurrence
of v with ψ. Replacing each v ∈W ⊆ V by an expression ψv
is denoted by ϕ[ψv/v ∀v ∈ W ]. In this case we require that
the expressions ψv do not contain any w ∈ W such that the
resulting formula does not depend on the replacement order.

In the following we use the symbols x1, . . . , xn for uni-
versally quantified variables and y1, . . . , ym for existentially
quantified variables.

Definition 1: Let ϕ be a Boolean formula, containing the
Boolean variables x1, . . . , xn, y1, . . . , ym, and D1, . . . , Dm ⊆
{x1, . . . , xn} sets of Boolean variables. A dependency-
quantified Boolean formula (DQBF) ψ has the form:

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The sets Di are called dependency sets of yi and the formula ϕ
is called the matrix of ψ.

We denote V ∃ψ = {y1, . . . , ym} as the set of existential
variables and V ∀ψ = {x1, . . . , xn} the set of universal variables.
If yi ∈ V ∃ψ is an existential variable with dependency set Di, a
Skolem function for yi is a function syi,Di

: ADi
→ {0, 1}. In

this case, ϕ[syi,Di
/yi] denotes the expression resulting from ϕ

by replacing each occurrence of yi by a Boolean expression
for the Skolem function syi,Di

.
For a variable x ∈ Di we denote by syi,Di|x=0 the Skolem

function syi,Di\{x} : ADi\{x} → {0, 1} which results from
syi,Di

by setting the variable x constantly to 0. Accordingly
for syi,Di|x=1.

Definition 2: Let ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2)
. . . ∃ym(Dm) : ϕ be a DQBF. It is satisfied (written � ψ) if
and only if there are Skolem functions syi,Di for i = 1, . . . ,m
such that ϕ[syi,Di/yi ∀yi ∈ V ∃ψ ] is a tautology.

Note that DQBF is a generalization of quantified
Boolean formulae (QBF). A QBF of Boolean vari-
ables {x1, . . . , xn, y1, . . . , ym} has the form: ψ :=
∀X1∃Y1 . . . ∀Xn∃Yn : ϕ, where Xi ⊆ {x1, . . . , xn} and
Yi ⊆ {y1, . . . , yn} are disjoint sets of variables. An existential
variable yj ∈ Yi always depends on all universal variables
which are stated in the prefix left of yj , and hence QBF is
limited to a linear order of existential variable dependencies.
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Fig. 1. Notation for partial designs

B. Partial Equivalence Checking

Equivalence checking considers the problem to decide whether
two combinational circuits always produce the same outputs,
given the same inputs. In case that one of the circuit is
not completely given, but contains missing parts, so-called
black boxes, we ask if there are implementations of the black
boxes such that the two circuits become equivalent. If these
implementations exist, we say the partial design is realizable,
otherwise unrealizable. We call this the partial equivalence
checking problem (PEC).

We introduce notations for partial combinational circuits P :
• x1, . . . , xn are the primary inputs of the circuit.
• BB1, . . . ,BBm are the black boxes of the circuit1.
• ~Ii are the inputs of BB i (i = 1, . . . ,m).
• ~Yi are the outputs of BB i (i = 1, . . . ,m).
• ~Fi(x1, . . . , xn, ~Y1, . . . , ~Yi−1) is the vector of functions

defining ~Ii.
• R(x1, . . . , xn, ~Y1, . . . , ~Ym) is the output function of the

circuit.
These notations are illustrated in Fig. 1.
Example 1: Consider x1⊕ x2 as the specification and as an

implementation a partial circuit with three gates and two black
boxes as given in Fig. 2. The PEC problem asks: Is there a
realization of both black boxes BB1 and BB2 such that the
implementation is equivalent to the specification for every value
of the inputs x1 and x2? To answer this question, we add an
additional equivalence (or XNOR) gate for each corresponding
output of the specification and implementation and require the
outputs of these equivalence gates to be constantly 1.

We will revisit this example in the next sections and show
how to formulate an appropriate DQBF to determine whether
the PEC is realizable.

1To guarantee that the circuit is combinational, we assume that
BB1, . . . ,BBm are in topological order, i. e., BB i does not depend on
BBj for i < j
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Fig. 2. Example for PEC

III. FROM PARTIAL DESIGNS TO QBF AND DQBF

A. DQBF Formulation

In order to decide PEC we specify a linear transformation from
PEC to DQBF such that the resulting DQBF is satisfied if and
only if the PEC is realizable. Together with a linear transfor-
mation in the opposite direction this not only yields a way to
solve PEC but also a complexity-theoretic characterization.

Consider a PEC with black boxes BB1, . . . ,BBm. We
assume that the partial circuit and the specification have already
been combined into a single circuit with the requirement that
the output has to be constantly 1 (cf. Example 1). We follow
the notations introduced in Section II-B, i. e., a black box BB i

has outputs ~Yi and inputs ~Ii etc..
We assume w. l. o. g. that ~Yi ∩ ~Ij = ∅ for all i, j. That means

no output of a black box is directly connected to an input of
another black box. Since we need to use universal quantification
for black box inputs, but existential quantification for black
box outputs, having ~Yi ∩ ~Ij 6= ∅ would lead to a contradiction.
If ~Yi ∩ ~Ij 6= ∅, we insert a buffer, “computing” the identity
function, between BB i and BB j to separate the outputs of BB i

and the inputs of BB j . This does not change the functionality
of the circuit and causes at most a linear blow-up.

We first construct the quantifier prefix of the DQBF. The
primary inputs x1, . . . , xn and the black box inputs ~I1, . . . , ~Im
are universally quantified, all other variables are existentially
quantified. The dependency set of black box output yi,j contains
exactly the inputs ~Ii of BB i. Hence the quantifier prefix is

∀x1 . . . ∀xn∀~I1 . . . ∀~Im∃~Y1(~I1) . . . ∃~Ym(~Im).

If the black boxes are not directly connected to the primary
inputs but to internal signals, we have to take into account that

not all possible combinations of values may arrive at the inputs
of the black boxes. Since we use universal quantification for
the black box inputs we have to ensure that our formula is
satisfied if the value of the black box inputs ~Ii deviates from
the values obtained as a function ~Fi(x1, . . . , xn, ~Y1, . . . , ~Yi−1).

ϕ :=
(
~I1 6≡ ~F1(x1, . . . , xn)

)
∨ · · ·

∨
(
~Im 6≡ ~Fm(x1, . . . , xn, ~Y1, . . . , ~Ym−1)

)
∨R(x1, . . . xn, ~Y1, . . . , ~Ym). (1)

By applying Tseitin transformation [17], which is essentially
introducing auxiliary variables ~A = (a1, . . . , ap) for the
internal signals of the circuit, one can obtain a CNF ϕ′ that
is satisfiability equivalent to ϕ and whose size is linear in the
size of ϕ. The variables in ~A are existentially quantified in
the quantifier prefix. Their dependency set encompasses all
universally quantified variables.

The resulting DQBF is:

ψ := ∀x1 . . . ∀xn∀~I1 . . . ∀~Im∃~Y1(~I1) . . . ∃~Ym(~Im)

∃ ~A(x1, . . . , xn, ~I1, . . . , ~Im) : ϕ′.

The formula ψ is satisfied if and only if we can replace
all ~Yi with Skolem functions ~s~Yi,~Ii

such that ϕ′ becomes a
tautology. The Skolem functions ~s~Yi,~Ii

exist if and only if there
are implementations for the black boxes BBi of the PEC, such
that the specification is realized. Therefore any PEC can be
translated with linear effort into a DQBF such that the PEC is
realizable if and only if the DQBF is satisfied. Using Tseitin
transformation, it is always possible to obtain a matrix of ψ
whose length is linear in the size of the circuit. This is captured
in the following lemma:

Lemma 1: Any PEC can be translated into an equivalent
DQBF with linear effort.

We illustrate this transformation with an example (which
for simplicity omits the conversion into CNF by Tseitin
transformation):

Example 2: Consider again the PEC in Example 1. The
corresponding DQBF is:

ψDQBF = ∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2).

The primary inputs x1 and x2 get universally quantified.
The input functions F1 and F2 are the identity functions of
x1 and x2, respectively. The black box inputs are directly
connected to the primary inputs and therefore we do not need
additional variables for them. The black box outputs y1 and y2
are existentially quantified, whereby signal y1 depends on x1,
since BB1 has this signal as input. Accordingly for y2 and x2.
The three gates of the implementation (cf. Example 1) are
represented by the Boolean expression

(
(y1∨y2)∨(x1∧¬x2)

)
.

For the matrix we require that either the inputs of the black
boxes are inconsistently assigned (which is trivially not the
case, thus we can omit the corresponding contradictions in the
disjunctive formula (1) above) or the requirement has to be
satisfied, i. e., the implementation has to be equal to (x1 ⊕ x2).
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Fig. 3. Translation from DQBF to PEC

We will use this example again in the next section illustrating
our proposed algorithm and thereby show whether the PEC is
realizable.

Following Lemma 1, the formulation of a PEC as DQBF
leads to an approach for solving this problem.

For the sake of completeness we state the following lemma,
which allows to show the complexity of the PEC problem.

Lemma 2: Any DQBF can be translated into an equivalent
PEC with linear effort.

Proof: Consider a DQBF

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The matrix ϕ can be easily transformed into a combinational
circuit C(ϕ) with inputs x1, . . . , xn and y1, . . . , ym by replac-
ing the logical connectives ∨, ∧, and ¬ with the corresponding
gates. The input yi of C(ϕ) is the output of a new black
box BB i in the PEC. The inputs of BB i are exactly the signals
in Di. Requiring the output of C(ϕ) to be constantly 1 is
equivalent to comparing the incomplete circuit P with the 1-
function as the specification S. The translation is illustrated
in Fig. 3. It can be shown that the resulting PEC is realizable
if and only if the DQBF is satisfied [7]. Its size (number of
gates, signals, and black boxes) is linear in the length of the
DQBF.

We have shown that for each PEC P there is a DQBF ψ
whose size is linear in the size of P such that P is realizable
if and only if ψ is satisfied (cf. Lemma 1). Conversely, for
each DQBF ψ there is a PEC P whose size is linear in the
size of ψ such that ψ is true if and only if P is satisfiable (cf.
Lemma 2). This is captured in the following theorem:

Theorem 1: PEC and DQBF are polynomially equivalent.
Finally we can state the following corollary using the known

complexity class of DQBF:
Corollary 1: PEC is NEXPTIME-complete.

Proof: Since DQBF is NEXPTIME-complete [18] and
PEC and DQBF are polynomially equivalent (Theorem 1), PEC
is also NEXPTIME-complete.

B. QBF Approximations
In [1] QBF formulations for PEC have been defined. Here
we will show the relationship between QBF and DQBF
formulations.

Definition 3: Let

ψDQBF := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

be a DQBF and

ψQBF := ∀X1∃Y1∀X2∃Y2 . . . ∃Yk : ϕ

a QBF with the same matrix, such that {Xi ⊆
{x1, . . . , xn} | i = 1, . . . , k} is a partition of the universal
and {Yi ⊆ {y1, . . . , ym} | i = 1, . . . , k} a partition of the
existential variables. ψQBF is an approximation of ψDQBF

(written ψDQBF � ψQBF) if yi ∈ Yj implies Di ⊆
⋃j
`=1X`

for all i = 1, . . . ,m.
That means, ψQBF is an approximation of ψDQBF if for all

existential variables yi of ψDQBF, the universal variables in Di

appear in the quantifier prefix of ψQBF on the left of yi.
Lemma 3: If ψDQBF � ψQBF, then � ψDQBF implies � ψQBF.

Proof: If y is an existential variable of ψDQBF and ψQBF,
and ψDQBF � ψQBF, then each Skolem function for y in ψDQBF
is also a Skolem function for y in ψQBF.

If a QBF approximation is unsatisfied, we can therefore
conclude that the original DQBF is also unsatisfied, but a
satisfied QBF approximation does not give us any information
about the satisfaction of the DQBF.

Definition 4: Let ψQBF := ∀X1∃Y1∀X2∃Y2 . . . ∃Yk : ϕ and
ψ′QBF := ∀X ′1∃Y ′1∀X ′2∃Y ′2 . . . ∃Y ′k′ : ϕ be two approximations
of ψDQBF. ψQBF is stronger than ψ′QBF (written ψQBF � ψ′QBF)
if for all existential variables y holds: y ∈ Yi ∩ Y ′j implies⋃i
k=1Xk ⊆

⋃j
k=1X

′
k.

Stronger approximations are more favorable in terms of
approximation quality:

Lemma 4: If ψQBF � ψ′QBF, then � ψQBF implies � ψ′QBF.
Proof: If y is an existential variable of ψQBF and ψ′QBF,

and ψQBF � ψ′QBF, then each Skolem function for y in ψQBF is
also a Skolem function for y in ψ′QBF.

Definition 5: Let ψDQBF be a DQBF and ψQBF a QBF
approximation of ψDQBF. ψQBF is a strongest approximation or
strongest formulation if ψ′QBF � ψQBF implies ψ′QBF = ψQBF
for all approximations ψ′QBF.

That means the strongest approximations are the ones that
are closest to the original DQBF formula.

Remark 1: If the PEC contains a single black box, the corre-
sponding (unique) strongest QBF approximation is equivalent
to the DQBF formulation (i. e. PEC with single black boxes
can be solved exactly by QBF, see also [1]).

Example 3: Consider again the DQBF from the previous
example:

ψDQBF = ∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2).

In order to obtain a QBF approximation, we have to take the
dependencies into account: y1 has to be placed right of x1
and y2 right of x2 in the quantifier prefix. Therefore we obtain
three different QBF approximations, where ϕ is the matrix of
ψDQBF:

ψ1
QBF = ∀x1∃y1∀x2∃y2 : ϕ,

ψ2
QBF = ∀x2∃y2∀x1∃y1 : ϕ,

ψ3
QBF = ∀x1∀x2∃y1∃y2 : ϕ.

where ϕ is the matrix as in ψDQBF. Note, in ψ1
QBF the variable y2

depends on both universal variables x1 and x2, whereas y1 only



depends on x1 and vice versa for ψ2
QBF. In ψ3

QBF, both y1 and
y2 depend on both x1 and x2.

There are two strongest approximations, namely ψ1
QBF and

ψ2
QBF. In both formulations all universal variables appearing

left of y1 (y2) also appear left of y1 (y2) in ψ3
QBF. Therefore

ψ3
QBF is not a strongest approximation.
In our experiments in Section V we will compare the results

obtained for a series of PEC case studies using DQBF and only
the strongest QBF approximations.

IV. ELIMINATION-BASED DQBF SOLVING

In this section we describe variable elimination procedures for
DQBF and prove their correctness. They yield an algorithm to
decide whether a given DQBF is satisfied.

Let in the following

ψ := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

be a DQBF with Di ⊆ {x1, . . . , xn} for i = 1, . . . ,m. For a
set V of Boolean variables let V ′ denote the set V ′ = {x′ |x ∈
V } of new Boolean variables, indicating that x′ is a copy of x.

To eliminate a universal variable xi, we construct the
conjunction of the two co-factors of ϕ and replace in one
co-factor the variables in Exi with their copy. Therefore we
have to double all existential variables which depend on xi,
i. e., all variables in Exi .

Theorem 2 (Elimination of universal variables): Let Exi
={

yj ∈ V ∃ψ
∣∣xi ∈ Dj

}
be the set of existential variables which

depend on the universal variable xi. Then ψ is equivalent to
the following DQBF:

ψ′ := ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn
∃y1(D1 \ {xi}) . . . ∃ym(Dm \ {xi})∃y′j(Dj \ {xi})︸ ︷︷ ︸

for all yj ∈ Exi

:

ϕ[0/xi] ∧ ϕ[1/xi][y′j/yj ∀yj ∈ Exi
].

Proof: To simplify notation, w. l. o. g. assume i = 1, i. e.,
we eliminate x1. Then we have:

� ψ

⇔ ∃sy1,D1 , . . . , sym,Dm with

� ∀x1 . . . ∀xn : ϕ[syj ,Dj
/yj ∀yj ∈ V ∃ψ ]

⇔ ∃sy1,D1 , . . . , sym,Dm with

� ∀x2 . . . ∀xn : ϕ[syj ,Dj
/yj ∀yj ∈ V ∃ψ ][0/x1]

∧ ϕ[syj ,Dj
/yj ∀yj ∈ V ∃ψ ][1/x1]

⇔ ∃sy1,D1 , . . . , sym,Dm with � ∀x2 . . . ∀xn :

ϕ[0/x1][syk,Dk
/yk ∀yk ∈ V ∃ψ \ Ex1

]

[syj ,Dj |x1=0/yj ∀yj ∈ Ex1
]

∧ ϕ[1/x1][syk,Dk
/yk ∀yk ∈ V ∃ψ \ Ex1 ]

[syj ,Dj |x1=1/yj ∀yj ∈ Ex1
]

⇔ ∃sy1,D1 , . . . , sym,Dm with

� ∀x2 . . . ∀xn :
(
ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1 ]

)
[syk,Dk

/yk ∀yk ∈ V ∃ψ \ Ex1
]

[syj ,Dj |x1=0/yj ∀yj ∈ Ex1 ][syj ,Dj |x1=1/y
′
j ∀yj ∈ Ex1 ]

⇔ � ∀x2 . . . ∀xn ∃yk(Dk)︸ ︷︷ ︸
for all yk 6∈Ex1

∃yj(Dj \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸
for all yj∈Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1
]

⇔ � ∀x2 . . . ∀xn
∃y1(D1 \ {x1}) . . . ∃ym(Dm \ {x1})∃y′j(Dj \ {x1})︸ ︷︷ ︸

for all yj ∈ Ex1

:

ϕ[0/x1] ∧ ϕ[1/x1][y′j/yj ∀yj ∈ Ex1
].

In the following we state elimination rules for two special
cases. First, consider the case of eliminating a universal
variable xi with Exi = ∅, i. e., there is no existential variable
depending on xi. We obtain the following elimination rule:

Corollary 2: If Exi
= ∅, ψ is equivalent to

ψ′ := ∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) :

ϕ[0/xi] ∧ ϕ[1/xi].
In a second case consider an existential variable depending

on all universal variables. For this we apply the elimination
rule which is stated in the following:

Lemma 5 (Elimination of existential variables): Consider the
following DQBF:

ψ := ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) : ϕ

If Di = {x1, . . . , xn}, i. e., if yi depends on all universal
variables, ψ is equivalent to:

∀x1 . . . ∀xn∃y1(D1) . . . ∃yi−1(Di−1)

∃yi+1(Di+1) . . . ∃ym(Dm) : ϕ[0/yi] ∨ ϕ[1/yi].
This is the standard QBF variable elimination rule for existential
variables on the innermost quantifier level [16].

Algorithm 1 shows how to apply quantifier elimination
to decide a given DQBF. It takes the set V∀ of universally
quantified variables, the set V∃ of existentially quantified
variables together with their dependency sets, and the matrix ϕ
of the DQBF as inputs. First we compute for each universal
variable x ∈ V∀ which existential variables depend on x. As
long as the formula contains universal variables we repeat the
following elimination process:

We first check if there are existential variables which depend
on all universal variables (cf. Line 5). These are eliminated first
by using Lemma 5, because they would otherwise be doubled
for each universal variable that is eliminated. This in particular
applies in a PEC to the Tseitin variables which are introduced
to generate a matrix in conjunctive normal form. The function
∃-eliminate takes care of this elimination. We have to remove
the eliminated variables from V∃ and all Ex for x ∈ V∀.

If no existential variables are left that can be eliminated, we
choose a universal variable x∗ for elimination upon which a
minimal number of existential variables depend. This heuristic
choice is based on the fact that the smaller the number
of depending existential variables the less variables have to
be doubled. The elimination is carried out by the function
∀-eliminate. Here, we first expand ϕ by duplicating the
existential variables depending on x∗. Then x∗ is substituted by



Algorithm 1 Solving DQBF using quantifier elimination

SolveDQBF(ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ)
begin

V∀ ← {x1, . . . , xn} (1)

V∃ ← {(y1, Dy1), . . . , (ym, Dym)} (2)

Ex ← {y | (y,Dy) ∈ V∃ ∧ x ∈ Dy} for all x ∈ V∀ (3)

while V∀ 6= ∅ do (4)

// eliminate existential variables
P ← {y | (y,Dy) ∈ V∃ ∧Dy = V∀} (5)

if P 6= ∅ then (6)

ϕ← ∃-eliminate(ϕ, P ) (7)

Ex ← Ex \ P for x ∈ V∀ (8)

V∃ ← V∃ \ {(y,Dy) | y ∈ P} (9)

end if (10)

// variable selection and elimination:
x∗ ← argminx∈V∀ |Ex| (11)

ϕ← ∀-eliminate(ϕ, x∗, Ex∗) (12)

// update of the variable and dependency sets:
V∀ ← V∀ \ {x∗} (13)

V∃ ← {(y,D \ {x∗} | (y,D) ∈ V∃}
∪̇ {(y′, Dy′) | (y,Dy) ∈ Ex∗ ∧Dy′ = Dy \ {x∗}}

(14)

Ex ← Ex ∪̇ {y′ | y ∈ Ex∗ ∩ Ex} for all x ∈ V∀ (15)

end while (16)

return SAT(ϕ) (17)

end

0 and 1 as described in Theorem 2 and finally a logical AND
of both sub-formulae is built. Afterward the sets V∀, V∃ and
Ex for x ∈ V∀ have to be adjusted. The eliminated variable x∗

has to be removed from V∀ and from all dependency sets.
Additionally we have to insert all newly created existential
variables y′ into V∃ and into the Ex sets.

This algorithm terminates after finitely many iterations of
the while-loop since in each iteration the number of universally
quantified variables decreases by one.

If we have obtained a formula without universal variables,
we can use a propositional SAT-solver to decide if the formula
is satisfied (cf. Line 17).

Example 4: Consider again our running example from the
previous sections. We want to show whether

∀x1∀x2∃y1(x1)∃y2(x2) :(
(y1 ∨ y2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

is satisfied. Applying Algorithm 1 we first eliminate one of the
universal variables according to Theorem 2, say x1, since there
is no existential variable which depends on every universal one.
This yields

∀x2∃y1(∅)∃y′1(∅)∃y2(x2) :(
(y1 ∨ y2) ≡ x2

)︸ ︷︷ ︸
setting x1 = 0

∧
(
(y′1 ∨ y2 ∨ ¬x2) ≡ ¬x2

)︸ ︷︷ ︸
setting x1 = 1 and replacing y1 → y′1

Now y2 depends on all remaining universal variables and gets

eliminated (cf. Lemma 5):

∀x2∃y1(∅)∃y′1(∅) :
(y1 ≡ x2) ∧

(
(y′1 ∨ ¬x2) ≡ ¬x2

)︸ ︷︷ ︸
setting y2 = 0

∨
(
(1 ≡ x2) ∧ (1 ≡ ¬x2)

)︸ ︷︷ ︸
setting y2 = 1

.

⇔ ∀x2∃y1(∅)∃y′1(∅) : (y1 ≡ x2) ∧
(
(y′1 ∨ ¬x2) ≡ ¬x2

)
.

Now the algorithm eliminates x2. Note that we do not have
to double any existential variable because none of them depends
on x2. This finally yields the formula (cf. Corollary 2):

∃y1(∅)∃y′1(∅) :(
(y1 ≡ 0) ∧ (1 ≡ 1)

)︸ ︷︷ ︸
setting x2 = 0

∧
(
(y1 ≡ 1) ∧ (y′1 ≡ 0)

)︸ ︷︷ ︸
setting x2 = 1

,

which is obviously not satisfied and hence, the PEC is not
realizable.

Now we consider the two strongest QBF formulations from
Example 3, first

ψ1
QBF = ∀x1∃y1∀x2∃y2 :

(
(y1∨y2)∨(x1∧¬x2)

)
≡ (x1⊕x2).

We can see that ψ1
QBF is satisfied by giving appropriate Skolem

functions for the existential variables. Note that the Skolem
functions depend on all universal variables on the left of
the existential variable. We use sy1,{x1}(x1) = 0 for y1 and
sy2,{x1,x2}(x1, x2) = x1 ⊕ x2 for y2. Replacing y1 and y2 (or,
equivalently, the left and the right black box) by their Skolem
functions, we get

∀x1∀x2 :
(
(0 ∨ (x1 ⊕ x2)) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 :
(
(x1 ⊕ x2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 :
(
x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2)

⇔ ∀x1∀x2 : (x1 ⊕ x2) ≡ (x1 ⊕ x2),

which is satisfied.
For the second QBF formulation

ψ2
QBF = ∀x2∃y2∀x1∃y1 :

(
(y1∨y2)∨ (x1∧¬x2)

)
≡ (x1⊕x2)

we can use the Skolem functions sy2,{x2}(x2) = 0 for y2 and
and sy1,{x1,x2}(x1, x2) = x1⊕ x2 for y1. Replacing y1 and y2
by their Skolem functions yields

∀x2∀x1 :
(
((x1 ⊕ x2) ∨ 0) ∨ (x1 ∧ ¬x2)

)
≡ (x1 ⊕ x2),

which is the same formula as before and therefore also satisfied.
We observe that both strongest QBF formulations give the

wrong answer, due to their approximate character, and only the
DQBF formulation is correct.

Note that for the third (non strongest) QBF approximation
ψ3

QBF from Example 3 we could use either the Skolem functions
for ψ1

QBF or for ψ2
QBF leading to a tautological matrix.
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Fig. 4. Circuit template for two black boxes

TABLE I
RESULTS FOR XOR TEMPLATES

#BBs total SAT UNSAT
total correct wrong depends

2 65536 32378 33168 16798 4584 11776
100 % 50.6 % 13.8 % 35.5 %

3 50000 9124 40876 2344 15979 22553
100 % 5.7 % 39.1 % 55.2 %

4 50000 199 49801 16 21626 28159
100 % <0.1 % 43.4 % 56.5 %

V. EXPERIMENTS

In this section we first describe some implementation details
of our DQBF solver, followed by a short description of the
experimental setup. Finally we present experimental results and
their evaluation.

We have implemented Algorithm 1 in C++ in a prototypical
solver called henaig. As the basic data structure we use
functionally reduced And-Inverter graphs (FRAIGs) [13], [19],
[20]. They are essentially circuits consisting of AND gates and
inverters only. A FRAIG is a ‘semi-canonical’ form of AIGs,
i. e., there are no two distinct gates in the FRAIG representing
the same (or inverse) function. Nevertheless FRAIGs still
allow multiple structurally different representations of the
same function. FRAIGs support all necessary operations like
conjunction, disjunction, and replacing an input by an arbitrary
FRAIG (in particular the constant 0- and 1-FRAIG).

Currently our solver can handle PECs with a few hundred
gates, but in this paper we focused on showing the qualitative
differences between QBF and DQBF formulations. So far our
available instances tend to fall into two classes: instances which
are rather fast to solve and secondly instances which cannot be
solved due to memory or timing constraints. This is a similar
situation as in the early days of related solving engines for SAT
or QBF and we expect to see scalability in the near future.

We have generated all 216 = 65 536 possible Boolean
functions with four inputs and used an implementation of them
as the four-input circuit in Fig. 4. We checked if there are

realizations of the black boxes such that the implementation
becomes equivalent to the XOR of the primary inputs. For
this we used the DQBF formulation as well as both strongest
approximate QBF formulations as seen in Example 3. We
abstain from making a comparison with SAT-based approaches,
since they are even less accurate than the QBF-based approach.

We extended this example by considering 3 black boxes and
primary inputs as well as 4 black boxes and primary inputs.
The demanded specification is again an XOR of all primary
inputs and we compare the DQBF results with all strongest
QBF approximations. Due to the mere number of possible
functions we did not consider all of them and ran only 50 000
randomly picked instances for both 3 and 4 black boxes. Each
of these instances could be solved in significantly less than one
second.

All results are given in Table I. The first column states the
number of black boxes (“BB”) followed by the number of
total instances and their classification (“SAT” or “UNSAT”,
i. e., realizable or unrealizable) obtained from our DQBF
solver. The fourth column shows the total number of instances
classified as UNSAT and the last three columns show the
results of the QBF formulation compared with the unsatisfied
DQBF one. Here the number of instances are given where all
strongest QBF formulations return the same result as the DQBF
version (“correct”), where all strongest QBF formulations return
a different result (“wrong”), and finally where some QBF
formulations report the same result and some a different one
(“depends”). The given percentages are related to the total
number of unsatisfied DQBF instances, since the satisfied DQBF
instances are also (correctly) stated as satisfied in any QBF
approximation.

If the DQBF formulation reports realizability, the QBF always
detects realizability, too. For 2 black boxes, this happened in
32378 cases. The remaining 33168 cases, where DQBF detects
unrealizability, can be partitioned in the following three cases:

In 16 798 cases (50.6 %) the result of all strongest QBF
formulations are correct, i. e., also unsatisfiable. In all other
cases at least one of the QBF formulations returns an incorrect
result: In 4584 cases (13.8 %), both QBF formulations reported
the contrary result, and in 11 776 additional cases (35.5 %), one
of the QBF formulations correctly reported unrealizability, but
the other QBF formulation was satisfied.

This means, in 13.8 % of these cases, DQBF is the only way
to obtain a correct result, and in additional 35.5 % of these
cases, one only obtains a correct result by chance.

The number of possible implementations decreases signifi-
cantly with the number of black boxes—from about 50% with 2
black boxes to 199 out of 50 000 cases with 4 black boxes—and
at the same time the number of incorrect QBF results increases.
For the unsatisfied instances with 4 black boxes in only 16 out
49 801 cases all strongest QBF formulations return the correct
result and 43.4% return that the PEC is realizable although it
is not.

We applied a similar scenario using PEC problems described
in [1]. These problems consist of a carry ripple adder circuit as
specification and a copy of this specification as implementation.
In addition at least one and up to six gates are removed from the
implementation and replaced by a distinct black box for each



TABLE II
RESULTS FOR CARRY RIPPLE ADDER

# DQBF instances # QBF instances
# BBs total SAT UNSAT total correct wrong

1 96 24 72 96 96 0
2 56 21 35 112 95 17
3 48 14 34 288 153 125
4 28 10 18 672 294 378
5 8 2 6 960 275 685
6 4 1 3 2880 751 2119

total 240 74 168 5008 1664 3324

gate. There are 20 different versions of this circuit, which are
obviously realizable. For each version there exist 11 additional
variations, where random faults have been added to the non
black boxed parts of the implementation, resulting in 240
benchmarks in total.

For all of these 240 instances we have generated the
corresponding DQBF as well as all 5008 strongest QBF
approximations. The results are shown in Table II. Each instance
could be solved within three seconds. Again the first column
shows the number of black boxes in the design (“# BBs”). The
next three columns show the total number of different PEC
versions as well as their classification (“SAT” and “UNSAT”)
by the DQBF formulation. The last three columns show the
number of different QBF instances (“total”) and their result
compared to the DQBF formulation (“correct” and “wrong”).
Note, that for n black boxes there are n! different strongest
QBF approximations.

For one black box all strongest QBF versions return the
correct result, since it is accurate for one black box. But
one can clearly observe that the number of incorrect QBF
answers increases again significantly with the number of black
boxes—up to 73.6% for 6 black boxes. We observed that for
these particular benchmarks there is no instance for which
all strongest QBF approximations provide the wrong answer,
but there is a significant amount of strongest prefix variations
returning the wrong result for most of the instances. Consider
in particular the 3 unrealizable DQBF instances with 6 black
boxes. We considered 6! = 720 different strongest QBF
approximations for each. In only 31 out of in total 2 160
instances (1.4%) the correct result is returned that the PEC is
unrealizable.

VI. CONCLUSION AND FUTURE WORK

We have shown how to decide exactly whether a partial
combinational circuit can be extended such that it becomes
equivalent to a complete specification. Our approach is based
on a transformation from PEC to DQBF. We have presented
an algorithm to solve DQBF based on variable elimination.
Preliminary experimental results show the feasibility and
necessity of this approach.

Future work will encompass making the solver more efficient
by transferring more of the techniques commonly used in state-
of-the-art QBF solvers to the domain of Henkin quantifiers.
Preprocessing of DQBF to simplify the formula is also a current
research topic. We expect from both considerably improved

scalability to large-scale circuits. Additionally we plan to use
DQBF in bounded model checking of sequential circuits.
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