
Bounded Fairness for Probabilistic
Distributed Algorithms∗

Pepijn Crouzen, Ernst Moritz Hahn, Holger Hermanns
Saarland University

Saarbrücken, Germany
{crouzen,hahn,hermanns}@cs.uni-saarland.de

Abhishek Dhama, Oliver Theel
Carl von Ossietzky University

Oldenburg, Germany
{abhishek.dhama,oliver.theel}@informatik.uni-oldenburg.de

Ralf Wimmer, Bettina Braitling, Bernd Becker
Albert-Ludwigs-University

Freiburg, Germany
{wimmer,braitlin,becker}@informatik.uni-freiburg.de

Abstract—This paper investigates quantitative dependability
metrics for distributed algorithms operating in the presence
of sporadic or frequently occurring faults. In particular, we
investigate necessary revisions of traditional fairness assumptions
in order to arrive at useful metrics, without adding hidden
assumptions that may obfuscate their validity. We formulate
faulty distributed algorithms as Markov decision processes to
incorporate both probabilistic faults and non-determinism arising
from concurrent execution. We lift the notion of bounded fairness
to the setting of Markov decision processes. Bounded fairness
is particularly suited for distributed algorithms running on
nearly symmetric infrastructure, as it is common for sensor
network applications. Finally, we apply this fairness notion in
the quantitative model-checking of several case studies.

Keywords-Markov decision processes; schedulers; bounded
fairness

I. INTRODUCTION

In a distributed algorithm several separated processes with only
local knowledge must cooperate to achieve a common goal.
Such algorithms have been extensively studied over more than
40 years [19]. Abstract properties of distributed algorithms
are traditionally established by proving correctness guarantees
under certain assumptions.

Such analyses may be called qualitative as they establish a
particular quality of the algorithm under study. Such guarantees
are usually based on strong assumptions about the dependability
of the system. Either it is (implicitly) assumed that no
communication fault occurs [19], or it is assumed that only a

∗This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS)
(see www.avacs.org for more information) and the Graduiertenkolleg
“Leistungsgarantien für Rechnersysteme”.

limited number of faults occur [13], or it is assumed that at
some point faults stop occurring.

With the rise of the internet and of wireless networks,
solutions capable of operating in unpredictable and unreliable
environments have found practical relevance. For the field
of distributed algorithms this means that we can no longer
make strong assumptions about the (eventual) absence of faults.
Especially sensor networks must operate in an environment
where the frequent occurrence of faults is the rule, not the
exception.

Traditional qualitative guarantees therefore do not apply. This
motivates an effort to instead quantitatively analyze distributed
algorithms [21], [9], [18], [17]. Instead of proving that an
algorithm works, quantitative analysis aims at studying how
well an algorithm works. This shift in focus however implies
that established assumptions, models and algorithms that have
been used for qualitative analysis are not necessarily adequate
in the quantitative setting. First of all we must alter the
assumptions on dependability. Instead of assuming that there
only occur a limited number of faults, or that faults occur only
in a certain time-period, we now assume that transient faults
can occur at any time, but with a specific probability. This
allows to calculate probability bounds on the correct operation
of the algorithm [18], [17] provided fault probabilities are
given.

The present paper focuses on a further set of assumptions
that must be reconsidered in order to arrive at an insightful
quantitative analysis. These assumptions concern the order in
which the different processes operate in a distributed algorithm.
For a qualitative analysis, it is common to pose the most
general assumption under which the algorithm is assumed to
work correctly. Dijkstra, for instance, states that “nothing may
be assumed about the relative speeds of the N computers” [19]

in his seminal work on distributed mutual exclusion.
However under such an assumption quantitative analysis

quickly becomes uninteresting: the worst-case success proba-
bility (that all processes can enter their critical section within
some finite time) is provably zero under such a weak assump-
tion. Also standard fairness assumptions do not change this
phenomenon, as we will discuss. More appropriate assumptions
have already been studied in the context of qualitative analysis,
namely where the amount of time between two steps of a
process is bounded [4], [15], [22]. This paper investigates
the concept of bounded fairness in the context of quantitative
analysis of probabilistic distributed algorithms. We formally
define the notion of bounded fairness for probabilistic models
with non-determinism and apply it in the analysis of several
case studies.

The models we are dealing with are non-deterministic and
probabilistic at the same time, and known as Markov decision
processes [29]. As our modeling and analysis vehicle, we use
the probabilistic model-checker PRISM [27], and its modeling
language. The theory developed in this paper is however not
bound to this tool. It draws some inspiration from a recent
experimental scheduler comparison [5].

Our work can be considered in contrast to the simulation-
based analysis of distributed systems as it prevails in the
systems community. In that approach, dependability metrics
are often skewed by hidden assumptions that are added by the
simulator, the libraries, the runtime environment, the random
number generator, or the postprocessing of simulation traces. In
the wireless sensor community, there is a growing awareness [1],
[24], [26] for this problem, and this paper constitutes a step
towards a solution.

II. PRELIMINARIES

In this section we briefly discuss the general theory of Markov
decision processes.

A. Markov decision processes

We denote the collection of all probability distributions on
(Borel) subsets of a set S as P(S).

Definition 1: A Markov decision process (MDP) is a tuple
(S,A,R) where: S is the state space, A is a set of actions
and R : S × A × P(S) is the transition relation such that
for every pair (s, a) ∈ S ×A we have at most one transition
(s, a, π) ∈ R. If we find exactly one transition (s, a, π) per
pair (s, a), we say that the MDP is enabled.
The state space and the set of actions are discrete. For the
remainder of this section we fix a MDP M = (S,A,R).

We say that an action a ∈ A is enabled in a state s ∈ S if
there exists a triple (s, a, π) in R. We denote the set of enabled
actions in a state s ∈ S as As. For an enabled MDP we have
that As = A for all states s ∈ S. We write R̄(s, a) for the
random variable which takes values in S and is distributed
according to π. A path of M is a, possibly infinite, sequence
of states and actions σ = s1, a1, s2, a2, . . ., where each action
ai is enabled in the previous state si. A finite path σ ends
in state last(σ). The length of a path is equal to the number

of actions in the path. This means that a path consisting of a
single state has length 0. We denote the set of all finite paths
as (S ×A)∗ × S and the set of all infinite paths as (S ×A)ω .
Given a path σ = s1, a1, s2, a2, . . . the action trace σ[A] of σ
consists of the sequence of actions in σ, i.e. σ[A] = a1, a2,

A scheduler f is a function from finite paths to distributions
over the actions f : ((S×A)∗×S)→ P(A) such that for any
finite path σ = s1, a1, . . . , s we have for f(σ) = π that, if the
distribution π assigns a probability greater than zero to a, then
a is enabled in s. We write f̄(σ) for the random variable which
takes values in A and is distributed according to π. A scheduler
f induces a Markov chain (MC) (Xk

f,M)k∈Z+
with state space

(S × A)∗ × S where for finite paths σ = s1, a1, . . . , s and
σ′ = s1, a1, . . . , s, a, s

′ (i.e., σ is the largest prefix of σ′) we
have:

P (Xk+1
f,M = σ′|Xk

f,M = σ) = P (f̄(σ) = a) · P (R̄(s, a) = s′)

All other transition probabilities are zero, since they are not
selected by the scheduler under consideration. If we now fix a
starting distribution over S, we can compute the probability of
MDP M being in a state s ∈ S at a time-point k ∈ Z+ given
a scheduler f by summing over all paths of length k that end
in s.

A scheduler is called deterministic if it always chooses a
point distribution over the set of actions, i.e., a distribution
where one action has probability 1 and the others have
probability 0. We refer to a set of schedulers as a scheduler
class. The set of all schedulers for a MDP M is denoted CM .

In the analysis of MDPs, it is often considered interesting to
study the maximum or minimum probability of being in a state
s ∈ S in the Markov chains Xf,M induced by all schedulers f
in a scheduler class. We refer to these probabilities as extremal
probabilities. Extremal probabilities correspond to best-case and
worst-case behaviors. Thus, bounds on minimal and maximal
probabilities imply guarantees for any possible behavior of the
system. For instance, we can use these bounds to prove safety
properties of the system. If we wish to show that a system is
in a “safe” state at a certain time-point with at least probability
p, we need only show that the minimum probability to be in
this “safe” state is larger than p. The minimum probability
to be in a particular state at a particular time is given by the
infimum transient probability function of a MDP. Conversely,
maximum probabilities are given by the supremum transient
probability function.

Definition 2: Given a MDP M = (S,A,R), a set of initial
states Sinit ⊂ S, a scheduler class C, a set of goal-states
G ⊂ S and a time-point k ∈ Z≥0 we define the infimum
transient probability function R− as follows:

R−(M,Sinit , C,G, k)= inf
f∈C,s∈Sinit

P (X
(k)
f,M ∈ G | X

(0)
f,M = s)

The supremum transient probability function R+ is obtained
by replacing inf by sup in the above.

Another interesting property of a MDP is the average
probability to be in a set of states in the long run. That is, if
we let the MDP “run” indefinitely, which percentage of the

time does the MDP occupy one of the goal states. For minimal
long-run average probabilities, the infimum long-run average
probability function S− is defined as the Cesàro limit of the
infimum transient probability:

S−(M,Sinit , C,G) =

inf
f∈C,s∈Sinit

lim
t→∞

1

t

t−1∑
k=0

P (X
(k)
f,M ∈ G | X

(0)
f,M = s).

The supremum long-run average probability function S+ is
defined analogously.

For finite models, the Cesàro limits exist and match the stan-
dard steady-state limits, i.e., limk→∞R−(M,Sinit , C,G, k)
and limk→∞R+(M,Sinit , C,G, k), if these limits exist [29].
The extremal transient probability for a time-point k ranging
over all schedulers is always attained by a deterministic
scheduler with step-bound k.

B. Extremal probabilities of scheduler classes

We now consider the problem of computing extremal proba-
bilities for a subset C of all schedulers. Existing algorithms
compute extremal probabilities over all schedulers and can, in
general, not be used to compute extremal probabilities over
a strict subset C of all schedulers [29], since the scheduler
that realizes the extremal probability may not belong to C. We
show in this subsection that for certain classes of schedulers,
relevant to our analysis goal, we can construct a new MDP M ′

such that the extremal probabilities in M over the schedulers in
C agree with the extremal probabilities over all schedulers in
M ′. This then allows to apply the aforementioned algorithms
on M ′, resulting in the extremal probabilities for scheduler
class C of M .

Definition 3: Given a MDP M = (S,A,R) and a function
F from finite paths to sets of actions, F : ((S×A)∗×S)→ 2A

such that for a path σ ending in state s we have that F (σ)
contains only actions enabled in s, F (σ) ⊂ As. Class CF is
the set of all schedulers f of M which satisfy the following:
for all paths σ of length k which are reached with non-zero
probability by f , this scheduler only selects actions contained
in F (σ) with non-zero probability. Formally:

P (X
(k)
f,M = σ) > 0 ∧ P (f̄(σ) = a) > 0⇒ a ∈ F (σ).

We say that the function F characterizes the scheduler class
CF .

We now show that for any MDP M and scheduler class
CF there exists another MDP M ′ such that the extremal
probabilities over CF for M can be derived from the extremal
probabilities over all schedulers for M ′.

Theorem 1: Given a MDP M = (S,A,R), a set of initial
states Sinit ⊂ S and a scheduler class CF characterized by
a function F , there exists a MDP M ′ = (S′, A′, R′) and
functions g : S′ → S and h : S → S′ such that, for any set
G ⊂ S and time-point k, we have:

R−(M,Sinit , CF , G, k) = R−(M ′, h(Sinit), CM ′ , g(G), k)

S−(M,Sinit , CF , G) = S−(M ′, h(Sinit), CM ′ , g(G))

where h(Sinit) = {h(s) | s ∈ Sinit} and g(G) = {x | x ∈
S′ ∧ g(x) ∈ G}. Furthermore, the supremum probabilities
for M and M ′ are related in the same way as the infimum
probabilities.

a) Sketch of proof.: We construct M ′ as follows. The set
of states S′ of M ′ is the set of paths of M . The action sets
are identical, i.e., A′ = A. The transition relation R′ is defined
to ensure that the states of M ′ indeed match the paths of M ,
for any path σ of M , action a in A and state s in S, where
a ∈ F (σ) we have:

P (R̄′(σ, a) = σas) = P (R̄(last(σ), a) = s).

If the action a is not allowed by F for path σ of M , then a
is not enabled in state σ of M ′. In this way we ensure that
the set of all schedulers for M ′ matches the set of schedulers
induced by F for M .

The function h now simply maps any state s in S to its
corresponding zero-length path s in S′. The function g maps
any path σ to its last state last(σ).

We can now prove Theorem 1 by mapping the schedulers
in CF for M to schedulers of C and proving that they induce
the same path probabilities. The full proof of Theorem 1 can
be found in an extended version of this paper [12].

In theory, the derived MDP M ′ is infinitely large and
therefore not amenable to analysis. However, we will see in
Subsection IV-D that in practice M ′ need not always encode
the entire path of M to enable the analysis of the scheduler
class CF . The size of M ′ then depends on the nature of the
function F .

III. RELATED WORK

The work presented here draws some inspiration from the
comparative study [5] where PRISM has been used to study
a selection of schedulers experimentally on a gossiping
information spread algorithm. Since the focus of this paper is
on fairness notions for distributed algorithms we here give an
overview of fairness notions. For a more extensive overview
of related work, which also covers notions of communication
and faults we refer to the extended version of this paper [12].

The concept of fairness has been studied extensively as
it facilitates discarding certain unrealistic execution paths
while verifying liveness properties of distributed algorithms.
To that end, various notions of fairness have been proposed in
literature. In a broad sense, fairness ensures that an action or
a process is activated sufficiently often if it has been enabled
often enough [20]. Weak fairness ensures that a continuously
enabled transition is taken infinitely often. An infinitely often
enabled transition is taken infinitely often under strong fairness.
It has been observed that in many instances fairness alone
is not sufficient to guarantee that a transition is eventually
activated because it is not enabled long enough due to “race
conditions” [3]. The notion of hyperfairness is proposed to
exclude such pathological traces where a transition is not
enabled due to intermittent unavailability of the required
resources. Hyperfairness is deployed with an underlying notion
of fairness. It guarantees that a transition is enabled sufficiently

often so that it can be activated by the underlying fairness
notion. This notion of hyperfairness is generalized in [28].
Lamport’s notion of hyperfairness ensures that a transition
is activated infinitely often if it is infinitely often possible.
The relative strengths of various notions of fairness have also
been studied [30]. The notion of probabilistic fairness has
been defined for a class of distributed algorithms [2], [8]. A
probabilistic scheduler resolves non-determinism by choosing
a next transition according to certain probability distribution.
It has been shown that a probabilistic scheduler is fair with
probability 1 if each transition has non-zero probability of being
selected and the probability distribution remains unchanged
during the system runtime [8].

All the above notions of fairness only require certain actions
to take place at some time-point under various conditions,
but generally do not enforce these actions to occur in a
particular time-frame. Bounded fairness, on the other hand,
guarantees that a continuously enabled transition is activated
within a bounded number of steps and is stronger than the
notion of weak fairness [15], [22]. All k-bounded schedulers
are shown to be equivalent, provided they are “potentially
stable,” for probabilistically stabilizing algorithms in [6]. A
method to compute the best and the worst stabilization time of
probabilistically stabilizing algorithms by showing it to be an
instance of stochastic shortest path problem is presented in [7].
Distributed agreement has also been studied with lower and
upper bounds for the time between two steps of a process [4].

Our main contribution is to extend this notion of bounded
fairness, with lower and upper bounds, first to probabilistic
models (the MCs induced by MDPs) in Subsection IV-A and
then to non-deterministic and probabilistic models, namely
MDPs, in Subsection IV-C.

IV. BOUNDED FAIRNESS FOR MDPS

Given that in a distributed system no single process has global
control, it is not determined in which order the different
processes execute steps of their local algorithms. Even if
considering symmetric hardware with identical clock speed
settings for all partners, the order of execution cannot be
assumed fixed, due to the unavoidable phenomenon of clock
drift. Thus, the order of execution must be considered to be
non-deterministic. We now consider what this means for the
worst-case stabilization time of a self-stabilizing algorithm, in
absence of any assumption on the order of execution.

Example 1: As an example we use a simplistic distributed
self-stabilizing minimal spanning tree (MST) algorithm. It is
a simplification of the one in [11]. Given a set of processes
V = {1, . . . , N} which are connected in a weighted graph
(V,E) with one special process called the root, the task of the
algorithm is to compute, for each process, its distance to the
root along edges of the graph (the minimal spanning tree of
the graph can easily be derived from this information). For
an edge (i, j) ∈ E we write di,j ∈ N for its weight, which
represents the fixed distance of process i to process j. Each
node knows only the distance to its direct neighbours. We
write ci for the current root distance estimate of process i. The

estimates ci are initially set to an arbitrary value. Each process
i now perpetually repeats the following updates:

ci :=

{
0, if i is the root,
min{di,j + cj | (i, j) ∈ E}, otherwise.

This algorithm relies on a dependable mechanism for process
i to inspect the current values cj .

Assume that, at the start of the minimal spanning tree
algorithm, none of the processes has the correct distance value
stored locally. A possible order of execution is one where a
single process continuously executes local steps. It is obvious
that for this order we will never reach a desirable state in
which all nodes know their distance to the root even in the
absence of transient faults. This is because other processes are
blocked indefinitely. This well-known phenomenon is usually
addressed by some fairness assumptions.

Under the assumption of strong fairness (in every infinitely
long execution of the algorithm each process executes infinitely
many local computations), the above algorithm provably
converges to the setting where each variable ci indeed holds
the distance of process i to the root [11].

However, if we now consider transient probabilistic faults,
this is no longer the case. Assume that during an update of
the i-th node in the MST algorithm a fault may occur with
some non-zero probability that changes the estimate ci to
an arbitrary value. Consider now the situation where exactly
one of the nodes has computed the correct distance to the
root node. Now the execution, that forces this correct node to
execute updates until a fault occurs and its estimate becomes
incorrect, is strongly fair. Note that the probability that the
node executes infinitely many updates without faults is zero.
It follows that there is a strongly fair scheduler for which the
probability to succesfully compute the minimal spanning tree is
zero. Whenever a node correctly computes the correct distance
to the root, this scheduler would force it to perform updates
until a local fault occurs.

The scheduler in the above example can be considered
unrealistic as, although it is strongly fair and does not allow
nodes to execute at an infinitely faster rate than other nodes,
it does allow nodes to execute at an unboundedly faster rate
than other nodes. To combat this issue we extend the notion
of bounded fairness [15], [22] to MDPs. As a first step we
define bounded fairness for MCs induced from MDP models
of a distributed algorithm.

A. Period of a scheduler

We wish to reason about the relative speeds of the processes in
a distributed algorithm. We quantify the speed of a process v
by counting how many other processes execute steps between
two subsequent steps of process v. In the MDP models of
distributed algorithms each process v is associated with a
unique action av . Now given a scheduler for such a MDP, we
look at the paths induced by this scheduler and the distances
between consecutive av-transitions. We call this distance the
period of the path at a particular time-point. We assume that
the processes of the distributed algorithm are deadlock-free. For

this reason we consider only enabled MDPs in the remainder
of the paper.

Example 2: Consider the MDP (S,A,R) of a distributed
algorithm with 4 nodes such that A = {a, b, c, d}. Now we
look at an example of a path of the MDP:

s1, b, s2, c, s3, a, s4, b, s5, d, s6, c, s7, a,

In particular we are interested in the action trace of the path
and the number of steps until the current action appears again,
i.e., the period.

action: b c a b d c a . . .
period: 3 4 4 . . .

The period tells us at what intervals the nodes in the
distributed algorithm execute local steps. Since we consider
stochastic models we define the period of a MDP given a
particular scheduler as a stochastic process which tells us the
probability of observing a particular period at a particular
time-point.

Definition 4: Given a MDP M = (S,A,R), with a sched-
uler f that induces a MC Xf,M , the period of the induced MC
at time-point k is a stochastic process

(
Λ
(k)
f,M

)
k∈Z≥0

which

takes values in Z>0 ∪ {∞} and has distribution:

P (Λ
(k)
f,M = i) =∑
a∈A

P (f̄(X
(k)
f,M) = a ∧ f̄(X

(k+1)
f,M) 6= a ∧ . . .

∧ f̄(X
(k+i−1)
f,M) 6= a ∧ f̄(X

(k+i)
f,M) = a), i ∈ Z>0,

P (Λ
(k)
f,M =∞) = 1−

∑
i∈Z>0

P (Λ
(k)
f,M = i).

Note that f̄(X
(k)
f,M) is the decision of scheduler f at time-point

k and P (f̄(X
(k)
f,M) = a) is then the probability that scheduler

f selects action a at time-point k. We write Λ(k) when the
MDP and the scheduler are clear from the context.

If we now consider all possible schedulers for a MDP M
then, for the worst-case expected period length we have for
any k ∈ Z≥0 that supf∈CM

E(Λ
(k)
f,M) =∞. Such a worst-case

scheduler is any scheduler that schedules an action a at time
k with probability one, but schedules that same action with
probability zero for all subsequent steps.

The period of an induced Markov chain does not tell us
anything about the first occurrence of a particular action. To
be able to enforce that the first occurence of an action is not
delayed indefinitely we define it as a random variable.

Definition 5: Given a MDP M = (S,A,R), with a sched-
uler f that induces a MC Xf,M and an action a ∈ A, the first
occurence of a, ∆

(a)
f,M is a random variable which takes values

in Z>0 ∪ {∞} and has distribution, for i ∈ Z>0:

P (∆
(a)
f,M = i) = P (f̄(X

(0)
f,M) 6= a ∧ . . .

∧ f̄(X
(i−2)
f,M) 6= a ∧ f̄(X

(i−1)
f,M) = a),

P (∆
(a)
f,M =∞) = 1−

∑
i∈Z>0

P (∆
(a)
f,M = i).

The notion of a period allows us to reason about bounded
fairness in the context of probabilistic models. We can say
an induced MC is bounded fair if its period (and first
occurences) lies within certain bounds with probability one. In
Subsection IV-C we will extend bounded fairness to models
with non-determinism and probabilistic transitions. We will
define bounded fairness for MDPs by finding the class of
schedulers that induces exactly the set of MCs whose period
is bounded with probability one. Note that this probability
depends both on the inherent probabilistic transitions in the
MDP as well as the, possibly probabilistic, scheduler choices.
Before we continue, we review some pragmatic solutions to
the problem of blocking described in Example 1.

B. Pragmatic solutions

A different, more pragmatic, approach to fairness problems is
to consider specific instances, especially by fixing a particular
scheduler and then analyzing the induced model [5], [17].
Two different kinds of schedulers are used widely: round-
robin schedulers, which fix a particular execution order for
the processes and force the distributed algorithm to adhere to
this order, and the randomized scheduler, which assigns equal
probabilities to each enabled action for every path. These types
of schedulers also occur in the form of hidden assumptions in
simulation environments for distributed algorithms [1], [25],
[10].

Definition 6: For an enabled MDP M = (S,A,R) of a
distributed algorithm with N processes, the stationary uniform,
or randomized, scheduler f for M picks each action a ∈ A
with equal probability, for all paths σ: P (fR(σ) = a) = 1/N.

Scheduler f for M is a round-robin scheduler if a bijection
g : A→ [0, N−1] exists which defines an order on the actions
of M such that for any finite path σ of length k and any action
a ∈ A we have:

P (f(σ) = a) =

{
1, if k mod N = g(a)

0, otherwise.

For a round-robin scheduler we find Λ(k) = N for all time-
points k. While this is well suited for symmetric hardware
systems without drifting clocks, we consider this a too strict
assumption for a distributed algorithm. Since perfect clocks
are unrealistic one would need a reliable clock synchronization
service on which the algorithm runs. Though this is feasible, it
is expensive, and limits the application domain of distributed
algorithms.

For a stationary uniform scheduler we find that Λ(k) is
geometrically distributed with parameter 1/N for all time-
points k. We feel that there is no good reason to assume that
the period of a distributed algorithm is geometrically distributed.
For example the variance of a geometrically distributed random
variable with parameter 1/N is N2 − N , which is highly
unrealistic in practical applications. Figure 1 compares the
distribution of the period Λ(k) for round-robin and stationary
uniform schedulers. We can see from this figure that the round-
robin schedulers are completely deterministic with respect to
period length, while the stationary uniform scheduler allows

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period length

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Round robin scheduler
Stationary uniform scheduler

Fig. 1. Cumulative distribution of the period Λ(k) for a round-robin
and the stationary uniform scheduler.

components to act multiple times in a row or not at all for a
long period of time, with some probability. The advantage of
using a stationary uniform scheduler is that it is memoryless
and therefore easy to analyze or simulate.

C. Bounded fairness for MDPs

We extend the notion of bounded fairness to MDPs by
restricting the schedulers such that the period length of the
induced MC is bounded both from above and from below. Given
a path of length k, σ = s1a1s2a2 . . . skaksk+1 we write A(i)

σ

for the set of all actions that occur in the last i steps of the
path if i ≤ k. In case i > k, A(i)

σ is undefined:

A(i)
σ =

{
{aj | k − i < j ≤ k}, if i ≤ k
undefined , if i > k.

Definition 7: Consider an enabled MDP M with |A| = N
and bounds L,U ∈ Z with 1 ≤ L ≤ N and N ≤ U . We define
the class C[L,U] of [L,U] bounded fair schedulers characterized
by the function F : ((S × A)∗ × S) → 2A, which describes
which actions are allowed for any finite path σ ∈ ((S×A)k×S)
of length k ∈ Z≥0.

F (σ) =

A \A(U−1)

σ , if k ≥ U ∧ |A \A(U−1)
σ | = 1

A \A(k)
σ , if k < L

or k < U ∧ |A \A(k)
σ | = U − k

A \A(L−1)
σ , otherwise.

The intuitive meaning of function F defined in Definition 7
is as follows. For paths longer than U − 1 we have that, if a
particular action did not occur in the last U − 1 steps, then we
must pick this action to ensure the period does not exceed U
(first case). If there is no such action, we must pick an action
that has not appeared in the last L − 1 steps to ensure the
period is at least L (last case).

For paths shorter than L we must pick an action that has not
occurred yet (second case, first condition); this avoids that the
first period is less than L. Finally we have for paths of length
k < U that, if the number of actions that have not yet occurred
equals U − k, then we must schedule one of these missing
actions (second case, second condition). This ensures that we
will never arrive in a situation in which multiple actions have

not occurred in the last U − 1 steps. We now give an example
of how the function F works to ensure bounded fairness.

σ[A] F (σ) σ[A] F (σ)
ε {a, b, c, d} abac {d}
a {b, c, d} abacd {a, b, c}
ab {a, c, d} abacda {b}
aba {c, d} abacdab {a, c, d}

Example 3: Consider the enabled MDP M = (S,A,R) of
a distributed algorithm with 4 processes, and action set A =
{a, b, c, d}. On the right we list the action traces of several
example paths and the corresponding sets of actions allowed
by the function F , which characterizes [2, 5] bounded fairness
as defined in Definition 7. We can see that for this particular
path we have that the first three period lengths are 2, 5, and 3.

The following theorem shows the relationship between [L,U]
bounded fairness and the periodicity of the MDP.

Theorem 2: Given an enabled MDP M = (S,A,R) with
|A| = N and given bounds L,U ∈ Z with 1 ≤ L ≤ N and
N ≤ U , a scheduler f is [L,U] bounded fair if and only if
for all time-points k ∈ Z≥0 the period of the induced MC at
time-point k lies between L and U and for any action a the
first occurrence of a is less than or equal to U :

P
(

Λ
(k)
f,M ∈ [L,U]

)
= 1 ∧ P

(
∆

(a)
f,M ≤ U

)
= 1.

The proof can be found in an extended version of this
paper [12].

D. Complexity

Definition 7 shows that the class of [L,U] bounded fair
schedulers is induced by a function F which gives, for each
path, the allowed actions. From Theorem 1 we know that we
can construct an MDP M ′ to compute extremal reachability
probabilities. In principle, the MDP M ′ is infinitely large, as
its state space consists of all paths of M . However, the proof
of Theorem 1 depends on the fact that we can determine from
the current path (σ) of M , which actions (F (σ)) are allowed. It
turns out that if we consider classes of bounded fair schedulers
we need less information to determine the allowed actions
F (σ).

We now reason about what information about the current
path σ is actually necessary to decide which actions are allowed.
We can see, from Definition 7, that for each action ai ∈ A
we must know whether ai is in one of the sets A \ A(U−1)

σ ,
A \A(k)

σ , and A \A(L−1)
σ , where k < U . To establish this fact,

it is enough to know how many steps ago in σ each action ai
occurred. We denote this distance as d(σ, ai) which is defined
recursively, where s ∈ S and aj ∈ A:

d(σ, ai) =

0, if σ = s

d(σ′, ai) + 1, if σ = σ′ajs ∧ ai 6= aj

1, if σ = σ′ajs ∧ ai = aj

We now have that ai ∈ A \ A(k)
σ if and only if d(σ, ai) ≤ k.

Since we consider only [L,U] bounded fair schedulers, all paths

σ for which we have d(σ, ai) > U occur with probability zero.
Finally, we must also take care of the corner cases where the
length of path σ is less than L or less than U . To do this we
record the length of the current path σ up to U recursively,
where s ∈ S and a ∈ A:

k(σ) =

0 if σ = s

k(σ′) + 1 if σ = σ′as and k(σ′) < U

k(σ′) if σ = σ′as and k(σ′) ≥ U.

Since the functions d(·, a) and k(·) are defined recursively,
it is enough for the MDP M ′ to keep track of the values of
these functions instead of keeping track of the entire path of M
followed so far. Given an MDP M of a distributed algorithm
with state space S and actions A and given the bounds L and
U , we find for the size of MDP M ′ for which the class of all
schedulers matches the class of [L,U] bounded fair schedulers
of M as per Theorem 1 the following:

|S′| = O(|S| · U |A|+1).

For each pair of state and action of M , we must keep track of
the amount of steps since the last occurrence of the action (the
functions d(·, ai)). This leads to |S| · U |A| states. We further
annotate each state with the length of the current path (the
function k), where we count only up to U . This gives |S| ·
U |A| ·U = |S| ·U |A|+1 states. However, not every combination
will be reachable with probability greater than zero. This show
that the size of M ′ grows polynomially in U (for constant |A|)
and exponentially in |A|.

The practical problem of describing the MDP M ′ given a de-
scription of the MDP M in the PRISM language is extensively
discussed in an extended version of this paper [12].

V. CASE STUDIES

In this section we illustrate the use of bounded fairness for
distributed algorithms with probabilistic faults by applying our
approach to two simple case studies. For each algorithm we
compute bounds for the probability that the system is in a safe
configuration, i.e., its maximum and minimum availability. We
consider transient availabilities (the probability to be in a safe
state at a certain time-point) and long-run average availabilities
(the expected percentage of time to be in a safe configuration
if the system runs forever). Since we are interested in studying
the effect of non-determinism arising from the interleaving
of processes we have fixed, for each case study, a single
starting state. We have used the PRISM model-checker [23] to
compute transient availabilities and a semi-symbolic algorithm
to compute long-run average availabilities [31]. All PRISM
models are available upon request. A detailed discussion of
the modeling assumptions we have made and a description of
how to construct the PRISM models can be found in extended
version of this paper [12].

A. Minimal spanning tree algorithm

We consider the distributed minimal spanning tree algorithm
(MST) developed throughout the paper. We use a fault model
where communication may be garbled (with probability 0.1)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Time

T
ra

ns
ie

nt
 A

va
ila

bi
lit

y

R−, [2,6] BF

R+, [2,6] BF

R−, [3,5] BF

R+, [3,5] BF

R−, RR

R+, RR
R, SU

Fig. 2. Transient availabilities for the MST algorithm. Minimum and
maximum availabilities are shown for two classes of bounded fair
(BF) schedulers and the class of round-robin (RR) schedulers. The
transient availability for the stationary uniform (SU) scheduler is also
shown.

or may fail to take place (with probability 0.2). When a node
fails to communicate with another (i.e., it is not able to read
the value of the distance variable of one of its neighbours),
then it simply does not change its state. We consider here a
network of four nodes. In the starting state we have that all
nodes have their distance parameter set to the maximum value.

In Figure 2 we give best- and worst-case transient availabil-
ities, i.e., the figure shows the probability to be in a state in
which all processes have correctly computed their distance to
the root node at a certain time-point. We consider two different
[L,U] bounded fair (BF) scheduler classes, the class of all
round-robin (RR) schedulers and the stationary uniform (SU)
scheduler, for which we find the unique transient availability
directly, instead of a maximum and minimum.

In the figure we can see the effect of increased scheduler
freedom. For each scheduler class, transient availability is
initially low, but increases as the nodes exchange information.
While the class of RR schedulers is rather restricted, since
the nodes always execute in the same order, bounded fairness
allows some nodes to act faster than others. In the worst case,
nodes that have not yet computed the correct distance from the
root are scheduled last, while nodes that have already correctly
established their distance from the root are scheduled as soon as
possible. We see that this scheduling freedom has a noticeable
effect on the bounds for the transient availabilities.

The effect that the algorithm needs several “rounds” to
establish stability can be clearly seen for the class of RR
schedulers and the classes of BF schedulers by “jumps” in
the transient availability curves. For the SU scheduler this
important effect cannot be seen as its curve is smooth.

The long-run average availabilities for the different scheduler
classes can be seen in figure 4 for both case studies. With
increased scheduling freedom, the bounds for the long-run
average availability become less tight.

Similar results were found for another case study [12] which
considers a gossiping information spread algorithm inspired
by [14].

0 20 40
0

0.2

0.4

0.6

0.8

1

Time

T
ra

n
s
ie

n
t
a
v
a
ila

b
ili

ty

R
−
, [3,7] BF

R
+
, [3,7] BF

R
−
, [4,6] BF

R
+
, [4,6] BF

R
−
, RR

R
+
, RR

R, SU

Fig. 3. Transient availabilities for the leader election algorithm.
Minimum and maximum availabilities are shown for two classes
of bounded fair (BF) schedulers and the class of round-robin (RR)
schedulers. The transient availability for the stationary uniform (SU)
scheduler is also shown.

B. Tree-network leader election algorithm

Finally, we consider a leader election algorithm for tree-
structured networks adapted from [16]. The algorithm estab-
lishes a directed tree in an anonymous network, by having each
node select a “parent” node. This tree then has a unique root
node (which selects itself as its parent), which is subsequently
elected as leader. The selection of a unique node in such
anonymous networks, however, depends on the choices made
by the underlying scheduler. We embellish the algorithm with
local faults that reset the “parent” of a node to a value chosen
with a uniform distribution. Such a local fault occurs with a
probability of 0.1 whenever a node executes a local step. We
consider a network with five nodes. In the initial state each
node has its “parent” variable set to itself.

Figure 3 depicts the probability that one node has been
elected as leader. The availabilities are behave similar to the pre-
vious case study, although the impact of bounded fair schedulers
is greater here. This is most likely caused by the fact that this
algorithm is only weakly self-stabilizing [16]. This means that
there are schedulers for which the algorithm is not guaranteed
to reach a safe configuration. In our setting, where we have
transient faults and where we consider bounded fairness we
can clearly see that there are bounded fair schedulers which
greatly decrease the availability of the algorithm.

We also see that the bounds of the transient availability drop
in time for the RR scheduler class. This is due to the fact that
with increasing time we have a higher probability of observing
faults.

VI. CONCLUSION

This paper has discussed a subtle point in the quantitative
analysis of probabilistic models of distributed algorithms.
Starting off with the observation that classical fairness no-
tions are too permissive, and thus unsuitable for quantitative
verification, we have focussed on the notion of bounded

Model Schedulers Min Max

MST

[2,6] BF 0.553683 0.904349
[3,5] BF 0.666325 0.820220

RR 0.743096 0.754497
SU 0.744122 0.744122

Leader

[3,7] BF 0.127691 0.891229
[4,6] BF 0.336496 0.848096

RR 0.763570 0.780348
SU 0.760131 0.760131

Fig. 4. Extremal long-run average availabilities for various bounded
fair (BF), round-robin (RR), and stationary uniform (SU) classes of
schedulers.

fairness. Bounded fairness naturally captures clock drift in near-
symmetric distributed systems. We have shown how to apply
this new fairness notion to models of distributed algorithms
and discussed properties of our scheduler classes. The theory
is developed in the context of Markov decision processes.

Via some small case studies we managed to illustrate
that customary ways of fixing an execution order, such as
round-robin scheduling and random scheduling, may lead to
too optimistic or too pessimistic estimations of quantitative
properties of distributed algorithms. In particular, we see that
random scheduling cannot be used to approximate the transient
behavior of distributed algorithms, relative to bounded fairness.
On the other hand, we see that bounded fairness increases
the model sizes considerably, and this makes model checking-
style analysis difficult. For this reason, it is worthwhile to
investigate effective approximations of quantitative properties
for the class of bounded fair schedulers. Another interesting
application of bounded fairness for MDPs lies in the study of
quantitative effects of clock drift. One avenue to investigate
in this context is whether the resilience to clock drift can be
quantified for different distributed algorithms. Another further
direction seeded in this work might be the analysis of distributed
algorithms which are known to exhibit certain qualitative
properties only under a specific subset of schedulers. We then
aim at adapting the techniques described in this paper, such
as to identify the bounded fair schedulers which maximize or
minimize the dependability metrics related to such qualititative
properties.

REFERENCES

[1] T. R. Andel and A. Yasinsac. On the credibility of Manet simulations.
IEEE Computer, 39(7):48–54, 2006.

[2] D. Angluin, J. Aspnes, Z. Diamadi, and M. J. F. R. Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed
Computing, 18(4):235–253, 2006.

[3] P. C. Attie, N. Francez, and O. Grumberg. Fairness and hyperfairness in
multi-party interactions. Distributed Computing, 6(4):245–254, 1993.

[4] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds on the time
to reach agreement in the presence of timing uncertainty. In 23rd Annual
ACM Symposium on Theory of Computing (STOC), pages 359–369. ACM
Press, 1991.

[5] R. Bakhshi and A. Fehnker. On the impact of modelling choices for
distributed information spread. A comparative study. In 6th Int’l Conf.
on Quantitative Evaluation of Systems (QEST), pages 41–50. IEEE CS,
2009.

[6] J. Beauquier, C. Johnen, and S. Messika. All k-bounded policies are
equivalent for self-stabilization. In SSS, number 4280 in LNCS, pages
82–94. Springer, 2006.

[7] J. Beauquier, C. Johnen, and S. Messika. Brief announcement: Computing
automatically the stabilization time against the worst and the best
schedules. In DISC, number 4167 in LNCS. Springer, 2006.

[8] I. Chatzigiannakis, S. Dolev, S. P. Fekete, O. Michail, and P. G. Spirakis.
Not all fair probabilistic schedulers are equivalent. In Int’l Conf. on
Principles of Distributed Systems, LNCS, pages 33–47. Springer, 2009.

[9] A. Coccoli, P. Urbán, and A. Bondavalli. Performance analysis of
a consensus algorithm combining stochastic activity networks and
measurements. In DSN, pages 551–560. IEEE CS, 2002.

[10] U. M. Colesanti, C. Crociani, and A. Vitaletti. On the accuracy of
omnet++ in the wireless sensornetworks domain: simulation vs. testbed.
In PE-WASUN ’07, pages 25–31, 2007.

[11] Z. Collin and S. Dolev. Self-stabilizing depth-first search. IPL, 49(6):297–
301, 1994.

[12] P. Crouzen, E. M. Hahn, H. Hermanns, A. Dhama, O. Theel, R. Wimmer,
B. Braitling, and B. Becker. Bounded fairness for probabilistic distributed
algorithms. Reports of SFB/TR 14 AVACS 57, SFB/TR 14 AVACS,
April 2010.

[13] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When
birds die: Making population protocols fault-tolerant. In DCOSS, volume
4026 of LNCS, pages 51–66. Springer, 2006.

[14] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. S. H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database
maintenance. In PODC, pages 1–12. ACM Press, 1987.

[15] N. Dershowitz, D. N. Jayasimha, and S. Park. Bounded fairness. In
Verification: Theory and Practice, volume 2772 of LNCS, pages 304–317.
Springer, 2003.

[16] S. Devismes, S. Tixeuil, and M. Yamashita. Weak vs. self vs. probabilistic
stabilization. In 28th Int’l Conf. on Distributed Computing Systems
(ICDCS), pages 681–688, Washington, DC, USA, 2008. IEEE CS.

[17] A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and
B. Becker. Dependability engineering of silent self-stabilizing systems.
In SSS, volume 5873 of LNCS, pages 238–253. Springer, 2009.

[18] A. Dhama, O. Theel, and T. Warns. Reliability and availability analysis of
self-stabilizing systems. In SSS, volume 4280 of LNCS, pages 244–261.
Springer, 2006.

[19] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569, 1965.

[20] N. Francez. Fairness. Springer, 1986.
[21] E. Gafni and M. Mitzenmacher. Analysis of timing-based mutual

exclusion with random times. SIAM J. Comp., 31(3):816–837, 2001.
[22] W. H. Hesselink. Progress under bounded fairness. Distributed

Computing, 12(4):197–207, 1999.
[23] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM:

A tool for automatic verification of probabilistic systems. In TACAS,
volume 3920 of LNCS, pages 441–444. Springer, 2006.

[24] P. Hurni and T. Braun. Calibrating wireless sensor network simulation
models with real-world experiments. In Proc. of the 8th Int’l IFIP-TC 6
Networking Conf., pages 1–13. Springer, 2009.

[25] A. Köpke, M. Swigulski, K.Wessel, D.Willkomm, P. Haneveld, T. Parker,
O. Visser, H. Lichte, and S. Valentin. Simulating wireless and mobile
networks in omnet++: The mixim vision. In 1st Int’l Workshop on
OMNeT++, 2008.

[26] S. Kurkowski, T. Camp, and M. Colagrosso. Manet simulation studies:
the incredibles. MC2R, 9(4):50–61, 2005.

[27] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: A hybrid approach. STTT, 6(2):128–142,
2004.

[28] L. Lamport. Fairness and hyperfairness. Distributed Computing,
13(4):239–245, 2000.

[29] M. L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley and Sons, 1994.

[30] H. Völzer. Refinement-robust fairness. In Int’l Conf. on Concurrency
Theory, volume 2421 of LNCS, pages 547–561. Springer, 2002.

[31] R. Wimmer, B. Braitling, B. Becker, E. M. Hahn, P. Crouzen, H. Her-
manns, A. Dhama, and O. Theel. Symblicit calculation of long-run
averages for concurrent probabilistic systems. In 7th Int’l Conf. on
Quantitative Evaluation of Systems (QEST), 2010.

