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Abstract. Markov automata (MA) are a rich modelling formalism for
complex systems combining compositionality with probabilistic choices
and continuous stochastic timing. Model checking algorithms for different
classes of properties involving probabilities and rewards have been devised
for MA, opening up a spectrum of applications in dependability engi-
neering and artificial intelligence, reaching out into economy and finance.
In the latter more general contexts, several quantities of considerable
importance are based on the idea of discounting reward expectations, so
that the near future is more important than the far future. This paper
introduces the expected discounted reward value for MA and develops
effective iterative algorithms to quantify it, based on value- as well as
policy-iteration. To arrive there, we reduce the problem to the compu-
tation of expected discounted rewards and expected total rewards in
Markov decision processes. This allows us to adapt well-known algorithms
to the MA setting. Experimental results clearly show that our algorithms
are efficient and scale to MA with hundred thousands of states.

1 Introduction

The design and analysis of complex systems operating in uncertain environments
requires a powerful modelling language. It is desirable to support compositionality
for constructing large models from individual components; nondeterminism for
abstraction and representing unknown behaviour of the environment; continuous
stochastic timing and probabilistic choices. Markov automata (MA) [9] combine
all these aspects in one formalism. They have been extended to express costs
and rewards, yielding Markov reward automata [12]. Efficient algorithms for
the automatic analysis of Markov (reward) automata are available for a broad
range of properties like time- and cost-bounded reachability probabilities [11,14],
expected rewards [12], long-run averages [11,6] and properties expressed in the
temporal logic CSL [13]. Tool support is available: Both IMCA [10] and Storm [7]
support Markov automata model checking. This makes Markov automata well
suited not only as a modelling formalism by itself, but also as the semantical
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foundation of higher-level formalisms like dynamic fault trees [4] and generalized
stochastic Petri nets [8].

All the measures considered so far for Markov reward automata do not make
a difference between a unit of reward being accumulated early or late along the
evolution of the system. In economics, in artificial intelligence, and in the theory
of optimal control [3], it is a well-understood practice to discount the future, that
is, to give more weight to the near future than to the far away future. This view is
natural in model checking quantitative temporal logic properties of systems [2,1],
including continuous-time Markov decision processes (CTMDPs) [17]. It appears
equally natural for Markov automata, but as yet, there is neither a theory nor
an algorithmic approach for discounting in Markov reward automata.

The present paper investigates discounting on MRA. We first settle the
foundational basis of what discounting actually means for Markov automata. Due
to the continuous nature of time in MRA we define discounting analogously to
the way it is defined for CTMDPs.

Our findings are rooted in the observation that we can view any MRA as
a representation encoding a possibly exponentially larger CTMDP, preserving
discounted reward values. This enables one to quantify the discounted reward
in MRA by computing the respective value on its value-preserving CTMDP,
however at the price of possibly exponential time and space requirements.

Overall our approach has similarities in spirit to the one introduced to quantify
long-run average rewards on MRA [6], but the constructions needed have to be
entirely different due to the dependency of the discounted reward on time. Instead
of the näıve approach, we show that the exponential blow-up can be avoided
by recognising that the value requiring exponentially many computational steps
as the expected total reward in a specific linear-sized discrete-time MDP. Using
classic dynamic programming for the latter then turns the exponential näıve
approach into an effective polynomial characterisation. In this way we derive
the Bellman equation characterising the expected total reward in the presence
of discounting in MRA. The Bellman equation in turn is the basis for value-
and policy-iteration algorithms quantifying the discounted reward on MRA. The
efficiency of the approach is demonstrated with examples of MRAs with hundreds
of thousands of states.

2 Foundations

Given a finite set 𝑆, a probability distribution over 𝑆 is a function 𝜇 : 𝑆 → [0, 1]
with

∑︀
𝑠∈𝑆 𝜇(𝑠) = 1. We denote the set of all probability distributions over 𝑆 by

Dist(𝑆). 𝜉𝑠 is the Dirac distribution on 𝑠, i. e. 𝜉𝑠(𝑠) = 1 and 𝜉𝑠(𝑠
′) = 0 for 𝑠′ ≠ 𝑠.

Definition 1. A Markov reward automaton (MRA) ℳ is a tuple ℳ = (𝑆, 𝑠init,
Act , →˓, , r, 𝜌) s. t. 𝑆 is a finite set of states; 𝑠init ∈ 𝑆 is the initial state; Act is
a finite set of actions; →˓ ⊆ 𝑆 ×Act × Dist(𝑆) is a finite probabilistic transition
relation;  ⊆ 𝑆×R>0×𝑆 is a finite Markovian transition relation; r : →˓ → R>0
is a transition reward function; and 𝜌 : 𝑆 → R>0 is a state reward function.



no tasks has a task

high 0.3

low

0.1

lost
11

high

10

low

2

0.9
9

0.01

0.9

0.1

𝛼

3

10

Fig. 1: An example MRA

We abbreviate (𝑠, 𝛼, 𝜇) ∈ →˓ by 𝑠
𝛼→˓ 𝜇

and write 𝑠
𝜆
 𝑠′ instead of (𝑠, 𝜆, 𝑠′) ∈

 . Act(𝑠) = {𝛼 ∈ Act | ∃𝜇 ∈ Dist(𝑆) :

𝑠
𝛼→˓ 𝜇} denotes the set of actions that

are enabled in state 𝑠 ∈ 𝑆. A state 𝑠 is
probabilistic (Markovian), if it has at least
one probabilistic (Markovian) transition

𝑠
𝛼→˓ 𝜇 (𝑠

𝜆
 𝑠′, resp.). States can be both

probabilistic and Markovian. We denote
the set of probabilistic states by PSℳ and the Markovian states by MSℳ. We
assume w. l. o. g. that actions of probabilistic transitions of a state are pairwise
different1. Therefore we will write r(𝑠, 𝛼) instead of r(𝑠, 𝛼, 𝜇). The successors

of a state 𝑠 ∈ 𝑆 are given by succ(𝑠) = {𝑠′ ∈ 𝑆 | ∃𝛼 ∈ Act ∃𝜇 ∈ Dist(𝑆) : 𝑠
𝛼→˓

𝜇∧𝜇(𝑠′) > 0∨∃𝜆 ∈ R>0 : 𝑠
𝜆
 𝑠′} and its predecessors by pred(𝑠) = {𝑠′ ∈ 𝑆 | 𝑠 ∈

succ(𝑠′)}.

For a Markovian state 𝑠 ∈ MSℳ, the value 𝑅(𝑠, 𝑠′) :=
∑︀

(𝑠,𝜆,𝑠′)∈ 𝜆 is

called the transition rate from 𝑠 to 𝑠′. The exit rate of a Markovian state 𝑠 is
𝐸(𝑠) :=

∑︀
𝑠′∈𝑆 𝑅(𝑠, 𝑠′). We require 𝐸(𝑠) < ∞ for all 𝑠 ∈ MSℳ.

For 𝑠 ∈ PSℳ with 𝑠
𝛼→˓ 𝜇 for some 𝛼, we set P[𝑠, 𝛼, 𝑠′] := 𝜇(𝑠′). For 𝑠 ∈ MSℳ

with 𝐸(𝑠) > 0, the branching probability distribution when leaving the state
through a Markovian transition is denoted by P[𝑠, ·] ∈ Dist(𝑆) and defined by
P[𝑠, 𝑠′] := 𝑅(𝑠, 𝑠′)/𝐸(𝑠).

The evolution of an MRA starts in its initial state. Whenever the system
encounters a Markovian state 𝑠 ∈ MSℳ, its sojourn time in 𝑠 is governed by an
exponential distribution, i. e. the probability of leaving 𝑠 within 𝑡 > 0 time units
is given by 1 − e−𝐸(𝑠)·𝑡, after which the next state is chosen according to P[𝑠, ·].

The behaviour of the system in probabilistic states is different. In this paper
we consider closed MRA, which are not subject to further composition operations
that could delay the execution of probabilistic transitions. Therefore we can make
the usual urgency assumption: Probabilistic transitions happen instantaneously.
The residence time in probabilistic states is therefore always 0. Whenever the
system is in state 𝑠 with Act(𝑠) ̸= ∅ and an action 𝛼 ∈ Act(𝑠) is chosen, the
successor 𝑠′ is selected according to the distribution P[𝑠, 𝛼, ·] and the system
moves instantaneously from 𝑠 to 𝑠′. As the execution of a probabilistic transition
is instantaneous and because the probability that a Markovian transition is
triggered immediately is 0, we can assume that the probabilistic transitions take
precedence over Markovian transitions. We therefore assume PSℳ ∩MSℳ = ∅.
The way Markov automata choose actions will be covered shortly.

During its evolution a Markov reward automaton collects rewards. The
transition reward r(𝑠, 𝛼) is granted immediately for taking the (probabilistic)

1 This can be achieved by renaming the actions and does not affect compositionality
properties of MRA due to the fact that only closed MRA are considered in this work.



transition 𝑠
𝛼→˓ 𝜇, while the state rewards are accumulated over time, i. e. for

staying in a state 𝑠 for 𝑡 > 0 time units, a reward of 𝜌(𝑠) · 𝑡 is granted.

Example 1. Figure 1 shows an example MRA. Grey and white colouring of states
indicates the sets MSℳ and PSℳ, resp.; they are disjoint here. Labels high,
low, and 𝛼 denote actions. Dashed transitions are probabilistic; solid transitions
are Markovian. We omitted Dirac distributions from probabilistic transitions.
Rewards associated with states and transitions are depicted as numbers in green
rectangular frames.

The MRA models a task processing system aiming at maximising the revenue
on the long run. Tasks arrive at rate 11; this is modelled by a Markovian
transition with rate 11. Whenever there is a task to process, the system decides
whether to handle it with high or low reliability. In the former case, the system
receives an immediate reward of 10, modelled by r(has a task, high) = 10. A low
reliability task produces a reward of 2 only. The tasks are sent for processing
to a remote server over lossy channels. The high reliability channel looses tasks
with probability 0.01, while low reliability tasks are lost ten times more often.
Whenever a task is lost, no further reward for it is paid. Processing high reliability
tasks takes more time, which is modelled with exit rate 3 of state high, however, it
generates reward proportional to the processing time (modelled by state reward
of 0.3). Low reliability tasks are faster to process but produce less reward.

An MRA is non-Zeno iff no maximal end component (see [11]) of only
probabilistic states is reachable with probability > 0. This excludes models
in which there is a chance to get trapped in an infinite number of transitions
occurring in finite time. In this work, similarly to [11], we restrict ourselves to
non-Zeno models; Zenoness is typically considered a modelling error.

For ease of representation, we additionally assume that all states have at
least one outgoing transition. This can be easily achieved by adding a Markovian
self-loop to the state, with reward 0 and arbitrary non-zero rate.

Paths and Schedulers. A (timed) path in ℳ is a finite or infinite sequence

𝜋 = 𝑠0
𝛼0,𝑡0−−−→ 𝑠1

𝛼1,𝑡1−−−→ · · · 𝛼𝑘,𝑡𝑘−−−→ 𝑠𝑘+1
𝛼𝑘+1,𝑡𝑘+1−−−−−−→ · · · with 𝑠0 = 𝑠init, and for all

𝑖 ≥ 0 : 𝑠𝑖 ∈ 𝑆, 𝑡𝑖 ∈ R>0, and 𝛼𝑖 ∈ Act ∪̇ {⊥}. Here 𝑠𝑖
𝛼𝑖,0−−→ 𝑠𝑖+1 s. t. 𝛼𝑖 ∈ Act(𝑠𝑖)

is a probabilistic transition via action 𝛼𝑖, and 𝑠𝑖
⊥,𝑡𝑖−→ 𝑠𝑖+1, s. t. 𝑡𝑖 > 0 and there

exists a transition 𝑠𝑖
𝜆
 𝑠𝑖+1, denotes a Markovian transition with sojourn time

𝑡𝑖 in state 𝑠𝑖. We define 𝜋[𝑖] := 𝑠𝑖, 𝛼[𝜋, 𝑖] := 𝛼𝑖 and for an infinite path 𝜋 and
𝑘 ≥ 0, the elapsed time 𝜏 [𝜋, 𝑘] until entering 𝜋[𝑘] is defined by 𝜏 [𝜋, 0] := 0 and
𝜏 [𝜋, 𝑘] := 𝑡0 + · · · + 𝑡𝑘−1. Whenever it is clear from the context, we omit 𝜋 and
just use 𝛼[𝑖] and 𝜏 [𝑘] instead. The set of all finite (infinite) paths of ℳ is denoted
by Paths*ℳ (Pathsℳ). The length |𝜋| of a finite path 𝜋 is the number of its
transitions; its last state is denoted by 𝜋↓.

In order to resolve the nondeterminism in probabilistic states of an MRA, we
need the notion of a scheduler. A (measurable) scheduler (or policy) 𝜎 : Paths*ℳ →
Dist(→˓) is a measurable function, s. t. 𝜎(𝜋) assigns positive probability only to



transitions (𝜋↓, 𝛼, 𝜇) ∈ →˓, for some 𝛼, 𝜇. The set of all measurable schedulers
is denoted by GMℳ. A (deterministic) stationary scheduler is a function 𝜎 :
PSℳ → →˓, s. t. 𝜎(𝑠) chooses only from transitions (𝑠, 𝛼, 𝜇) ∈ →˓, for some 𝛼, 𝜇.
For the definition of the probability measure on MRA we refer to [15, Sect. 3.2].

Markov Decision Processes.

Definition 2. A continuous-time Markov decision process (CTMDP) is a tuple
𝒞 = (𝑆, 𝑠init,Act ,R), where 𝑆 is a finite set of states, 𝑠init ∈ 𝑆 is an initial state,
Act is a finite set of actions, and R : 𝑆 ×Act × 𝑆 → R>0 is a rate function.

The set Act(𝑠) = {𝛼 ∈ Act | ∃𝑠′ ∈ 𝑆 : R(𝑠, 𝛼, 𝑠′) > 0} is the set of enabled
actions in state 𝑠. A path in a CTMDP is a finite or infinite sequence 𝜋 =

𝑠0
𝛼0,𝑡0−−−→ 𝑠1

𝛼1,𝑡1−−−→ · · · 𝛼𝑘−1,𝑡𝑘−1−−−−−−−→ 𝑠𝑘 · · · , where 𝑠0 = 𝑠init, 𝛼𝑖 ∈ Act(𝑠𝑖) and 𝑡𝑖
denotes the residence time of the system in state 𝑠𝑖. 𝐸(𝑠, 𝛼) :=

∑︀
𝑠′∈𝑆 R(𝑠, 𝛼, 𝑠′)

and P𝒞 [𝑠, 𝛼, 𝑠′] := R(𝑠,𝛼,𝑠′)
𝐸(𝑠,𝛼) . The notions of Paths*𝒞 , Paths𝒞 , 𝜋↓ and schedulers are

defined analogously to corresponding definitions for an MRA. A reward structure
on a CTMDP 𝒞 is a tuple (𝜌𝒞 , r𝒞), where 𝜌𝒞 : 𝑆 → R>0 and r𝒞 : 𝑆 ×Act → R>0.

The counterpart of CTMDPs and MRA in discrete time are (discrete-time)
Markov decision processes:

Definition 3. A Markov decision process (MDP) is a tuple 𝒟 = (𝑆𝒟, 𝑠init,Act𝒟,
P𝒟) where 𝑆𝒟 is a finite set of states, 𝑠init is the initial state, Act𝒟 is a finite set
of actions and P𝒟 : 𝑆𝒟 ×Act𝒟 → Dist(𝑆𝒟) is a probabilistic transition function.

The definitions of paths, schedulers, etc. are discrete analogues of those definitions
for CTMDPs. A reward structure on an MDP is a function r𝒟 : 𝑆𝒟×Act𝒟 → R>0.

In the following a special subclass of MDPs – acyclic MDPs – will be of
particular importance. A state of an MDP is called terminal if all its outgoing
transitions are self-loops with probability 1 and reward 0. We call an MDP acyclic
if the self-loops of terminal states are the only loops appearing in the MDP.

3 Discounted Reward for Markov Automata

In this section, we define the discounted reward value for Markov reward automata
and consider its relation to discounted rewards on CTMDPs.

3.1 Continuous Discounting

Markov automata are a continuous-time model and we therefore define discounting
in a classical way via the continuous exponential decay over time. Yet special
care has to be taken when dealing with probabilistic states due to the fact that
time in those states does not pass. Essentially the definition is lifted to the MRA
setting from CTMDPs [19].

Let ℳ = (𝑆, 𝑠init,Act , →˓, , r, 𝜌) be a Markov reward automaton, 𝛽 > 0,

and 𝜋 = 𝑠0
𝛼0,𝑡0−−−→ 𝑠1

𝛼1,𝑡1−−−→ · · · 𝛼𝑘,𝑡𝑘−−−→ 𝑠𝑘+1
𝛼𝑘+1,𝑡𝑘+1−−−−−−→ · · · an infinite path in ℳ.



Then rew𝑁
ℳ,𝛽(𝜋) is the discounted reward with rate 𝛽 of the path 𝜋 within 𝑁 ∈ N

steps, where rew0
ℳ,𝛽(𝜋) := 0 and

rew𝑁
ℳ,𝛽(𝜋) :=

𝑁−1∑︁
𝑘=0

⎡⎢⎣𝑒−𝛽·𝜏 [𝑘] · r(𝑠𝑘, 𝛼𝑘) +

𝜏 [𝑘]+𝑡𝑘∫︁
𝜏 [𝑘]

𝑒−𝛽·𝑡 · 𝜌(𝑠𝑘) d𝑡

⎤⎥⎦ .

Example 2. Consider the MRA from Fig. 1 and its path 𝜋 = (nt)
⊥,𝑡1−−−→ (ht)

high,0−−−−→
(lost)

𝛼,0−−→ (nt)
⊥,𝑡2−−−→ (ht) −→ · · · , where (nt) stands for (no tasks) and (ht) for

(has a task). Then the discounted reward collected over this path for 𝑁 = 4 is:

rew4
ℳ,𝛽(𝜋) =

𝑡1∫︁
0

𝜌(nt)·𝑒−𝛽·𝜏 d𝜏+𝑒−𝛽·𝑡1
(︀
r(ht, high)+r(lost, 𝛼)

)︀
+

𝑡1+𝑡2∫︁
𝑡1

𝜌(nt)·𝑒−𝛽·𝜏 d𝜏 .

The optimal expected cumulative discounted reward (or just discounted reward)
in ℳ with discount rate 𝛽 is:

dRopt
ℳ,𝛽 := opt

𝜎∈GM

{︁
lim

𝑁→∞
E𝜎[rew

𝑁
ℳ,𝛽 ]

}︁
= opt

𝜎∈GM

⎧⎨⎩ lim
𝑁→∞

∫︁
Pathsℳ

rew𝑁
ℳ,𝛽(𝜋) · Prℳ,𝜎[d𝜋]

⎫⎬⎭ ,

where opt ∈ {sup, inf}. A scheduler 𝜎 is called optimal for dRopt
ℳ,𝛽 , if it attains

optimum in this equation. In the following, dRopt
ℳ,𝛽(𝑠) denotes the discounted

reward collected in ℳ assuming that the initial state is 𝑠. Whenever it is clear
from the context, we omit the subscripts and use notation dRopt.

Lemma 1. The value dRopt
ℳ,𝛽 exists.

3.2 Relation to Discounted Rewards on CTMDP

We now show that for each MRA there exists a (possibly exponentially larger)
CTMDP that preserves the discounted reward property. We first need to introduce
uniform and normalised MRA:

Definition 4. An MRA ℳ is uniform if ∃𝜂 ∈ R>0, s. t. ∀𝑠 ∈ MSℳ : 𝐸(𝑠) = 𝜂.

Definition 5. An MRA ℳ is called normalised if

1. the initial state of ℳ is probabilistic;
2. every Markovian state 𝑠 has only probabilistic predecessors: pred(𝑠) ⊆ PSℳ;
3. probabilistic states of ℳ have either only probabilistic or only Markovian

predecessors: ∀𝑠 ∈ PSℳ : pred(𝑠) ⊆ PSℳ ∨ pred(𝑠) ⊆ MSℳ.

Lemma 2. For any MRA ℳ, 𝜂 > max
𝑠∈𝑆

𝐸(𝑠) there exists a uniform normalised

MRA ℳ𝜂, s. t. dRopt

ℳ𝜂,𝛽
= dRopt

ℳ,𝛽 and its size is linear in the size of ℳ.



Informally, ℳ𝜂 is obtained by first uniformising the Markovian states. This is
performed via the well-known approach from [18] by adding self-loop transitions
to them. Then this uniform MRA is normalised by introducing probabilistic
states of zero reward (i) in between each pair of states that violate Properties 2
or 3 of the definition above, or (ii) as a new initial state, as detailled in [5].

In the following, we assume that the MRA at hand is uniform and normalised
and show how to construct a value-preserving CTMDP for it. Before proceeding
we need to introduce some notation:

– 𝛱∖𝐵(𝑠, 𝑠′) is the set of all untimed paths 𝜋 = 𝑠
𝛼−→ 𝑠1

𝛼1−→ · · · 𝑠𝑘
𝛼𝑘−→ 𝑠′

(paths of ℳ with abstracted timing information), such that ∀𝑖 = 1..𝑘, 𝑠𝑖 ̸∈ 𝐵;
– PS∖𝐵(𝑠) is the set of states containing 𝑠 and all states 𝑠′ ∈ PS ∖𝐵 that are

related to 𝑠 via the transitive closure of relation →˓;

– P[𝜋] :=
|𝜋|−1∏︀
𝑖=1

P
[︀
𝜋[𝑖], 𝛼[𝑖], 𝜋[𝑖+ 1]

]︀
, r(𝜋) :=

|𝜋|−1∑︀
𝑖=0

r
(︀
𝜋[𝑖], 𝛼[𝑖]

)︀
, 𝜌(𝜋) :=

|𝜋|−1∑︀
𝑖=0

𝜌
(︀
𝜋[𝑖]

)︀
.

Value-Preserving CTMDP. Let ℳ = (𝑆, 𝑠init,Act , →˓, , r, 𝜌) be a uni-
form normalised MRA with exit rate 𝜂. We define the CTMDP 𝒞(ℳ) :=
(𝑆𝒞 , 𝑠init,Act𝒞 ,R𝒞) and reward structure (𝜌𝒞 , r𝒞) as follows:

𝑆𝒞: The state space of 𝒞(ℳ) is the set 𝑆𝒞 ⊆ PS that contains the initial state
𝑠init and all probabilistic states of ℳ that are successors of a Markovian

state in ℳ: 𝑆𝒞 = {𝑠 ∈ PS | 𝑠 = 𝑠init or ∃𝑠′ ∈ MS : 𝑠′
𝜆
 𝑠}. We define the

set of marked states as 𝑆mrk := 𝑆𝒞 .
Act𝒞: An action of a state 𝑠 in this CTMDP is a mapping 𝐴 : PS∖𝑆mrk

(𝑠) → Act ,
such that 𝐴(𝑠′) ∈ Act(𝑠′). Then the set of all enabled actions Act𝒞(𝑠) is the
set of all possible functions 𝐴, and Act𝒞 =

⋃︀
𝑠∈𝑆mrk

Act𝒞(𝑠).
R𝒞: Let 𝑠, 𝑠′ ∈ 𝑆mrk and 𝛱∖𝑆mrk

(𝑠,𝐴, 𝑠′) ⊆ 𝛱∖𝑆mrk
(𝑠, 𝑠′) be the set of all paths

from 𝛱∖𝑆mrk
(𝑠, 𝑠′) that select actions according to 𝐴, i. e. for each path 𝜋 :

𝜋[𝑖] ∈ PS ⇒ 𝛼[𝑖] = 𝐴(𝜋[𝑖]). Then R𝒞(𝑠,𝐴, 𝑠′) := 𝜂 ·
∑︀

𝜋∈𝛱∖𝑆mrk
(𝑠,𝐴,𝑠′) P[𝜋].

𝜌𝒞: The state reward of a state 𝑠 in 𝒞(ℳ) is the expected state reward gathered
in ℳ on paths between 𝑠 and any other 𝑠′ ∈ 𝑆mrk that is a successor of 𝑠 in
𝒞(ℳ): 𝜌𝒞(𝑠) :=

∑︀
𝑠′∈𝑆mrk

∑︀
𝜋∈𝛱∖𝑆mrk

(𝑠,𝑠′)

𝜌(𝜋) · P[𝜋].

r𝒞: The transition reward of a state 𝑠 and action 𝐴 in 𝒞(ℳ) is the expected
transition reward gathered in ℳ on paths between 𝑠 and any other 𝑠′ ∈ 𝑆mrk

that is a successor of 𝑠 in 𝒞(ℳ): r𝒞(𝑠,𝐴) :=
∑︀

𝑠′∈𝑆mrk

∑︀
𝜋∈𝛱∖𝑆mrk

(𝑠,𝐴,𝑠′)

r(𝜋) ·P[𝜋].

The main idea of this construction is to lump together states that are all
entered at the same time point. For example, in a sequence of probabilistic states
followed by a Markovian state all of the states of the sequence will be entered at
the same time due to the fact that probabilistic states are left instantaneously
upon entry. The construction is similar in spirit to the construction of a value-
preserving CTMDP for the long-run average reward problem from [6]. It differs,
however, in the treatment of Markovian and probabilistic states due to the fact
that timing information effects collected rewards and thus has to be preserved.
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Fig. 2: An example of 𝒞(ℳ) (on the right) for an MRAℳ (on the left). We omitted the
probabilities of the probabilistic transitions ofℳ. Here 𝐴0 = [𝑝0 → 𝛼0, 𝑝2 → 𝛾2, 𝑝3 →
𝛾3] and other actions of 𝒞(ℳ) are constructed analogously. If all the probabilistic
distributions are uniform, then R𝒞(𝑝0, 𝐴0, 𝑝4) = 𝜂 · [0.5 · 0.5 · 1 + 0.5 · 0.5 · 1] = 0.5 · 𝜂.

An example of this transformation is depicted in Fig. 2. One can easily see that
even in small examples the amount of transitions of 𝒞(ℳ) can grow extremely
fast. Let 𝑠 ∈ 𝑆mrk and |PS∖𝑆mrk

(𝑠)| = 𝑛. If every probabilistic state of ℳ has
two enabled actions, then the set of enabled actions of 𝑠 in 𝒞(ℳ) is 2𝑛. This
growth is therefore exponential in the worst case.

Theorem 1. For any uniform normalised MRA ℳ we have dRopt
ℳ,𝛽 = dRopt

𝒞(ℳ),𝛽
2,

and there is an optimal scheduler for ℳ that is stationary.

4 Bellman Equation

In this section, we introduce the Bellman equation for the discounted reward
problem on MRA.

First of all, due to the results obtained in Sect. 3.2, one could obtain the
Bellman equation for an MRA by constructing the value-preserving CTMDP
and using the Bellman equation for this CTMDP3 [19]. However, since the
construction of 𝒞(ℳ) is exponential in the size of ℳ, using the thus obtained
Bellman equation for quantifying dRopt is not efficient for general MRA.

First we informally discuss the reasons why using this method would be ineffi-
cient for ℳ. First of all, in order to use this approach one would need to construct
𝒞(ℳ), which may require exponentially many computations. Additionally, having
constructed 𝒞(ℳ), the solution of its Bellman equation requires computing an ex-
tremum of an operator 𝐹𝒞(ℳ) over all enabled actions: 𝑉 * := opt𝐴∈Act𝒞 𝐹𝒞(ℳ)(𝐴).
The definition of 𝐹𝒞(ℳ) is irrelevant for the current discussion. Since the number
of enabled actions in 𝒞(ℳ) is in the worst case exponential in the size of ℳ,
this operation is essentially a brute-force check over exponentially many options.
However, we can show that this optimisation problem on 𝒞(ℳ) when mirrored
back to ℳ itself reduces to the computation of the expected total reward tRopt

𝒟(ℳ)

2 Here dRopt
𝒞,𝛽 denotes discounted reward on a CTMDP 𝒞 [19].

3 For details we refer to [5].



on a discrete-time Markov decision process 𝒟(ℳ), whose size is linear in the size
of ℳ. Computing tRopt

𝒟(ℳ) is a well-studied problem on MDPs that admits an

efficient solution via dynamic programming. Thus instead of näıvely brute-forcing
sup𝐴∈Act𝒞 𝐹𝒞(ℳ)(𝐴), the value 𝑉 * can be efficiently computed by well-known

dynamic programming techniques for tRopt
𝒟(ℳ) [3,19]. To formalise this result we

need to introduce the expected total reward tRopt on MDPs, as defined in [19].

Expected total reward. Let 𝒟 be a (discrete-time) MDP and 𝑋𝑠
𝑖 , 𝑌

𝑠
𝑖 be

random variables denoting the state occupied by 𝒟 and the action chosen at step
𝑖 starting from state 𝑠. Then the value

tRopt
𝒟,r𝒟

(𝑠) := opt
𝜎∈GM𝒟

E𝑠,𝜎

[︃
lim

𝑁→∞

𝑁−1∑︁
𝑖=0

r𝒟(𝑋𝑠
𝑖 , 𝑌

𝑠
𝑖 )

]︃
,

where opt ∈ {sup, inf}, denotes the optimal expected total reward on 𝒟 with
reward structure r𝒟, starting from state 𝑠.

Terminal MDP. We now construct the discrete MDP and the reward structure
on it that enables us to substitute the näıve brute-force approach with the efficient
computation of the expected total reward.

Let ℳ be a uniform normalised MRA. Informally, we keep the structure of ℳ,
but for each marked state 𝑠 ∈ 𝑆mrk, we introduce a copy state 𝑠𝑐𝑝 and redirect all
the transitions leading to 𝑠 to the new copy state 𝑠𝑐𝑝. These copy states have only
transitions with probability 1 to a new terminal state 𝑡. Formally, the terminal
MDP of ℳ is 𝒟(ℳ) := (𝑆𝒟, 𝑠init,Act ∪̇ {⊥},P𝒟), where 𝑆𝑐𝑝 = {𝑠𝑐𝑝 | 𝑠 ∈ 𝑆mrk},
𝑆𝒟 = 𝑆 ∪̇ 𝑆𝑐𝑝 ∪̇ {𝑡} and

P𝒟[𝑠, 𝛼, 𝑠′] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P[𝑠, 𝛼, 𝑠′] for 𝑠 ∈ PS , 𝑠′ ̸∈ 𝑆𝑐𝑝,

P[𝑠, 𝑝] for 𝑠 ∈ MS , 𝑠′ = 𝑝𝑐𝑝 ∈ 𝑆𝑐𝑝, 𝛼 = ⊥,

1 for (𝑠 ∈ 𝑆𝑐𝑝 or 𝑠 = 𝑡), 𝑠′ = 𝑡, 𝛼 = ⊥,

0 otherwise.

Figure 3(b) depicts the terminal MDP for the MRA from Fig. 1.

We can now present an efficient characterisation of the discounted reward on MRA.
Let 𝒟(ℳ) = (𝑆𝒟, 𝑠init,Act𝒟,P𝒟) be the terminal MDP of ℳ and ℎ : 𝑆mrk → R.
We define a reward structure rew𝒟(ℳ),ℎ for 𝒟(ℳ) as follows:

rew𝒟(ℳ),ℎ(𝑠, 𝛼) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r(𝑠, 𝛼) for 𝑠 ∈ PS , 𝛼 ∈ Act𝒟(𝑠),

𝜌(𝑠)
𝛽+𝜂 for 𝑠 ∈ MS , 𝛼 = ⊥,

𝜂
𝛽+𝜂ℎ(𝑠) for 𝑠 ∈ 𝑆𝑐𝑝, 𝛼 = ⊥,

0 for 𝑠 = 𝑡, 𝛼 = ⊥ .
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Fig. 3: Figure (a) depicts the uniform normalised MRA from Fig. 1 and (b) shows
the corresponding terminalMDP. All the added/updated transitions and states are
highlighted in green color. The figure omits Dirac distributions and rewards.

Theorem 2. Let ℳ be a uniform normalised MRA with exit rate 𝜂 and 𝒟(ℳ)
the corresponding terminal MDP. Then the vector dRopt

ℳ,𝛽 := (dRopt
ℳ,𝛽(𝑠)),∀𝑠 ∈

𝑆mrk, is the unique solution to the Bellman equation:

∀𝑠 ∈ 𝑆mrk : 𝑣(𝑠) = tRopt
𝒟(ℳ),rew𝒟(ℳ),𝑣

(𝑠) . (1)

The reason for this characterisation being efficient is the right-hand side of
Equation (1). Quantification of the expected total reward on MDPs is a well-
established problem that admits such algorithms as policy-iteration and linear
programming [19]. Moreover, for a subclass of models it can be solved in time
linear in the size of the MRA. Those are models that have no cycles consisting of
only probabilistic states. Such cycles (even non-Zeno ones) almost never happen
in real-world applications and are usually considered a modelling mistake. In
fact, we are not aware of any practical example where that case occurs.

5 Numerical Solution

Having a Bellman equation at hand, one can normally derive three types of
algorithms: based on value-iteration, policy-iteration, and linear programming.
Due to scalability issues of the latter we do not consider it and present here only
value- and policy-iteration algorithms.

In the following let sp(𝑣) :=
⃒⃒
max𝑠∈𝑆mrk

𝑣(𝑠) − min𝑠∈𝑆mrk
𝑣(𝑠)

⃒⃒
. Additionally,

we denote with ExpectedTotalReward(𝒟, rew, 𝜎) the function that computes the
expected total reward on an MDP 𝒟 for reward structure rew. The last parameter
𝜎 can be either a stationary deterministic scheduler or one of {sup, inf}. In the
latter case, the optimal expected total reward is computed and in the former the
expected total reward for scheduler 𝜎.

Algorithms 1 and 2 are value- and modified policy-iteration algorithms that
compute the value dRopt

ℳ,𝛽 for an arbitrary MRA ℳ and discounting rate 𝛽 > 0.



Algorithm 1: ValueIteration

input :MRAℳ = (𝑆, 𝑠init,Act , →˓, , r, 𝜌), opt ∈ {sup, inf}, 𝛽 > 0,
approximation error 𝜀 > 0

output : 𝑣 such that ‖𝑣 − dRopt
ℳ,𝛽‖ < 𝜀, and the 𝜀-optimal scheduler 𝜎

1 ℳ𝜂 := normalise
(︀
uniformise(ℳ, rate 𝜂 := max

𝑠∈𝑆
𝐸(𝑠))

)︀
;

2 𝒟(ℳ𝜂) := terminalMDP forℳ𝜂;

3 𝑣0 := 0; /* vector of zeros */

4 for (𝑛 := 0; sp(𝑣𝑛+1 − 𝑣𝑛) <
𝜀·𝛽
𝜂
; 𝑛++) do

5 (𝑣𝑛+1, 𝜎) := ExpectedTotalReward(𝒟(ℳ𝜂), rew𝒟(ℳ𝜂),𝑣𝑛
, opt);

6 return 𝑣𝑛+1(𝑠init), 𝜎;

The standard policy-iteration algorithm in which the policy evaluation step is
performed exactly is also possible in the setting of MRA. However, this requires
the exact solution of a linear equation system with one variable per state of
ℳ. Since this is an expensive operation for hundreds of thousands of states, we
choose the modified policy-iteration instead. The latter bypasses this issue by
performing the policy evaluation step numerically. The algorithm depends on
a sequence of natural numbers called order sequence (𝑚𝑛)𝑛∈N>0

; it converges
however for an arbitrary sequence.

Theorem 3. Algorithms 1 and 2 are sound and complete.

Algorithms 1 and 2 are essentially the respective algorithms on CTMDPs
[19], in which the extremum value over enabled actions is searched through
the solution of the expected total reward problem tRopt

𝒟(ℳ) on the terminal

MDP 𝒟(ℳ). Therefore in both algorithms the complexity of an iteration equals
the complexity of computing the value tRopt

𝒟(ℳ) (which is polynomial), and the

convergence rate is the same as the convergence rate of the corresponding CTMDP
algorithms.

Computation of the expected total reward. Notice that the presented
algorithms are guaranteed to converge whenever the expected total reward of
the terminal MDP is computed precisely. Exact quantification of this value
can be achieved with policy-iteration or linear programming algorithms [19].
Moreover, for models that have no cycles and consist of only probabilistic states,
the expected total reward can be solved efficiently in time 𝑂(| | + |→˓|).

6 Experiments

Here we present the empirical evaluation of the discussed algorithms. Both
algorithms were implemented as part of the IMCA/MAMA toolset [10]. All
experiments were run on a single core of Intel Core i7-4790 with 8 GB of RAM.



Algorithm 2: ModifiedPolicyIteration

input :MRAℳ = (𝑆, 𝑠init,Act , →˓, , r, 𝜌),opt ∈ {sup, inf}, 𝛽 > 0, 𝜀 > 0,
order sequence (𝑚𝑛)𝑛∈N>0

output : 𝑣 such that ‖𝑣 − dRopt
ℳ,𝛽‖ < 𝜀, and the 𝜀-optimal scheduler 𝜎

1 ℳ𝜂 := normalise
(︀
uniformise(ℳ, rate 𝜂 ←− max

𝑠∈𝑆
𝐸(𝑠))

)︀
;

2 𝒟(ℳ𝜂) := terminalMDP forℳ𝜂;

3 𝑣0 := 0; /* vector of zeros */

4 stop := false;𝑛 := 0;
5 while (¬stop) do
6 /* Policy improvement */

(𝑢0
𝑛, 𝜎𝑛+1) := ExpectedTotalReward(𝒟(ℳ𝜂), rew𝒟(ℳ𝜂),𝑣𝑛

, opt);

7 /* Partial policy evaluation */

8 if sp(𝑢0
𝑛 − 𝑣𝑛) <

𝜀·𝛽
𝜂

then

9 stop := true; break;
10 for (𝑘 := 0; 𝑘 < 𝑚𝑛; 𝑘++) do

11 𝑢𝑘+1
𝑛 := ExpectedTotalReward(𝒟(ℳ𝜂), rew𝒟(ℳ𝜂),𝑣𝑛

, 𝜎𝑛+1);

12 𝑣𝑛+1 := 𝑢𝑚𝑛
𝑛 ;

13 𝑛 := 𝑛+ 1

14 return 𝑢0
𝑛(𝑠init), 𝜎𝑛+1;

Table 1: Parameters of some of the benchmarks.
|𝑆| |PS | |MS | | →˓ | | | 'ℳ 𝐸(ℳ)

FTWC-resp-50-40 92,819 20,806 72,013 72,007 305,613 5 6.35
PS-256-3-4 131,529 87,605 43,924 189,129 72,965 3 14
QS-256-256 465,177 398,096 67,081 530,966 200,208 2 26

Benchmarks. We have evaluated our approach on a collection of published
benchmark models: the Polling System [10,21], Queuing System [13], and the
Fault Tolerant Workstation Cluster [16]. Discounting for the selected benchmarks
naturally models the decrease of the value of costs over time. In order to address
a case study with a specific set of parameters we use the same notation as in
[6]. We used the tool SCOOP [20] to generate those models and for this reason
the degree of variation of some parameters is restricted by its runtime/space
requirements.

Table 1 shows the parameters of some of the used models. We use the symbols
'ℳ to denote the maximal number of enabled actions in probabilistic states of
ℳ, and 𝐸(ℳ) shows the maximal exit rate of Markovian states of ℳ.

Empirical Evaluation. The space complexity of both algorithms is polynomial.
Therefore, we have evaluated the effect of varying model size, precision, and
the discounting rate on their runtime only. In plots, whenever the experiment
covers several benchmarks, we use the symbol “X” to denote respective part of
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the model name, e. g. PS-2-X. In this section we will refer to the value-iteration
algorithm 1 as VI and to the modified policy-iteration algorithm 2 as MPI.

As we have mentioned in Sect. 5, the modified policy-iteration algorithm
depends on a parameter called order sequence. The optimal choice of the order
sequence is an open question [19]. In this section, we present the best results we
could achieve with different order sequences. Let us notice that if every element of
the order sequence is 0 then MPI is the same as VI. When the values grow infinitely
large, the algorithm turns into standard policy-iteration. Almost always in our
experiments we could find an order sequence that led to lower running times than
those of VI. Moreover, relatively small order sequences achieved the best value,
e. g. 𝑚𝑛 = 100,∀𝑛 > 0 was sufficient for most of the models. Selecting a sequence
with larger values, however, quite often led to running times significantly worse
than those of VI.
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Model size. Figure 4 shows the dependency of the running time of both algorithms
on the size of the state space. Both algorithms exhibit polynomial dependency
(linear in log-log scale) on the depicted size range. This agrees with theoretical
expectations since the computation of expected total rewards is polynomial
in the size of the state space and the convergence rate does not depend on
the model size.

Precision. Figure 5 shows the dependency of the computation time on the
precision parameter 𝜀. The theoretical convergence rate of both algorithms
resembles that of respective algorithms on CTMDPs. The expected complexity
of VI is logarithmic in 𝜀, which is supported by the observed results. Regarding
MPI, we observed that the function of the running time repeats that of VI,
possibly due to the relatively small values used for the order sequence.

Discounting rate. Figure 6 depicts the dependency of the running time of the
algorithms on the discounting rate 𝛽. The observed dependency of VI follows
the theoretical bound of 𝑂( 1

1−𝛽 ). Similarly to the previous case, the function
of the running time of policy-iteration repeats that of value iteration.

7 Conclusion

While discounting is a standard concept on Markov chains and Markov decision
processes, this is the first paper to consider discounting for the more general
model of Markov reward automata. We have discussed that computing discounted
rewards on MRA can be reduced to the same task on a possibly exponentially
larger CTMDP. Constructing and optimizing over this large CTMDP can be
avoided by recognising the essential computation as determining the expected total
reward in a linear-sized discrete-time MDP. This in turn is a well-understood
problem enabling an efficient solution. Experiments clearly demonstrate the
efficiency of our approach, being able to handle MRAs with hundred thousands
of states.
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