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Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single
model. They represent an important and powerful way to model a wide range of complex real-life
systems. However, such models tend to be large and difficult to handle, making abstraction and
abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement
technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic
automata. First experiments show that a significant reduction in size is possible using abstraction.

1 Introduction

Markov automata (MA) constitute a compositional behavioural model for continuous-time stochastic
and nondeterministic systems [10, 9, 6]. MA are on one hand rooted in continuous-time Markov chains
(CTMCs) and on the other hand based on probabilistic automata (PA) [22]. MA have seen applications in
diverse areas where exponentially distributed delays are intertwined with instantaneous random switch-
ing. The latter enables MA to capture the complete semantics [8] of generalised stochastic Petri nets
(GSPNs) [19] and of stochastic activity networks (SANs) [20]. As MA extend Hermanns’ interactive
Markov chains (IMCs) [17], they inherit IMC application domains, ranging from GALS hardware de-
signs [4] and dynamic fault trees [2] to the standardised modelling language AADL [3, 16]. Due to these
attractive semantic and compositionality features, there is a growing interest in modelling and analysis
techniques for MA.

The semantics of MA including weak and strong (bi)simulation has been studied in [10, 9, 6]. Markov
automata process algebra (MAPA) [24] supports fully compositional construction of MA equipped with
some minimisation techniques. Analysis algorithms for expected reachability time, long-run average, and
timed (interval) reachability have been studied in [14]. It is also accompanied by a tool chain that supports
modelling and reduction of MA using SCOOP [24] and analysis of the aforementioned objectives using
IMCA [12]. Model checking of MA with respect to continuous stochastic logic (CSL) has been presented
in [15].

The core complexity of MA model checking lies in the model checking of time-bounded until formulae.
The property is reducible to timed reachability computation where the maximum and minimum probability
of reaching a set of target states within a time bound is asked for. The current trend inspired by [21, 28] is
to split the time horizon into equally sized discretisation steps, each small enough such that with high
probability at most one Markov transition occurs in any step. However, the practical efficiency and
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accuracy of this approach turns out to be substantially inferior to the one known for CTMCs, and this
limits the applicability to real industrial cases. It can only scale up to models with a few thousand states,
depending on the parameters of the model and the time bound under consideration. This paper proposes
an abstraction refinement technique to address the scalability problem of model checking time-bounded
until for MA.

Abstraction refinement methods have gained popularity as an effective technique to tackle scalability
problems (e. g. state space explosion) in probabilistic and non-probabilistic settings. Although abstraction
refinement techniques have not been employed for MA yet, there are a number of related works on PA,
which allow to estimate lower and/or upper bounds of reachability probabilities. PA-based abstraction [5]
abstracts the concrete model into a PA, which provides an upper bound for maximal and a lower bound for
minimal reachability of the concrete model. Game-based abstraction [18] on the other hand enables to
compute both lower and upper bound on reachability, i. e. the reachability probability in PA is guaranteed
to lie in a probability interval resulting from the analysis of the abstract model, which is represented by a
game. This further has been proven to be the best transformer [27]. In this work we nevertheless employ
menu-based abstraction [26], which can be exponentially smaller in the size of transitions and also easier
to implement. Moreover it provides lower and upper bounds on reachability like game-based abstraction.

In this paper we introduce a menu-based game abstraction refinement approach which generalises
Wachter’s method [26] to MA and combines it with Kattenbelt’s method [18]. As mentioned before,
the essential part of CSL model checking reduces to timed reachability computation. We accordingly
focus on this class of properties. We exploit scheduler-based refinement which splits an abstract block
by comparing the decisions made by the lower and upper bound schedulers. Furthermore, we equip the
refinement procedure with a pseudo-metric that measures how close a scheduler is to the optimal one.
It turns out that the latter enhances the splitting procedure to be coarser. We start the computation with
a relatively low precision and increase it repeatedly, thus speeding up the refinement procedure in the
beginning while ensuring a high quality of the final abstraction. Our experiments show promising results,
especially we can report on a significant compaction of the state space.
Organisation of the paper. At first we give a brief introduction into the foundations of MA and stochastic
games in Section 2. Afterwards we will present our approach for the menu-based game abstraction of
MA, its analysis and subsequent refinement in Section 3. Experimental results will be shown in Section 4.
Section 5 concludes the paper and gives an outlook to future work.

2 Foundations

In this section we will take a brief look at the basics of MA and continuous-time stochastic games.

2.1 Markov Automata

We denote the real numbers by R, the non-negative real numbers by R≥0, and by R∞
≥0 the set R≥0∪{∞}.

For a finite or countable set S let Distr(S) denote the set of probability distributions on S, i. e. of all
functions µ : S→ [0,1] with ∑s∈S µ(s) = 1. A rate distribution on S is a function ρ : S→ R≥0. The set of
all rate distributions on S is denoted by RDistr(S).

Definition 1 (Markov automaton) A Markov automaton (MA) M = (S,s0,A,P,R) consists of a finite
set S of states with s0 ∈ S being the initial state, a finite set A of actions, a probabilistic transition relation
P⊆ S×A×Distr(S), and a Markov transition relation R : S→ RDistr(S).
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The rate R(s)(s′) is the parameter of an exponential distribution governing the time at which the
transition from state s to state s′ becomes enabled. The probability that this happens within time t is given
by 1− e−R(s)(s′)·t .

We make the usual assumption that we have a closed system, i. e. all relevant aspects have already been
integrated into the model such that no further interaction with other components occurs. Then nothing
prevents probabilistic transitions from being executed immediately. This is called the maximal progress
assumption [6]. Since the probability that a Markov transition becomes enabled immediately is zero, we
may assume that a state has either probabilistic or Markov transitions. We denote the set of states with
Markov transitions as MS. PS is the set of states with probabilistic transitions. It holds that MS∩PS = /0.

If there is more than one Markov transition leaving s ∈ MS a race condition occurs [6]: The first
transition that becomes enabled is taken. We define the exit rate E(s) = ∑s′∈S R(s)(s′) of state s ∈MS.

Starting in the initial state s0, a run of the system is generated as follows: If the current state
s ∈MS is Markovian, the sojourn time is determined according to the continuous probability distribution
(1−e−E(s)t). At this point in time a transition to s′ ∈ S occurs with probability R(s)(s′)

E(s) . Taking this together,
the probability that a transition from s ∈MS to s′ occurs within time t ≥ 0 is

µ(s)(s′, t) = (1− e−E(s)t)
R(s)(s′)

E(s)
.

In a probabilistic state s ∈ PS first a transition (s,α,µ) ∈ P is chosen nondeterministically. Then the
probability to go from s to successor state s′ ∈ S is given by µ(s′). The sojourn time in probabilistic states
is 0.

The nondeterminism between the probabilistic transitions in state s is resolved through a scheduler.
The most general scheduler class maps the complete history up to the current probabilistic state to the set
of transitions enabled in that state. Considering the general scheduler class is extremely excessive for
most objectives like time-bounded reachability, for which a simpler class, namely total-time positional
deterministic schedulers suffice [21]. Schedulers of this class resolve nondeterminism by picking an
action of the current state, which is probabilistic, based on the total time that has elapsed. Formally, it is a
function σ : PS×R≥0→ A×Distr(S) with σ(s, t) = (α,µ) only if (s,α,µ) ∈ P.

Time-bounded reachability in MA quantifies the minimum and the maximum probability to reach a set
of target states within a given time interval. A fixed point characterisation is proposed in [15] to compute
this objective. The characterisation is, however, in general not algorithmically tractable [1]. To circumvent
this problem, the fixed point characterisation is approximated by a discretisation approach [15]. Intuitively,
the time horizon is divided into equally sized sub-intervals, each one of length δ > 0. Discretisation
step δ is presumed to be small enough such that, with high probability, at most one Markov transition
fires within time δ . This assumption discretises an MA by summarising its behaviour at equidistant
time points. Time-bounded reachability is then computed on the discretised model, together with a
stable error bound. The whole machinery is here generalised to stochastic games and the algorithm is
later employed to establish a lower and an upper bound for both minimal and maximal time-bounded
reachability probabilities in MA.

The MA we consider are non-Zeno, i. e. they do not have any end components consisting only of
probabilistic states. Otherwise it would be possible to have an infinite amount of transitions taking place
in a finite amount of time.

For more on MA in general we recommend [6].
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2.2 Stochastic Games

Stochastic games are generalisations of MA. They also combine continuous time with nondeterminism
and probabilities.

A stochastic game consists of one or several players who can choose between one or several actions. In
turn, these actions may influence the behaviour of the other players. Each action consists of a real-valued
or infinite rate λ ∈ R∞

≥0 and a probability distribution. For our work we need the definition of two-player
games:

Definition 2 (Stochastic game) A stochastic continuous-time two-player game is a tuple G =(V,(V1,V2),
v0,A,T ) such that V =V1 ∪̇V2 is a set of states, v0 ∈V is the initial state, A is a finite set of actions and
T ⊆V ×A×R∞

≥0×Distr(V ) is a probabilistic transition relation with continuous time.

V1 and V2 are the states of player 1 and player 2, respectively. We define two functions θp : T →
Distr(V ) and θr : T → R∞

≥0. θp is a projection on the probability distribution of a transition, θr is
a projection on the rate. If the current state is v ∈ V1, then it is player 1’s turn to choose the next
transition, otherwise player 2’s. The current player chooses a transition (v,α,λ ,µ) ∈ T for leaving state v.
θr(v,α,λ ,µ) = λ ∈ R∞

≥0 determines how long this action takes, whereas θp(v,α,λ ,µ) = µ ∈ Distr(V )
gives us the distribution which leads to a successor state. A typical goal of such games is, e. g., that
player 1 wants to reach a goal state within a given time bound and player 2 tries to prevent this.

In the following we denote states of player 1 and player 2 as V1-states and V2-states.
The nondeterminism which may occur at a certain player state is resolved by a scheduler, which is

in this case called a strategy. Each player follows his own strategy in order to accomplish its goal. As
for MA, total-time positional deterministic strategies are sufficient since we are concentrating on time-
bounded reachability. A strategy for player x ∈ {1,2} is therefore defined as a function σx : Vx×R≥0→
A×R∞

≥0×Distr(V ), with σx(v, t) = (α,λ ,µ) only if (v,α,λ ,µ) ∈ T . Depending on their strategies,
players may co-operate or compete with each other.

With the strategies of both players in place, the nondeterminism within a stochastic game is resolved,
the result being a deterministic MA. Stochastic games with strategies therefore have the same semantics
as MA, especially the discretisation of continuous-time stochastic games works in a similar way.

For more on strategies and on stochastic games in general we refer to [23].

3 Abstraction, Analysis and Refinement

Abstraction in general is based on a partition P = {B1,B2, . . . ,Bn} of the state space. The original or
concrete states are lumped together into abstract states, defined by the blocks Bi ∈P .

For PA, both game- and menu-based abstraction use these blocks Bi as player 1 states (i. e. V1 = P).
In game-based abstraction [18] for PA player 2 states in V2 represent sets of concrete states that have
the same branching structure. In menu-based abstraction [26] the states of player 2 represent the set of
enabled actions within a block Bi. Abstraction refinement for both approaches is based on values and
schedulers which are computed for certain properties.

MA are an extension of PA, they additionally contain Markov transitions. In our work we aspire to
transfer the results of [18] and [26] from PA to MA. Menu-based abstraction [26] is usually more compact
than game-based abstraction [18], since in general there are more different states within a block than
different enabled actions. However, the game-based abstraction is more suitable for Markovian states
as Markov transitions are not labelled with actions. Therefore we decided to combine both techniques,
which is described in the following section.
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Figure 1: Example for the menu-based abstraction of probabilistic states.

For the remainder of the paper we define A(B) = {α ∈ A |∃s ∈ B ∃µ ∈Distr(S) : (s,α,µ) ∈ P} as the
set of actions which are enabled within a set of states B⊆ S.

3.1 Menu-based Game Abstraction for MA

As in the case of [18, 26], our menu-based game abstraction is based on a partition P . Each block of P
either contains probabilistic or Markovian states, not both. It holds that Bi∩B j = /0 for all i, j ∈ {1 . . . ,n}.

The probabilistic blocks of partition P constitute the V1-states, whereas V2-states either represent
the enabled actions within a probabilistic block, a Markovian block of P , or the concrete states within
a Markovian block. Thus, the original nondeterminism of the MA is represented in the V1-states, the
nondeterminism artificially introduced by the abstraction is present in V2-states.

The transitions of the original MA M have to be lifted to sets of states as follows:

Definition 3 (Lifted (rate) distribution) Let µ ∈ Distr(S) be a probability distribution over S and P a
partition of S. The lifted distribution µ ∈Distr(P) is given by µ(B) = ∑s∈B µ(s) for B ∈P . Accordingly
for a rate distribution ρ ∈ RDistr(S) we define ρ ∈ RDistr(P) by ρ(B) = ∑s∈B ρ(s) for all B ∈P .

If several probabilistic distributions for an action α within a partition block Bi turn out to be the same
after lifting, they are unified. Additionally, if action α ∈ A(Bi) is not enabled in a state s ∈ Bi, then a new
probabilistic distribution is added with ξ∗(∗) = 1.0, ‘∗’ being a newly added bottom state. This can be
interpreted as the lifting of nonexistent distributions. Example 1 and Figure 1 illustrate the abstraction
process for probabilistic states, which is a direct transfer from Wachter’s menu-based abstraction [26].

Example 1 Figure 1(a) shows a part of an MA M and a partition P . The probabilistic states ‘a’ and ‘e’
of M are contained in the same block Bi. In the abstraction, which is shown in Figure 1(b), Bi becomes
a V1-state—indicated as a square—, whereas the actions α,β ∈ A(Bi) become V2-states—indicated as
diamonds. Since α is not enabled in the concrete state ‘e’, a ‘∗’-transition is added to the abstract α-state.

As can be seen, the original nondeterminism is resolved by the choice of player 1 between the
different enabled actions, whereas an introduced nondeterminism is present at player 2. To make the later
abstraction refinement easier (s. Section 3.3) we also retain a mapping between the abstract distributions
and the corresponding concrete states, as indicated in Figure 1(b).

For Markovian states, the menu-based approach from [26] cannot be used, since Markov transitions do
not have actions which can be used as V2-states. This is indicated by using the ⊥-symbol. Our approach
for Markovian states is therefore more similar to Kattenbelt’s game-based abstraction [18]: A Markovian
block Bi becomes a V2-state, succeeded by V2-states representing the concrete states within Bi which
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Figure 2: Example for the game-based abstraction of Markovian states.

have the same lifted Markov transitions according to Definition 3. In the following, we denote V2-states
representing a Markovian block (concrete states) as abstract (concrete) Markovian V2-states.

Example 2 and Figure 2 demonstrate the abstraction of Markovian states.

Example 2 Figure 2(a) shows a part of an MA M . The Markovian states ‘a’ and ‘e’ of M are contained
in the same block Bi. λ1, λ2 and λ3 denote the rates of the rate distribution of ‘a’.

The block Bi becomes an abstract Markovian V2-state in the abstraction as shown in Figure 2(b). The
other V2-states, however, correspond directly to the concrete states. Since the lifted rate distribution of ‘a’
is different from the one of ‘e’—not shown here—, the concrete states stay separate, otherwise they would
be unified.

It has to be noted, that at abstract Markovian V2-states only introduced nondeterminism occurs. In the
concrete system there is no nondeterminism here, we have the race condition instead.

All transitions leading from a V1-state v1 to a V2-state v2 are considered to be immediate, i. e. they
do not require any time. This is symbolised by giving them the rate R(v1)(v2) = ∞. The same holds
for transitions leading from abstract Markovian to concrete Markovian V2-states and for probabilistic
transitions from a probabilistic V2-state to a successor state. The nondeterministic transitions from a V1-
or from an abstract Markovian V2- to a V2-state v2 are associated with the unique probability distribution
ξv2 with ξv2(v2) = 1.0. For a clearer representation we omitted point-distributions ξv2 and rates ∞ in the
preceding and in the following figures and examples.

We additionally define [s]P ,s ∈ S as the (unique) block B ∈P with s ∈ B.
After these preliminaries we can formally define our menu-based game abstraction of MA.

Definition 4 (Menu-based game abstraction) Given an MA M = (S,s0,A,P,R) and partition P =
{B1, . . .Bn} of S. We construct the menu-based game abstraction G P

M = (V,(V1,V2),v0,A,T ) with:

• V =V1 ∪̇V2,

• V1 = {v ∈P |v⊆ PS} ∪̇ {∗},

• V2 =
{
(v1,α) ∈P×A

∣∣v1 ⊆ PS∧α ∈ A(v1)
}
∪̇
{

v ∈P |v⊆MS
}

∪̇
{
(v1,ρ) ∈P×RDistr(P)

∣∣v1 ⊆MS∧∃s ∈ v1 : R(s) = ρ
}

,

• v0 = [s0]P ,

• A = A ∪̇ {⊥}, and
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Figure 3: An example for the menu-based game abstraction of an MA M .

• T ⊆V ×A×R∞
≥0×Distr(V ) is given by T = TPS ∪̇TMS with

TPS =
{
([s]P ,⊥,∞,ξ([s]P ,α))

∣∣s ∈ PS∧α ∈ A(s)
}

∪
{(

([s]P ,α),α,∞,µ
)∣∣s ∈ PS∧ (s,α,µ) ∈ P

}
∪
{(

([s]P ,α),⊥,∞,ξ∗
)∣∣s ∈ PS∧α 6∈ A(s)

}
TMS =

{
([s]P ,⊥,∞,ξ([s]P ,ρ))

∣∣s ∈MS∧ρ = R(s)
}

∪
{(

([s]P ,ρ),⊥,E(s), ρ

E(s)
)∣∣s ∈MS∧ρ = R(s)

}
.

The probability distributions µ ∈ Distr(V ) and rate distributions ρ ∈ RDistr(P) are as stated previ-
ously. For the remainder of this paper we will not refer to the transition relation T , but directly to the
probabilistic distributions and rate distributions.

Figure 3 and Example 3 illustrate the abstraction process.

Example 3 Figure 3(a) shows an MA M and a partition P = {B0,B1,B2}. B0 contains all Markovian
states of M and B1 all probabilistic states, except the goal state s6, which is contained in the separate
block B2. The corresponding menu-based game abstraction G P

M is pictured in Figure 3(b).
As can be seen, B0 becomes an abstract Markovian V2-state, whereas the blocks B1 and B2 build the

V1-states of G P
M . The abstract Markovian state B0 leads to a set of V2-states, which either correspond

directly to concrete states (in the case of ‘s0’ and ‘s1’) or to a set of concrete states (in the case of ‘s3,s5’).
The abstract Markovian V2-state B0 is also the initial state of G P

M , since the block contains the concrete
initial state s0.

The only enabled action within block B1 is α , the same holds for B2. The corresponding abstract
states lead each to a V2-state labelled with α . Although B1 contains two probabilistic states, s2 and s4,
only one distribution goes out from the respective α-state, since the distributions after lifting are identical.

3.2 Analysis of the Abstraction

As mentioned before, there are two kinds of nondeterminism present in the abstraction: the original,
concrete nondeterminism and the introduced abstract one. As in [18, 26] the nondeterministic choices
are resolved by two separate schedulers: the concrete scheduler σc : V1×R≥0→ T of player 1 and the
abstract scheduler σa : V2×R≥0→ T of player 2. These schedulers are total-time positional deterministic
strategies of stochastic games (see Section 2.2).



8 MeGARA: Menu-based Game Abstraction and Abstraction Refinement for Markov Automata

For Markovian blocks only the abstract scheduler σa exists, since only the introduced nondeterminism
is present there. This can be seen in Figure 2: A (nondeterministic) choice occurs at the abstract Markovian
V2-state only, whereas there is no choice for the concrete Markovian V2-states.

While the concrete scheduler σc always behaves according to the property under consideration, e. g. in
case of maximal bounded reachability σc tries to maximise the result, the abstract scheduler σa can either
co-operate or compete with σc, i. e. it can try to maximise or minimise the probability. This leads to the
existence of an upper and a lower bound for every property. The value of the original system lies within
these bounds. We omit the proof of this for now, however it is similar to the proof of the correctness of the
menu-based or game-based abstraction of PA in [18] or in [26].

If the bounds are too far apart, the abstraction is too coarse and has to be refined (s. Section 3.3).
As already mentioned, we are currently concentrating on time-bounded reachability, but we are going

to consider a wider set of properties in the future.

3.2.1 Time-bounded Reachability

If we want to analyse a property within the abstraction G P
M , we have to compute lower and upper bounds

for this property. For example for the maximum probability pG P
M

max to reach a set of goal states G within
time bound tb, starting at a state v ∈V , we get:

pG P
M

max,lb(v,♦
≤tbG) = sup

σc

inf
σa

Prv,σc,σa(♦
≤tbG),

pG P
M

max,ub(v,♦
≤tbG) = sup

σc

sup
σa

Prv,σc,σa(♦
≤tbG) ,

where Prv,σc,σa is the probability measure induced on the abstraction by the state v and the two schedulers
σc and σa. ♦≤tb is the ”Finally”-operator as known from linear temporal logic (LTL), bounded to
time interval [0, tb]. For the remainder of this paper we will concentrate on the maximum probability

pG P
M

max,pb(v,♦
≤tbG) and abbreviate it as pmax,pb(v, tb), for pb ∈ {lb,ub}. The computation of the minimum

probability is analogous.
For the remainder of the paper we define Succ(v) =

{
v′ ∈V |(v,α,λ ,µ) ∈ T ∧µ(v′) 6= 0

}
as the set

of successor states of a state v ∈V .
The maximum (minimum) reachability probabilities can be computed similarly to MA [15] by using

a fixed point characterisation. Formally, pmax,pb(v, tb) is the least fixed point of higher-order operator
Ωmax,pb : (V ×R≥0→ [0,1])→ (V ×R≥0→ [0,1]):

For v ∈V2, v = (v1,ρ) ∈P×RDistr(P):

Ωmax,pb(F)(v, tb) =


∫ tb

0
E(v)e−E(v)t

∑
v′∈V1

ρ(v′)F(v′, tb− t)dt, if v /∈ G,

1, if v ∈ G.

(1)

For v ∈V2, v = (v1,α) ∈P×A:

Ωmax,pb(F)(v, tb) =


1, if v ∈ G,

max
s∈v1,

∑
v′∈V1

µ(v′)F(v′, tb), if v /∈ G, pb = ub,

min
s∈v1

∑
v′∈V1

µ(v′)F(v′, tb), if v /∈ G, pb = lb.

(2)
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for v ∈V2, v⊆MS:

Ωmax,pb(F)(v, tb) =


max

v′∈Succ(v)
F(v′, tb), if pb = ub,

min
v′∈Succ(v)

F(v′, tb), if pb = lb.
(3)

For v ∈V1, v⊆ PS, (v,α) ∈V2:

Ωmax,pb(F)(v, tb) = max
α∈A(v)

F
(
(v,α), tb

)
. (4)

As can be seen, the recursive computation of the probability ends when a goal state g ∈ G is reached.
Therefore it is sound to make goal states absorbing prior to the computation. The fact that concrete
Markovian V2-states do not have a nondeterministic choice is reflected in Equation (1) of the definition of
Ωmax,pb. In this case it does not matter whether lb or ub is computed. The fixed point characterisation
implicitly computes an optimal concrete and an optimal abstract scheduler. The schedulers are total-
time positional deterministic as follows from Equations (2), (3) and (4). In each of the equations the
optimal choice, which depends solely upon current state v and time instant tb, is deterministically—not
randomly—picked.

The time bound tb only affects Markov transitions. Nevertheless, the resulting equation system is
usually not algorithmically tractable, as is the case for MA. As for MA, we therefore approximate the
result by using discretisation [15], which we will discuss in the next section.

3.2.2 Discretisation

The interval [0, tb] is split into n ∈ N discretisation steps of size δ > 0, i. e. tb = n ·δ . The discretisation
constant δ has to be small enough such that, with high probability, at most one Markov transition occurs
within time δ . The probability distributions in this case have to be adjusted. For a concrete Markovian
V2-state v and a state v′ ∈V we get:

µδ (v
′) =

{
(1− e−E(v)δ )ρ(v′)+ e−E(v)δ , if v′ is the (unique) predecessor of v,
(1− e−E(v)δ )ρ(v′), otherwise.

In the first case of µδ a new transition from the V2-state v to its preceding abstract Markovian V2-state
v′ is added, if no such transition already exists.

An additional error is added through the discretisation, however we will skip its analysis at this point.
The error is at most ERλmax,tb(δ ) = 1− eλmaxtb(1+λmaxδ )n, similar to the error for the discretisation of
MA [14], with λmax being the biggest real-valued rate in the abstraction. Given a predefined accuracy level
ε , a proper step size δ can be computed such that ERλmax,tb(δ )≤ ε . A simple solution is to use the linear

approximation n (λmaxδ )2

2 , which is a safe upper bound of the error function, i. e. ERλmax,tb(δ )≤ n (λmaxδ )2

2 .
However, this is not a good approximation when the value of the error function is not close to zero. In
such a case, it is worthwhile to use Newton’s step method to find a proper step size δ based on precision ε .
This leads to a smaller number of iterations without violating the accuracy level.

Subsequently, the discrete-time menu-based game abstraction G P
M ,δ is induced. Given a time bound

tb and a set of target states G, we can compute a lower and an upper bound of the maximum probability to
reach the states in G within time bound tb for the discrete game, denoted by p̃max,lb and p̃max,ub respectively,
using a value iteration algorithm. At each discrete step, the algorithm computes the optimal choice of each
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player on the discrete game, thereby implicitly providing hop-counting positional deterministic concrete
and abstract schedulers, i. e. deterministic schedulers deciding based on the current state and the length
of the path visited so far. The schedulers establish an ε-optimal approximation for reachability of the
original game, i. e. ∀v ∈V. p̃max,pb(v, tb)≤ pmax,pb(v, tb)≤ p̃max,pb(v, tb)+ε , with pb ∈ {lb,ub}. For lack
of space we have to leave the exact algorithm out, a similar one for MA can be found in [15].

3.3 Abstraction Refinement

We are currently using a scheduler-based refinement technique, similar to the strategy-based refinement
of [18] and the refinement technique from [26], which uses pivot blocks. The key idea in these refinement
techniques is the fact that a difference in the lower and upper bound probabilities in the abstraction requires
that the abstract schedulers σ lb

a and σub
a differ in at least one abstract state. Clearly fixing a scheduler for

player 2 transforms the stochastic Markov game into an MA, and it has a unique maximum probability.
Thus any refinement strategy based on the previous observation can be reduced to (1) finding a set of
abstract states where σ lb

a and σub
a disagree, and (2) splitting these abstract states using some well-defined

procedure. For the first part we take all probabilistic or abstract Markovian V2-states v that have different
strategies for the lower and the upper bound, and are reachable from the initial state from one of the two
composed schedulers, and also have probabilities which differ by more than ε . We denote this state set as
Dσa .

Splitting the abstract states is more involved. Given a state v∈Dσa , its preceding V1- or V2-state B and a
transition t = (v,α,λ ,µ)∈ T , the set of concrete states Bt is defined as {s∈ B |µ = µ∧λ = E(s)}. Notice
that PB,α = {Bt | t = (v,α,λ ,µ) ∈ T} is a partition of B. One possibility is to split B using PB,α , but this
can introduce a lot of new abstract states that are irrelevant for the abstraction. The approach of [18, 26]
is to replace B by the sets Bv,σ lb

a
, Bv,σub

a
, and B\ (Bv,σ lb

a
∪Bv,σub

a
). Although this removes the choices that

caused the divergence in the scheduler, it certainly does not remove all similar divergences that can arise
in the refined abstraction. That is the case when B\ (Bv,σ lb

a
∪Bv,σub

a
) contains choices with probabilities

close to the lower and upper bound probabilities pmax,lb and pmax,ub. Our approach consists in splitting B
using a bounded pseudo-metric m over distributions. A pseudo-metric m : Distr(V )×Distr(V )→ [0,1]
satisfies m(µ,µ) = 0, m(µ1,µ2) = m(µ2,µ1) and m(µ1,µ2) ≤ m(µ1,µ

′)+m(µ ′,µ2). So, if v is a V2-
state such that µ lb = σ lb

a (v) 6= σub
a (v) = µub and m(µ lb,µub) = d, then we split B into Bv,µ lb, d

2
, Bv,µub, d

2

and B \ (Bv,µ lb, d
2
∪Bv,µub, d

2
), where Bv,µ,d =

⋃
{Bv,λ ,µ ′ |m(µ,µ ′) ≤ d}. The pseudo-metric we adopt is

m(µ,µ ′) = ∑ |µ(v)− µ ′(v)|(p̃max,ub(v, tb)− p̃max,lb(v, tb)). More precise and sophisticated metrics can
be used, e. g. the Wasserstein metric that has the property that all bisimilar distributions have distance 0
[7] (in our metric distance zero implies bisimilarity).

Another novel approach used in our refinement algorithm is changing the precision when calculating
the upper and lower bounds in the abstraction. The number of iterations required is a function of ε ,
the precision needed in the discretisation. The smaller ε , the smaller step size, thus the larger number
of iterations is required. Each iteration amounts to calculate an bounded reachability over an PA or a
stochastic game. If the maximum probability in the discretised concrete model is p, then the real probability
is guaranteed to be in [p, p+ε]. It is in turn over-approximated in the abstraction by [p̃max,lb, p̃max,ub+ε]. If
the abstraction is too coarse and consequently needs to be refined, then p̃max,lb and p̃max,ub can be obtained
using the maximum ε̂ > ε that triggers the refinement loop. Algorithm 1 shows the implementation of our
abstraction refinement loop.

As mentioned earlier, the value of the concrete MA M for a certain property lies between the lower
bound pmax,lb and upper bound pmax,ub of the menu-based game abstraction G P

M . To evaluate the quality
of the abstraction, the game needs to be discretised. Therefore, an appropriate step size δ , which respects
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Input: An MA M , a set of goal states G, a time bound tb, a desired precision ε

Output: A menu-based game abstraction G P
M such that pmax,ub(v0, tb)− pmax,lb(v0, tb)≤ ε

P ←{B1, . . . ,Bn} such that B1 = G;
ε̂ ← 1;
done← false;
while !done do

build G P
M from P;

find step size δ such that ERλmax,tb(δ )≤ ε̂ using Newton’s step method;
discretise G P

M into G P
M ,δ ;

compute p̃max,lb(·, tb), σ lb
a , σ lb

c for G P
M ,δ using value iteration;

compute p̃max,ub(·, tb), σub
a , σub

c for G P
M ,δ using value iteration;

if p̃max,ub(v0, tb)− p̃max,lb(v0, tb)+ ε̂ ≤ ε then done← true else if
p̃max,ub(v0, tb)− p̃max,lb(v0, tb)≤ ε then ε̂ ←max(ε̂/2, ε̂− ε) else
Refine(G P

M ,P,σ lb
a ,σ lb

c ,σub
a ,σub

c )
end

Algorithm 1: Refinement Algorithm

accuracy level ε̂ , is computed using Newton’s step method. Afterwards, the game is discretised into
G P

M ,δ , which is then analysed with respect to the given target set G and the time bound tb. We utilise the
difference d = p̃max,ub− p̃max,lb as a criterion of the current abstraction quality and compare it with the
desired precision ε . If d + ε̂ exceeds ε , we refine our abstraction, i. e. we refine the partition P . The
result of this refinement step is a new menu-based game abstraction G P ′

M for which in turn new upper
and lower bounds p̃′max,ub and p̃′max,lb can be computed. As soon as d + ε̂ is below ε , we can stop the
refinement process. The smaller we choose ε , the more precise is the final result.

3.3.1 Zenoness

Even if there is no probabilistic end component present in the original MA M , it may happen that
Zenoness is introduced into G P

M , e. g. through a non-cyclic chain of probabilistic states which are
partitioned into the same block. Although probabilistic end components represent unrealistic behaviour
– it is possible to execute an infinite number of transitions in a finite amount of time – in the case of
time-bounded reachability it is not necessary to treat them separately. They will be dissolved automatically
during refinement.

If we compute the lower bound pmax,lb of G P
M , the probability of a probabilistic end component

without a goal state is 0, because the goal state cannot be reached. Since goal states are made absorbing
for the computation of time-bounded reachability, we do not have to consider the case that a goal state is
contained within a probabilistic end component.

If we compute the upper bound pmax,ub, the probability of the end component is also 0 (a goal state
cannot be reached). In order to maximise its value, scheduler σa will not select transitions leading into the
end component and Zeno behaviour will be avoided.

Probabilistic end components are therefore only a problem when computing the lower bound, which
will lead to pmax,lb = 0. This is the extreme value for pmax,lb and unless the upper bound pmax,ub is very
low, i. e. pmax,ub ≤ ε , the refinement loop will be triggered.
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Table 1: Maximum time-bounded reachability
Concrete Model Abstraction

Name tb #states p time #states lb ub #iter. ref. time val. time
PrG-2-active 5.0 2508 1.000 6:34 13 1.000 1.000 5 0:00 0:57
PrG-2-active-conf 5.0 1535 1.000 2:38 6 1.000 1.000 5 0:00 0:19
PrG-2-empty 5.0 2508 0.993 5:37 394 0.992 0.993 19 0:01 7:59
PrG-2-empty-conf 5.0 1669 0.993 2:11 288 0.993 0.993 25 0:01 3:27
PrG-4-active 5.0 31832 (TO) 9 1.000 1.000 5 0:00 0:58
PrG-4-active-conf 5.0 19604 1.000 113:31 6 1.000 1.000 5 0:00 0:21
PoS-2-3 1.0 1497 0.557 0:02 508 0.555 0.557 17 0:00 0:04
PoS-2-3-conf 1.0 990 0.557 0:01 443 0.557 0.557 19 0:00 0:02
PoS-2-4 1.0 4811 0.557 0:11 1117 0.557 0.557 17 0:00 0:13
PoS-2-4-conf 1.0 3047 0.557 0:07 891 0.556 0.558 15 0:01 0:07
PoS-3-3 1.0 14322 0.291 1:38 5969 0.291 0.291 57 0:02 2:03
PoS-3-3-conf 1.0 9522 0.291 1:15 5082 0.291 0.292 81 0:04 2:23
GFS-20 0.5 7176 1.000 20:15 3 1.000 1.000 4 0:01 0:45
GFS-20-hw-dis 0.5 7176 0.950 28:31 3164 0.950 0.950 26 0:34 36:16
GFS-30 0.5 16156 1.000 187:50 3 1.000 1.000 4 0:00 3:36
GFS-30-hw-dis 0.5 16156 0.950 162:01 2412 0.950 0.950 23 9:28 120:09
GFS-40 0.5 28736 (TO) 3 1.000 1.000 4 0:01 22:54
GFS-50 0.5 44916 (TO) 3 1.000 1.000 4 0:06 50:09

4 Experimental Results

We implemented in C++ a prototype tool based on our menu-based game abstraction, together with an
analysing and refinement framework. For refinement we use the techniques we described in Section 3.3. As
mentioned earlier, we are currently considering bounded reachability objectives only, using discretisation
(s. Section 3.2.2).

For our experiments we used the following case studies:
(1) The Processor Grid (PrG) [14, 25] consists of a 2× 2-grid of processors, each being capable of
processing up to K tasks in parallel. We consider two scenarios defined by two different set of goal states:
Either the states in which the task queue of the first processor is empty or the states in which the first
processor is active. Besides of the original model we also consider variants which were already compacted
through the confluence reduction of [25]. The model instances are denoted as “PrG-K-(active|empty)(-
conf)”.
(2) The Polling System (PoS) [14, 25] consists of two stations and one server. Requests are stored within
two queues until they are delivered by the server to their respective station. We vary the queue size Q and
the number of different request types J. As for PrG, we consider the original model as well as variants
with confluence reduction. The goal states G are defined as the states in which both station queues are full.
The model instances are denoted as “PoS-Q-J(-conf)”.
(3) The Google File System [11, 12] (GFS) splits files into chunks of equal size, maintained by several
chunk servers. If a user wants to access a chunk, it asks a master server that stores the addresses of all
chunks. Afterwards the user has direct read/write access on the chunk. For our experiments we fixed the
number of chunks a server may store (Cs = 5000), as well as the total number of chunks (Ct = 100000),
and we vary the number of chunk servers N. The set of goal states G is defined as the states in which the
master server is up and there is at least one copy of each chunk available. We also consider the occurrence
of a severe hardware disaster. The model instances are denoted as “GFS-N(-hw-dis)”.

All model files are available from the repository of IMCA1, an analyser for MA and IMCs [13, 14].
Each benchmark instance contains probabilistic states as well as Markovian states, making both kinds of
abstraction necessary.

1http://fmt.cs.utwente.nl/gitweb/imca.git

http://fmt.cs.utwente.nl/gitweb/imca.git
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Figure 4: Comparison between the number of states of the concrete and the final abstract model.

Table 1 compares our experimental results of the value iteration for the concrete system and with our
abstraction refinement framework. We computed the maximum reachability probability pmax for different
time bounds. We used precision ε = 0.01 for the value iteration as well as for the abstraction refinement.

The first column contains the name of the considered model. The blocks titled “Concrete Model”
and “Abstraction” present the results for the concrete model and for the final result of the abstraction
refinement, respectively. The first two columns denote the name of the instance and the applied time
bound tb. The third and sixth columns (“#states”) contain the number of states of the concrete model
and the final abstraction. Due to the fact that solving a discretised system is rather expensive [28], the
benchmark instances are relatively small.

Column “p” denotes the computed maximum probability for the concrete system, whereas “lb” and
“ub” denote the computed lower and upper bounds for the abstraction. Column “#iter.” contains the
number of iterations of the refinement loop. Column “time” states the computation time needed for the
analysis of the concrete model, whereas columns “ref. time” and “val. time” contain the time spent on
computing the abstraction refinement and the value iteration. All time measurements are given in the
format “minutes:seconds”. The total computation time needed by the prototype is the sum of the time
needed for abstraction refinement and the time needed for the value iteration. As can be seen, the time
needed for the abstraction refinement is negligible for the most part.

Computations which took longer than five hours were aborted and are marked with “(TO)”. All
experiments were done on a Dual Core AMD Opteron processor with 2.4 GHz per core and 64 GB of
memory. Each computation needed less than 4 GB memory, we therefore do not present measurements of
the memory consumption.

For most instances of PrG and GFS the abstraction refinement needs less computation time than the
value iteration for the concrete model. For most instances of PoS both approaches need about the same
time. For some instances, e. g. PoS-3-3, the abstraction refinement is slower than the value iteration. For
all case studies we were able to achieve a significant compaction of the state space. The latter is also
illustrated in Figure 4, which uses a logarithmic scale. If we increase ε and thereby lower the precision,
less time is needed for the computation and further compaction is achieved.
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Figure 5: Development of lb and ub.

Fig 5 shows the development of the probability bounds lb and ub during the abstraction refinement
loop for selected instances. The fluctuations which can be seen in the curves for PoS-2-3-conf are due to
the increase of accuracy over time.

5 Conclusion

In this paper we have presented our menu-based game abstraction of MA, which is a combination of
successful techniques for the abstraction of PA [18, 26]. We also have shown how to analyse the quality
of the abstraction for bounded reachability objectives. Should the abstraction turn out to be too coarse, we
may refine it using a scheduler-based refinement method which we optimised with a number of additional
techniques. Our experiments give promising results and we can report on a significant reduction of the
number of states.

As future work we plan to implement a pure game-based abstraction for MA and to compare it to the
results of our combined approach. We are also working on the analysis of additional types of properties,
e. g. expected time of reachability and long-run average. Furthermore, we are going to explore the
possibilities of alternative refinement techniques.
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