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Abstract

We extend the available SAT/SMT-based methods for generating counterexamples of proba-
bilistic systems in two ways: First, we propose bounded rewards, which are appropriate, e. g.,
to model the energy consumption of autonomous embedded systems, and show how to extend
the SMT-based counterexample generation to handle such models. Second, we describe a
compositional SAT encoding of the transition relation of Markov models, which exploits the
system structure to obtain a more compact formula, which in turn can be solved more efficiently.
Preliminary experiments show promising results in both cases.

1. Introduction

The formal verification of embedded systems has gained great importance both in research and
in industry. Model checking proves or refutes automatically (i. e., without user interaction) that a
system exhibits some given properties [4]. One of the most useful features is that model checking
provides helpful diagnostic information [7]: in case of a defective system a counterexample in form
of a witnessing run is returned.
The usage of symbolic representations like ordered binary decision diagrams (OBDDs) [6] made
model checking applicable to many kinds of large systems. However, there are classes of practically
relevant systems for which even these OBDD-based methods fail due to space restrictions. To fill
this gap, bounded model checking (BMC) was developed [8]. Thereby the existence of a path of
a fixed length that refutes the property under consideration is formulated as a satisfiability (SAT)
problem. The size of the SAT problem is always linear in the size of the embedded system to be
analyzed (in contrast to the size of the state space, which may be exponentially larger). As modern
SAT solvers have strongly evolved over the last 15 years, it is not surprising that the BMC approach
is very successful.
To model real-life scenarios it is often necessary to cope with specific uncertainties using probabil-
ities. As an example consider a sensor node which transmits its data over an unreliable wireless
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connection. Properties involving probabilities of events can be formulated in probabilistic computa-
tion tree logic (PCTL) [13] for models called discrete-time Markov chains (DTMCs). The model
checking approach for DTMCs is based on solving a linear equation system [13]. However, it lacks
the generation of counterexamples, since the solution of the equation system yields only the mere
probabilities without further information.
To provide a user with diagnostic information for probabilistic systems, a lot of research efforts have
been made during the last years [3, 12, 19, 2, 1, 20, 16]. Contrary to, e. g., LTL model checking
for digital systems, counterexamples for a PCTL property in general consist of a large number
of paths to reach certain probability bounds. Various techniques have been proposed to obtain
compact representations of these paths: computing smallest path sets [12, 2], reducing the strongly
connected components of a DTMC [3, 1], using regular expressions to describe sets of paths [12],
and using small subsystems of DTMCs as counterexamples [2, 18, 20]. All these techniques rely on
an explicit representation of the state space.
Bounded model checking for DTMCs was introduced in [19] to make couterexample generation
applicable to large models. The refutation of a probabilistic safety property is shown by using a
SAT-solver to find paths leading to a safety-critical state such that the joint probability of the paths
exceeds a given bound. The input of the solver are propositional formulae that are satisfied iff the
assignment of the variables corresponds to a sequence of states of the DTMC that represents a path
to a target state. This procedure was extended by SMT-solving [5] instead of SAT. This allows to
find more probable paths first, as well as to handle Markov reward models (MRMs).
In this paper we present two extensions to the BMC-based counterexample generation for Markov
models: In the first part we present a new variant of MRMs: In ordinary MRMs the reward of states
is typically restricted to non-negative values and the accumulated reward may grow unboundedly
during the execution. In our variant, the bounded Markov reward model (BMRM), the reward is
only developing within a certain interval. This is well suited to model, e. g., rechargeable batteries.
The electric charge cannot raise above a certain maximal level, nor can it sink below zero. We
modify the SMT-BMC procedure to generate counterexamples for BMRMs.
In the second part of this paper we improve the SAT-BMC procedure by taking the modular structure
of a composed system into account. Since our encoding avoids the explicit composition of the
modules, we obtain in many cases considerably smaller SAT problems to solve, speeding up the
computation and reducing the memory requirement.

Organization of the paper. At first, we give a brief introduction to the foundations of DTMCs, coun-
terexamples, and Markov reward models and sketch the BMC-based counterexample method. In
Section 3 we introduce bounded Markov reward models and show how to compute counterexamples
for them using the SMT-BMC procedure. In Section 4 we present our SAT-based approach for
compositional path search. An experimental evaluation showing the effectiveness of our approaches
is given in both sections. Section 5 concludes our paper and gives an outlook to future work.

2. Foundations

In this section we take a brief look at the basics of discrete-time Markov chains and discrete-time
Markov reward models.



2.1. Discrete-Time Markov Chains

Definition 1 Let AP be a set of atomic propositions. A discrete-time Markov chain (DTMC) is a
tuple M = (S,sI,P,L) such that S is a finite set of states, sI ∈ S is an initial state, P : S×S→ [0,1]
specifies the one-step transition probabilities such that ∑s′∈S P(s,s′) = 1 for all s ∈ S, and L : S→
2AP is a labeling function that assigns to each state the set of atomic propositions which hold in
that state.

A (finite or infinite) path π is a (finite or infinite) sequence π = s0s1 . . . of states from S such that
P(si,si+1)> 0 for all i≥ 0. A finite path π = s0s1 . . .sn has length |π|= n; for infinite paths we set
|π|= ∞. For i≤ |π|, π i denotes the ith state of π , i. e., π i = si. The ith prefix of a path π is denoted
by π↑i= s0s1 . . .si. The set of finite (infinite) paths starting in state s ∈ S is called Pathsfin

s (Pathsinf
s ).

In order to obtain a probability measure for sets of infinite paths we define a probability space for
DTMCs as follows:

Definition 2 Let M = (S,sI,P,L) be a DTMC and s ∈ S. We define a probability space Ψs =
(Pathsinf

s ,∆s,Prs) such that
• ∆s is the smallest σ -algebra generated by Pathsinf

s and the set of basic cylinders of the
paths in Pathsfin

s . Thereby, for a finite path π ∈ Pathsfin
s , the basic cylinder of π is defined as

Cyl(π) = {λ ∈ Pathsinf
s |π is a prefix of λ}.

• Prs is the uniquely defined probability measure that satisfies Prs(Cyl(ss1s2 . . .sn)) = P(s,s1) ·
P(s1,s2) · · · · ·P(sn−1,sn) for all basic cylinders Cyl(ss1s2 . . .sn).

The properties we want to consider are formulated in PCTL [13] and are of the form P≤p(aUb)
with a,b ∈ AP. This means that the probability to walk along a path from the initial state to a state
in which b holds, with all intermediate states satisfying a, is at most p. More formally: A path π

satisfies aUb, written π � aUb, iff ∃i≥ 0 :
(
b ∈ L(π i)∧∀0≤ j < i : a ∈ L(π j)

)
. Note that the all

paths sets of this form are measurable w. r. t. the probability measure defined above. A state s ∈ S
satisfies the formula P≤p(aUb) (written s � P≤p(aUb)) iff Prs

(
{π ∈ Pathsinf

s |π � aUb}
)
≤ p.

Let us assume that such a formula P≤p(aUb) is violated by a DTMC M. That means PrsI

(
{π ∈

Pathsinf
sI
|π � aUb}

)
> p. In this case we want to compute a counterexample which certifies that

the formula is indeed violated. Such a counterexample is given by a set of finite paths that start in
sI , satisfy aUb, and whose joint probability exceeds the bound p.

Definition 3 Let M = (S,sI,P,L) be a discrete-time Markov chain for which the property ϕ =
P≤p(aUb) is violated in state sI . An evidence for ϕ is a finite path π ∈ Pathsfin

sI
such that π � aUb,

but no proper prefix of π satisfies this formula. A counterexample is a set C ⊆ Pathsfin
sI

of evidences
such that PrsI(C)> p.

It is shown in [11] that if P≤p(aUb) is violated then there exists a finite counterexample.
We concentrate on this form of property because it allows to formalize probabilistic safety conditions.
Such conditions often concern the probability (p) of reaching an error state (b) when starting in a
legal state (a), which is basically the definition of the operators P≤p and U.
DTMCs can be extended with rewards to model costs of certain operations, to count steps, or to
measure given gratifications. The variant of rewards used in [5] are state rewards, i. e., a reward
is granted when leaving a certain state. Another possibility are transition rewards, which grant a



reward upon taking a certain transition in the MRM. We restrict ourselves to state rewards, but the
extension to transition rewards is straightforward.

Definition 4 A discrete-time Markov reward model (MRM) is a pair (M,R) where M = (S,sI,P,L)
is a DTMC and R : S→ R≥0 a real-valued reward function.

For properties regarding the cost of paths, we define the accumulated reward of a path.

Definition 5 Let (M,R) be an MRM, s a state of M and π ∈ Pathsfin
s a finite path of M. The

accumulated reward of π is given by Racc(π) = ∑
|π|−1
i=0 R(π i).

We extend the until operator of PCTL to take the accumulated reward of paths into account. This
way we can formalize properties like “The probability to reach a target state with costs larger than
c is at most p”.

Definition 6 For a (possibly unbounded) interval I ⊆ R, a path π ∈ Pathsinf
s0

satisfies the property
aUI b, written π � aUI b, if there is an i≥ 0 such that b ∈ L(π i), Racc(π↑i) ∈I , and a ∈ L(π j)
for all 0≤ j < i. A state s ∈ S satisfies P≤p(aUI b) if Prs

(
{π ∈ Pathsinf

s |π � aUI b}
)
≤ p.

2.2. Stochastic Bounded Model Checking (SBMC)

Stochastic bounded model checking (SBMC) was introduced in [19] and extended using SMT
(SSBMC) in [5]. We briefly review the basic ideas here.
In symbolic model checking, the probability matrix P of the DTMC under consideration is typically
represented as an MTBDD such that the leaf reached by following the path induced by two states
s,s′ contains the probability P(s,s′). This MTBDD can either be translated into a Boolean predicate
TSAT(s,s′) such that TSAT(s,s′) is satisfied if P(s,s′) > 0 [19]. Alternatively, it can be translated
into an SMT-formula TSMT(s,s′, p̂) over linear real arithmetic such that TSMT(s,s′, p̂) is satisfied if
P(s,s′)> 0 and p̂ = logP(s,s′) [5]. The logarithm is used to turn the multiplication of probabilities
along paths into a summation. In a similar way, the BDDs used to encode the initial state and the
labeling with propositions can be translated into formulae I(s) and La(s) for a ∈ AP such that I(s)
is true if s is the initial state, and La(s) is true if s is labeled with a.
For computing a counterexample that refutes P≤p(aUb) we remove all out-going transitions of
states satisfying ¬a∨b. Then each path ending in a b-state is a valid evidence. The propositional
logic formula SBMC(k) is satisfied for every path s0s1 . . .sk of length k that starts in sI and ends in
a b-labeled state:

SBMC(k) := I(s0)∧
k−1∧
i=0

TSAT(si,si+1)∧Lb(sk) . (1)

This formula ignores the actual transition probabilities. They can be taken into account using the
following SMT-formula, which is satisfied for evidences of length k with probability of at least pt :

SSBMC(k) := I(s0)∧
k−1∧
i=0

TSMT(si,si+1, p̂i)∧Lb(sk)∧

(
k−1

∑
i=0

p̂i ≥ log pt

)
. (2)



For reward properties of the form P≤p(aUI b) we need to compute the accumulated reward Racc
within the formula. We translate the MTBDD which represents the reward function into a predicate
R(s, r̂) such that R(s, r̂) is satisfied if state s has reward r̂. In the end we have to check whether
Racc ∈I . Then the BMC formula reads as follows:

R-SSBMC(k) := SSBMC(k)∧
k−1∧
i=0

R(si, r̂i)∧

[
min(I )≤

(
k−1

∑
i=0

r̂i

)
≤max(I )

]
. (3)

Each of these formulae is given to a SAT- (in case of (1)) or SMT-solver (in case of (2) and (3)).
A satisfying assignment corresponds to a path of length k which is an evidence for aUb or aUI b.
We collect all found evidences and compute their probability mass. As long as it does not exceed
the allowed bound p, we exclude the found path from the search space by adding an additional
clause to the clause database of the solver and restart it. If the formula becomes unsatisfiable
before exceeding the bound, we increase the value of k and restart. If the property is violated, this
procedure terminates after a finite number of steps, yielding a counterexample.

3. Bounded Reward Models

A discrete-time bounded Markov Reward Model (BMRM) is an MRM with certain modifications:
First, it allows also negative rewards. Second, the accumulated reward does not rise above (sink
below) a certain threshold ub (lb). Instead, saturation occurs at the bound.

Definition 7 A discrete-time bounded Markov reward model (BMRM) is a tuple (M,R,Ir,rI)
such that M = (S,sI,P,L) is a DTMC, R : S→ R is a reward function, Ir = [lb,ub] is a non-empty
real interval, and rI ∈Ir is the initial reward.

T

Figure 1: GridBot for N = 5

An example for such a BMRM is a rechargeable battery: Nei-
ther is it possible to charge the battery beyond its maximum
capacity nor can its electric charge sink below zero. The ini-
tial charging level of the battery corresponds to the initial value
rI of the accumulated reward, which can be interpreted as a
continuous charging and discharging process. For a finite path
π = s0s1 . . .sn in a BMRM we define the accumulated reward
Racc inductively as follows: Racc(s0) = rI and Racc(s0 . . .sisi+1) =
min
{

ub,max{lb,Racc(s0 . . .si)+R(si)}
}

.
For demonstration purposes we created a variant of the well-known
GridBot [21], a robot with a rechargeable battery moving in an
N×N-grid.

Example 1 A robot moves through an N×N-grid. It can move vertically, horizontally or diagonally
to any adjacent square or stay where it is. The starting square of the robot is in the top left corner,
the target T is in the bottom right corner. The probability to move from square to square or to stay
is equally distributed, i. e., the probability for staying in a corner or moving to an adjacent square
is 1/4 each, for each square at the boundary of the grid (without the corners) it is 1/6 and for each
interior square 1/9. Figure 1 shows an illustration of the GridBot model for N = 5.



The robot has a rechargeable battery with a capacity of ub. Therefore we define the reward bounds
as Ir = [0,ub]. Every step, i. e., moving or staying, costs one unit of energy. Certain randomly
chosen squares are charging stations, where the robot can recharge itself as long as it stays there.
The energy level increases there by one unit per time-step. In Figure 1 the charging stations are
marked by a circle. The starting square is a charging station as well.

The number of charging stations within the grid as well as their respective position is randomly
decided upon generation of the model instance. Besides the starting square, at least one square
and at most dN2/10e of the total number of squares are charging stations. For example, for a model
instance with N = 5 the number of additional charging stations would lie within 1 and d52/10e= 3.
The movement of the robot is completely random. Especially it might walk into a charging station
and straight out of it even if its battery is almost empty. Even as the number of squares only increases
quadratically with N, the number of possible paths increases exponentially. At the same time the
probability of the paths decreases exponentially. This becomes clear if we consider the probability
mass of the shortest and most probable path, which runs diagonally from the starting square to the
target. Its probability can be computed as 1

4·9N−2 , which is an exponentially decreasing function.

3.1. Counterexamples for BMRMs

For BMRMs we are interested in ensuring safety properties like “The probability is at most 0.1 to
reach a non-target state in which the battery charge is zero before having visited a target state”.
They cannot be formulated directly in PCTL. Therefore we allow new atomic propositions which
compare the current accumulated reward Racc with a constant value. The above-mentioned property
can then be written as P≤0.1

(
¬T U(Racc = 0∧¬T )

)
, where T ∈ AP marks all target states.

A counterexample for such a property is a set of paths each of which starts in the initial state,
satisfies the until condition, is minimal in the sense that no path in the counterexample is a prefix of
another path, and whose accumulated probability mass exceeds the allowed bound.
In order to generate counterexamples for properties P≤p(ϕUψ) we can use the following BMC
formula:

BR-SSBMC(k) := SSBMC(k)∧ (racc
0 = rI)∧

(k−1∧
i=0

R(si, r̂i)∧ (4a)

(racc
i + r̂i ≤ ub∨ racc

i+1 = ub)∧ (racc
i + r̂i ≥ lb∨ racc

i+1 = lb)∧ (4b)
(racc

i + r̂i > ub∨ racc
i + r̂i < lb∨ racc

i+1 = racc
i + r̂i)∧ (4c)

ϕ[Racc /racc
i ,a/La(si)]

)
∧ψ[Racc /racc

k ,a/La(sk)] . (4d)

The notation ϕ[Racc /racc
i ,a/La(si)] means that each occurrence of symbol Racc in the formula ϕ is

replaced by racc
i and each occurrence of the atomic proposition a ∈ AP by the formula La(si).

The expression R(si, r̂i) assigns the reward of state si to variable r̂i. The clauses (4b)–(4c) are
responsible for assigning the accumulated reward up to state si to variable racc

i . The last part (4d)
takes care that all intermediate states s0 . . .sk−1 satisfy ϕ and the last state satisfies ψ .



Table 1: Counterexample generation for the GridBot model
N Ir p k #paths memory time
3 [0,3] 0.3 7 2848 52.96 6.34
4 [0,4] 0.3 9 25255 376.75 346.76
5 [0,5] 0.2 10 40590 711.55 862.16
6 [0,9] 0.01 12 3881 150.25 34.15
7 [0,10] 0.01 14 13731 596.03 297.43
8 [0,11] 0.001 13 159 31.32 3.26
9 [0,12] 0.001 15 682 129.20 72.51
10 [0,13] 0.001 16 6247 297.36 111.41
11 [0,14] 0.001 18 20693 1121.33 801.55
12 [0,15] 0.0001 18 895 227.75 85.24

3.2. Experimental Results

We incorporated our modifications into the existing SBMC tool [5] and created instances of the
GridBot model for different values of N and reward interval Ir. These instances were analyzed
under the property P≤p

(
¬T U(Racc = 0∧¬T )

)
, with T being the target state in the bottom right

corner, similar to Figure 1. The property asks whether the probability that the battery becomes
empty before reaching the target state is at most p. The experiments were done on a Dual Core
AMD Opteron processor with 2.4 GHz per core and 16 GB of memory.
The first two columns of Table 1 contain the values for N and the capacity interval Ir. The
initial charging level of the robot was max(Ir) for all experiments. The third column contains the
probability threshold p of the property, k in the fourth column designates the maximum length of
the considered paths. The columns "#paths", "memory", and "time" contain the number of paths in
the generated counterexample, the memory consumption in megabytes and the computation time in
seconds.
As the value of N increases, the probabilities of the generated paths sink dramatically. This is
reflected in the probability threshold p and in the fact that more and more paths are needed for
exceeding p (s. column "#paths"). However, we are still able to generate a counterexample within
an acceptable amount of time and memory.

4. Compositionality

In many description languages, e. g., the widely used language of the model checker PRISM [14],
DTMCs are specified as a composition of several modules, each of these modules being a DTMC
in its own right. For example, the leader election protocol [15] consists of N processors in a
synchronous ring. Each of these processors is modeled as a separate module. An additional counter
module measures how many rounds it takes until a leader is elected.
Model checking a modular DTMC typically requires to compute the composition first, yielding a
single model for the whole system. Model checking then reduces to solving an equation system
whose size is linear in the number of states and transitions of the composition. The SBMC tool
[19, 5] also works on this large model to perform bounded model checking.
To enable synchronized execution of transitions, DTMCs are extended with action labels, i. e., a
DTMC is now a tuple M = (S,sI,Act,P,L) with a finite set Act of action labels. The transition



probability function is P : S×Act× S→ [0,1] such that ∑α∈Act ∑s′∈S P(s,α,s′) = 1 for all s ∈ S.
The composition of modules is defined in the usual CSP-like manner: Let M j = (S j,sI, j,Act j,Pj,L j)
for j = 1, . . . ,m be a set of DTMCs. If a transition labeled with α is executed in one module M j, all
modules Mi with α ∈ Acti also have to execute a transition labeled with α . If this is not possible,
a deadlock occurs, which is typically considered a modeling error. All other modules Mi with
α 6∈ Acti do not change their state.
In order to ensure that the composition is again a DTMC (and not a Markov decision process), all
outgoing transitions of a specific state within a module have to carry the same action label. The
nondeterminism introduced by the composition of the modules is resolved by taking a uniform
distribution over all nondeterministic choices.
For example, let us take a look at the synchronous leader election protocol as it is presented on
the PRISM website http://www.prismmodelchecker.org: All the processor modules draw
randomly a number from a set {1, . . . ,K}. This choice is synchronized through the action label
“pick” and takes place at the same time in every module. Within the modules, all outgoing transitions
of a specific state are labeled with the same action label, i. e. if an outgoing transition of a state
carries the action label “pick”, then all other outgoing transitions of this state carry this label as
well.
We now modify the SBMC procedure for modular DTMCs such that the formula is constructed
from the modular description without building the composition beforehand. Assume we have
DTMCs M j = (S j,sI, j,Act j,Pj,L j) for j = 1, . . . ,m and that the transitions of each module M j are
partitioned according to the action labels. That means for each j = 1, . . . ,m and each α ∈ Act j
we have a formula Tj,α , which is satisfied if the transition from s to s′ is labeled with α and has a
positive probability. We set Act =

⋃m
i=1 Acti and assume that Tj,α(s,s′) = false for α ∈ Act\A j. We

modify each module such that for each action α 6∈ Act \A j we have a self-loop on each state, i. e.,

T̂j,α(s,s′) :=

{
Tj,α(s,s′) if α ∈ Act j

s = s′ if α 6∈ Act j .
(5)

This formula can be used to generate the BMC formula, describing the evidences of length k:

C-SBMC(k) := I(s0) ∧
k−1∧
i=0

(
La(si)∧¬Lb(si)

)
∧Lb(sk)∧ (6a)

k−1∧
i=0

[ ∨
α∈Act

( m∧
j=1

T̂j,α(s j,i,s j,i+1)
)]

(6b)

si indicates the composite state for time frame i, whereas s j,i denotes the state for time frame i in
module j.
C-SBMC(k) is satisfied for a path s0s1 . . .sk through the composed DTMC if it starts in the initial
state and satisfies aUb. This is ensured in line (6a). The condition that there is a transition from
state si to si+1 which follows the synchronization rules is given in (6b): We encode the transition
relation for each unrolling separately; this leads to the left-most conjunction. In each step, one action
label needs to be chosen. Since the transition sets Tj,α(s,s′) are pairwise disjoint, a disjunction
over all actions in Act suffices to encode the selection of an action label. Once an action has been
determined, each of the modules M j has to make a step: If the selected action α ∈ Act j, a transition



from Tj,α(s,s′) has to be executed; otherwise the state of M j does not change. This is exactly
captured in the formula T̂j,α(s,s′).
The probabilities of the transitions are not considered within Formula (6), as was the case in the
original SBMC [19]. The probability of the path π can be computed by tracing the computed path
through the individual components.
Using Formula (6) instead of (1) it is possible to reduce the number of clauses in the resulting CNF,
which often reduces the memory consumption and speeds up the computation. We demonstrate this
in the following on some experimental results.

4.1. Experimental Results

We incorporated our modifications in the SAT-based version of the SBMC tool from [19, 5] and
compared the performance of our modified version with the original tool. For our experiments we
used the following benchmarks:
(1) The leader election protocol [15] consists of N processors in a synchronous ring. Each processor
chooses a random number from {0, . . . ,K} and passes its number along the ring. The processor
with the highest unique number becomes the leader if a unique number exists. If this fails, a new
round starts. We provide a certificate that a leader will finally be elected.
(2) The contract signing protocol [9, 17] provides a fair exchange of signatures between two parties
A and B over a network. If B has obtained the signature of A, the protocol ensures that A will receive
the signature of B. For our experiments we examine the possibility that this property is violated.
(3) The probabilistic broadcast protocol [10] models information passing within an N×N-grid. A
source node broadcasts a message to its neighbors. The neighbors decide randomly whether to pass
along the information or not. It is possible to include several mechanisms to influence the message
passing: Message collision, lossy channels and random delays. We examine the possibility that the
message is received by the node which is furthest away from the original sender.
All experiments were done on the same computer as in Section 3.2. Any computation which took
longer than four hours (“– TO –”) or needed more than 4 GB of memory (“– MO –”) was aborted.
Table 2 shows an excerpt of our results. The first two columns contain the name of the benchmark
instance and the probability threshold p. Column three to six contain the result for our modified
SBMC, the remaining columns contain the results for the original SBMC. We used the loop
optimization from [19] in all experiments. “#paths” refers to the number of found paths, “#clauses”
to the number of clauses in the CNF at the beginning of the path search. Note that the number of
clauses increases during the iteration process. The columns labeled with “memory” and “time” state
the memory consumption in megabytes and the running time in seconds.
For the contract benchmarks the overhead of the modular CNF generation unfortunately slows
the computation down by a small factor. The reduction in the number of clauses does not fully
compensate the additional effort for computing the modular formula. For the leader election and the
broadcast protocol benchmarks, however, we can observe a considerable speed-up and reduction of
the memory consumption. Some benchmarks instances are not even manageable otherwise with the
available resources.



Table 2: Counterexample generation for DTMCs with and without modules
modular SBMC standard SBMC

Model p #paths #clauses memory time #paths #clauses memory time
leader04_06 0.90 1167 36972 101.46 28.68 1167 177938 584.28 274.13
leader04_10 0.90 9001 238949 730.00 1663.69 – MO –
leader04_12 0.90 18663 448194 1422.82 9219.34 – MO –
leader05_05 0.90 2813 93084 244.57 288.78 2813 453684 2880.41 2516.22
leader05_06 0.90 6999 187982 539.07 1600.16 – MO –
leader08_02 0.90 16 10208 32.49 91.97 16 24152 84.82 144.36
leader09_02 0.90 18 14039 47.83 271.97 18 35179 132.43 514.85
contract06_07 0.50 2049 59846 540.66 2311.00 2049 88810 959.77 2282.89
contract07_03 0.50 8193 27996 185.98 1068.51 8193 35201 257.16 681.74
contract07_07 0.50 8193 80474 900.75 14008.80 8193 118937 1498.91 11487.60
contract08_02 0.50 32769 29732 297.16 2661.18 32769 32769 294.07 1282.20
contract08_03 0.50 32769 33180 424.40 4036.42 32769 38228 473.64 3604.38
brp_no_coll_4 0.60 3530 2903 18.97 2.21 3415 5629 22.84 7.30
brp_no_coll_5 0.60 593934 20110 1362.68 6086.96 – TO –
brp_coll_4 0.20 1148 5357 24.93 2.46 1217 10995 27.51 10.65
brp_coll_5 0.30 121033 87213 358.57 11111.80 – TO –
brp_coll_del_3 0.30 536428 3143 943.94 764.18 691225 8024 1205.05 4640.65
brp_coll_los_3 0.50 498304 21819 1209.18 10110.30 – TO –

5. Conclusion

In the first part of our paper we presented bounded reward models and showed how to generate
counterexamples for them on the basis of the SSBMC procedure. For this we created a case study
which we used for our experiments. These first results look promising.
In the second part of the paper we explored the possibilities of modular DTMCs and modified
the existing SBMC tool in order to do a compositional path search. This reduces the memory
consumption of the counterexample generation and also achieves a considerable speed-up for some
benchmark sets, as we have shown with our experimental results.
In future we plan to do a more detailed experimental evaluation of our methods for BMRMs, a
task which mostly requires more appropriate benchmarks. For the compositional counterexample
generation we have to investigate the possibility to combine this with the SMT-based version of
SBMC. At the moment only the path search is compositional, for the computation of the actual path
probability we use the composition of all the modules. Finally we want to combine the SBMC tool
with the critical subsystems of [16]. It should be possible to use the found paths to generate a critical
subsystem of the DTMC under consideration. This subsystem would have a higher probability mass
than the sum of the probabilities of the found paths, thus reducing the number of required paths.
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