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Abstract— Software and system dependability is getting ever
more important in embedded system design. Current industrial
practice of model-based analysis is supported by state-transition
diagrammatic notations such as Statecharts. State-of-the-art
modelling tools like STATEMATE support safety and failure-effect
analysis at design time, but restricted to qualitative properties.
This paper reports on a (plug-in) extension of STATEMATE
enabling the evaluation of quantitative dependability properties
at design time. The extension is compositional in the way
the model is augmented with probabilistic timing information.
This fact is exploited in the construction of the underlying
mathematical model, a uniform continuous-time Markov decision
process, on which we are able to check requirements of the form:
“The probability to hit a safety-critical system configuration within
a mission time of 3 hours is at most 0.01.”We give a detailed
explanation of the construction and evaluation steps making
this possible, and report on a nontrivial case study of a high-
speed train signalling system where the tool has been applied
successfully.

Index Terms— Real-time and embedded systems, Fault tolerance,
Modelling techniques, Reliability, availability, and serviceability,
Model checking, Reliability, Design notations and documentation,
State diagrams.

I. M OTIVATION

ENGINEERS of safety-critical embedded software are facing
great challenges. To ensure safe and dependable behaviour of

the final system requires careful design-time modelling andanaly-
sis. Often behavioural models are developed in the form of (huge)
state-transition diagrams of various kinds, which are evaluated us-
ing verification and validation tools, for instance model checkers.
When it comes to studying performance and dependability of such
systems, the industrial practice uses stochastic models such as
Markov chains, simulation models, or probabilistic interpretations
of fault trees, to estimate system performance and especially
failure risks. These latter models are often developed separately
from the state-transition models used for studying functional cor-
rectness. This is especially problematic if the functionalbehaviour
itself is affected by failures, or is specified to compensatefor
component failures, like in repairable or fault-resilientsystem
designs.
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This disturbing gap is amplified by a considerable distance of
theoretical advances to the industrial daily practise. Especially the
area of probabilistic verification and stochastic model checking
has seen great advances in the past years [1]–[4], which seem
ready for industrial practise.
Motivated by this observation, we have undertaken efforts to
integrate very recent advances in stochastic model checking into
a modelling environment with a stable industrial user group.
The modelling environment is STATEMATE, a Statechart-based
tool-set used in several avionic and automotive companies like
A IRBUS or BMW. The model checking is based on computing
time bounded reachability probabilities, and allows us to verify
properties like:“The probability to hit a safety-critical system
configuration within a mission time of 3 hours is at most 0.01.”
The algorithmic workhorse to validate (or refute) such properties
is the firstimplementation of an algorithm [4] which computes the
worst-case (or best-case) time bounded reachability probability in
a uniform continuous-time Markov decision process(uCTMDP).
This combination of Statechart-modelling and uCTMDP analysis
raises theoretical and practical questions, both of which are an-
swered in this paper. On the theoretical side, we describe how the
STATEMATE-model can be enriched with real-time probabilistic
time aspects, and then transformed into a CTMDP which is
uniform by construction. One key feature of this approach is
that the model construction steps rely heavily on compositional
properties of the intermediate model, which is the model of
interactive Markov chains(IMCs) [5]. On the practical side,
we report how symbolic (i. e. BDD-based) representations and
compositional methods can be exploited to keep the model sizes
manageable. While the later steps in our analysis trajectory use
explicit state space representations, the earlier steps are symbolic,
and use a novel and very effective symbolic branching bisimula-
tion minimisation algorithm.
From an engineer’s perspective, a typical analysis scenario is
shown in Fig. 1, which will serve as a running example: The
STATEMATE designrepresents the functional behaviour of a heat-
ing system. Owed to its safety-critical nature, the model contains
distinguishedsafety-critical states(here TLE, top level event).
To identify them, techniques like Functional Hazard Analysis
(FHA) [6] are often employed, but this is beyond the scope of this
paper. The design also comprises distinguisheddelay transitions,
which correspond to the bold arrows. These transitions havean
effect or are effected by the advance of time. Mostly, delay
transitions indicate component failures (FM, failure of monitor and
FS, failure of sensor), but the concept is more flexible, as we
will explain later. A typical dependability requirement for such a
system demands that the risk of hitting any safety-criticalstate
within a given missiontime boundis below some threshold. Such
requirements refer to a real-time probabilistic interpretation of
the model. In our approach this interpretation is based ondelay
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Fig. 1. An extended Statechart: the heater example.

distributions, in the form of continuous probability distributions
affecting the occurrence of the delay transitions. In the heater
example, this means that the engineer is asked to provide the
distribution of the time to failure for the monitor (FM) and the
sensor (FS).

All in all, the STATEMATE design, safety-critical states, delay
transitions, delay distributions, and a time boundmake up the
ensemble of information needed to verify the above dependability
requirement. They are indicated as dashed boxes in Fig. 2. Based
on these inputs, our tool computes theworst-case probabilityto
reach a safety-critical state within the time bound, thus providing
the engineer with the required model-based prediction.

The heater shown in Fig. 1 demonstrates some of the intricacies
of typical behavioural models that make them hard to analyse:
large state-based systems with parallel activities (separated by
dashed lines) that communicate by means of shared variables(e. g.
TEMP), non-determinism resulting from specification freedom or
unknown variables (e. g.TEMP IN), and prioritised transitions are
typical features that are present in today’s systems designs.

In summary, this journal paper makes the following contributions,
based on the conference publications [7]–[10]. We (1) devise
a sound and effective methodology to assess dependability of
industrial-size safety-critical designs. This is based on(2) the first
implementation of a time bounded reachability algorithm for uCT-
MDPs [7], (3) the first—to our knowledge—entirely BDD-based
algorithm for computing branching bisimulation quotients[9],
(4) a provably sound compositional method to construct uniform
CTMDPs [8], [10], and (5) the integration of these pieces into an
effective tool chain [7]. We report (6) on the results of applying
this tool chain to a nontrivial case study from the train control
domain. For this case study, we manage to avoid state spaces in
the order of1040, and instead only need to handle models of up
to 105 states and106 transitions.

Organisation of the paper.The paper is organised as follows. Sec-
tion II introduces the basic mathematical concepts and models that
are combined in our tool. The interplay of the various concepts
is described in detail in Section III. Section IV demonstrates the
practical feasibility of our approach by an example from thetrain
control domain. Section V concludes the paper.
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Fig. 2. Overview: processing steps and basic models.

II. BASIC MODELS

This section introduces the behavioural models used in this
paper. First, we address foundations related to the stochastic
aspects of our compositional approach. We then introduce a
variation of theStatechartformalism, which we use as the main
vehicle to describe functional behavioural models and explain its
particularities.

A. Stochastic Models

The construction process revolves around different flavours of
interactive Markov chains[5], an orthogonal combination of
labelled transition systems and continuous-time Markov chains.
We consider a basic set of actionsA and letAct = A ∪̇ {τ}

whereτ is a distinguished action not inA. This action is deemed
unobservable and plays a crucial role in our approach, sinceit is
used for abstracting behaviours of the system, which at certain
stages are irrelevant for the transformation steps that follow.

Definition 1 (IMC)
An interactive Markov chain(IMC) is a tuple (S,Act, T,R, s0)

whereS is a non-empty set of states,Act is the above set of
actions,T ⊆ S ×Act× S is a set of interactive transitions,R ⊆
S×R+×S associates a set of Markov transitions with each state,
ands0 ∈ S is the initial state.

R(s, s′) denotes the transition rate from statess to s′, i. e.,
R(s, s′) =

∑

λ∈Λ λ where Λ = {λ | (s, λ, s′) ∈ R}. A la-
belled transition system (LTS) is a tuple(S,Act, T, s0) whenever
(S,Act, T, ∅, s0) is an IMC. A continuous-time Markov chain
(CTMC) is a tuple(S,Act, R, s0) whenever(S,Act, ∅, R, s0) is
an IMC.
Notation: For IMC I = (S,Act, T,R, s0), a states ∈ S is stable,
written s 66

τ
−→, if ∀s′ ∈ S: (s, τ, s′) 6∈ T . Otherwises is called

unstable. For stable states and C ⊆ S we definer(s, C) =
∑

s′∈C R(s, s′). For unstables, r(s, C) = 0. The distinction
between stable and unstable states is justified by the notionof
maximal progress, see [5] for details. IMCI is calleduniform,
iff ∃e ∈ R+ such that∀s ∈ S : s 6

τ
−→ implies r(s, S) = e. We

write s
a
−→ t for (s, a, t) ∈ T , and τ∗

−−→ for the reflexive transitive
closure of τ

−→. If R(s, s′) = λ > 0 we will sometimes depict this

ass
λ
99K s′.
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For an equivalence relationB ⊆ S × S, we let S/B denote the
set of equivalence classes ofB and B(s) the equivalence class
of s. If s and t are contained in the same equivalence class of

B, we write s ≡B t. Furthermore, we writes τ∗

−−→
B

t if s
τ∗

−−→ t

and s ≡B t. Such transition sequences whose source and target
state are contained in the same equivalence class ofB are called
inert. An equivalence relationB is a refinement of an equivalence
relationB′ (denoted byB ⊑ B′) iff ∀s, t : s ≡B t⇒ s ≡B′ t.

Definition 2 (Stochastic Branching Bisimulation)
For a given IMCI = (S,Act, T,R, s0), an equivalence relation
B ⊆ S × S is a stochastic branching bisimulationiff for all
s1, s2, t1 ∈ S the following holds: Ifs1 ≡B t1 then

1) s1
a
−→ s2 implies

either a = τ ands2 ≡B t1,

or ∃t′1, t2 ∈ S : t1
τ∗

−−→
B

t′1
a
−→ t2 ∧ s2 ≡B t2,

and
2) s1 6

τ
−→ implies

∃t′1 : t1
τ∗

−−→ t′1 6
τ
−→: ∀C ∈ S/B : r(s1, C) = r(t′1, C).

Two states arestochastic branching bisimilar, iff they are con-
tained in some stochastic branching bisimulationB.

This notion is a variant of branching bisimulation [11] and
stochastic weak bisimulation [5]. For LTSs, the definition coin-
cides with that of the original branching bisimulation, which we
can hence define as follows.

Definition 3
For a given LTS(S,Act, T, s0), an equivalence relationB ⊆ S×S

is a branching bisimulationiff it is a stochastic branching bisim-
ulation on (S,Act, T, ∅, s0). Two states arebranching bisimilar
iff they are contained in some branching bisimulation.

Definition 4 (CTMDP)
A continuous-time Markov decision process(CTMDP) is a tuple
(S,L,R, s0) whereS is a non-empty set of states,L is a set of
transition labels,R ⊆ S×L× (S 7→ R+) is the set of transitions,
ands0 is the initial state.

Any CTMDP can be viewed as a special IMC in which interactive
transitions and Markov transitions occur in a strictly alternating
manner. This will be used in the final step of our construction. As
in [4], a CTMDP is calleduniform iff ∃e ∈ R+ such that∀s ∈ S

and∀l ∈ L : (s, l, R) ∈ R implies
∑

s′∈S R(s′) = e.
Both IMC and CTMDP have inherent non-determinism that has
to be resolved by an entity calledscheduler. A scheduler is a
function that determines how to proceed next for a given state s.
In states, it resolves non-determinism by picking a particular
enabled action. It does so on the basis of information about
the current state and the history of the system evolution. In
full generality, schedulers may decide on the basis of the entire
history of the system, and may decide using randomisation (i. e.,
probability distributions over enabled actions). In a timed model,
the history of the system may even be a timed one.
Scheduler theory is not in the core scope of this article, butwe like
to point out that measurability issues quickly arise for schedulers
that base their decision on time. We have introduced the class of
measurableschedulers for which probability measures on paths
are guaranteed to exist [12], [13]. For a given IMCI (respectively
CTMDP C) and measurable schedulerD (D′) over I (C) the
probability measure on paths is denoted byPrI,D (PrC,D′ ).

B. Extended Statecharts

In this section, we introduce the user-visible formalism tospecify
behavioural models, in the form ofextended Statecharts, which
are based on STATEMATE Statecharts. The language definition
presented here focuses on the relevant core needed to clearly
expose the syntactical and semantic extensions to the conven-
tional STATEMATE formalism. Before providing a more formal
definition, we have a closer look at the behaviour of the heater
introduced in Section I.

Example 1 The main parts of the heater are aCONTROLLER, a
MONITOR, a SENSOR, and anOBSERVER. The SENSOR is responsible
for measuring the temperature at periodic intervals and makes the
data available to theCONTROLLER: After initialisation the sensor
becomes active and, in regular intervals (triggered by theUP ac-
tion), reads a new temperature from the environmentTEMP IN.
New temperature values—eitherTOO COLD or TOO HOT—are chosen
non-deterministically from this environment and stored in the local
variableTEMP (from where they will be read by theCONTROLLER).
A failure (triggered by the actionFS) can cause the sensor to
become inoperational and therefore prevents further updates of the
temperature value. The bold arrow indicates here that the failureFS
occurs after some unknown time (of which we will later provide its
distribution function). TheCONTROLLER initially waits for both the
sensor and the monitor to become active. After that, depending on
the current temperature stored inTEMP, the heater is switched on or
off by setting the control signalHEATER to ENABLED or DISABLED.
In case the monitor detects a sensor failure, the system shuts down, in
order to prevent critical situations in which the heater may overheat.
This might happen if it continues to operate even though the current
actual temperatureTEMP IN is alreadyTOO HOT, but this is not sensed
by the failed sensor. The purpose of theMONITOR is to check for
failures in the sensor and to send a shutdown signal to the controller
if one is detected. After activation of both the sensor and the monitor
any sensor failure will be detected and lead to a safe shutdown of
the system. Note that, if a failure in the monitor occurs prior to
a failure in the sensor (by transition toM FAILED), there is still a
possibility of reaching a safety-critical situation. TheOBSERVER is
not an actual part of the system but rather a means of specifying
requirements in the analysis framework1. It is used here to observe
whether a safety-critical system state (we also refer to this as top-
level event,TLE) has been reached. This is the case if the sensor has
failed (thus preventing the system to update the temperature) while
the heater is still on. Internal switching times of the heater are very
small compared to occurrence times of other events (e. g. occurrence
of failures FS or FM). This means that in case of aSENSOR failure
the propagation time for passing the failure from theSENSOR via the
MONITOR to theCONTROLLER are negligible. It is thus unrealistic to
move from theWAIT state to the unsafeTLE state in this situation. In
our modelling, this is achieved by making the respective transition
SYNC a delay transition, indicated by the bold arrow.

Conventional Statecharts [14], [15] support non-determinism, but
no stochastic time aspects. In order to enable the integration
of stochastic durations in this modelling formalism, extended
Statecharts allow one to refer to particular Statechart transitions
by a distinguished set of action labelsA. Such labelled transitions,
called delay transitions, are later used as reference anchors to
start, stop, or interrupt the advance of time, in combination with
a set of stochastic time-constraints, and as a whole allow usto
model stochastic, non-deterministic systems. Statecharts have an
intuitive graphical syntax with a corresponding textual syntax,
which we vary as follows.

1In a production environment one would expect to keep such requirements
separately from the model.
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Definition 5 (Extended Statecharts)
An extended StatechartSC = (N,A, V,G, S,E,m, r, d, c) is a
10-tuple, with

• N is a finite set of nodes,
• A a finite set of action labels,
• V a finite set of variables with a (possibly empty) subsetI

of input variables,
• G a finite set of boolean expressions onV,
• S a finite set of variable assignment statements,
• E ⊂ N ×A ∪̇ {τ} ×G × 2S ×N is a finite set of edges,
• m : N → {Basic, Or , And} is a type function, identifying

nodes asBasic nodes,Or nodes, orAnd nodes.
• r ∈ N, m(r) = Or is the root node ofSC ,
• d : {n : n ∈ N ∧m(n) = Or} −→ N assigns a default node

to each node of typeOr ,
• c : N → 2N a child relation introducing hierarchy onN.

The main extension to [14], [15] is the labelling of edges by
elements ofA ∪̇{τ}. While action labels inA will remain visible
for the later transformation steps, and especially be used for
synchronisation with start and stop events of stochastic time-
constraints (see Section III-D), the labelτ is used for ordinary
Statechart edges. For the sake of brevity, the above definition
omits some well-formedness conditions (cf. [14], [16]) that are
unchanged with respect to STATEMATE Statecharts.

Example 2 The Statechart of Fig. 1 provides some intu-
ition of the drawing conventions for extended Statecharts.
The And node HEATER CTRL is the only child of the root
node r. The hierarchy determined byc is shown by nest-
ing of states. Default nodes are indicated by arrows without
source node. The edgee02 = (HEATER ON, τ, TEMP==TOO HOT,
{HEATER:=DISABLED}, HEATER OFF) is a τ -labelled Statechart
edge which we draw as a thin line by convention, while edge
e16 = (S OK, UP, true, {TEMP:=TEMP IN}, S OK) and edgee05 =
(WAIT, SYNC, true, ∅, TLE) are labelled by elements ofA respec-
tively, and hence drawn bold. We implicitly define the guardg of
such bold edges to betrue. In this exampleA = {UP, FM, FS, SYNC}.
In the above explanation, we refer to an additional edge labelling
(e. g. e02). These labels are not part of the Statechart itself, but
used to keep the explanations uncluttered. It allows us to refer
to ‘edge e02’ in place of ‘edge (HEATER ON, τ, TEMP==TOO HOT,
{HEATER:=DISABLED}, HEATER OFF)’.

Essentially, the behaviour of an extended Statechart is in line
with that of conventional STATEMATE Statecharts [14], [15],
except that extended Statecharts allow for a more refined control
over which sets of edges are allowed to be fired in orthogonal
components within one step. We introduce the following usual
notions to determine this semantics. Thescopesc(e) of an edge
e ∈ E is the most nestedOr state that contains the edges
nodes. We usede(n) to denote the depth of noden ∈ N in
the node hierarchyc and definede(SC) = max({de(n) : n ∈

N}). The priority of an edgee is given by its scope distance
from the root r. We define the priority relatione ≤p e′, s. t.
e ≤p e′ iff de(SC) − de(sc(e)) ≤ de(SC) − de(sc(e′)). Two
edgese, e′ ∈ E are orthogonal, denotede⊥e′, iff either e = e′

or their scopes are different children of someAnd node or
their descendants. In the heater Statechart, it holdse12⊥e03, for
example. The labels inA affect the semantics of the edges they
label as follows.

Definition 6 (Configurations)
Let D be the data domain of the variablesV. A configurationof

an extended StatechartSC is a pairc = (M,σ) ∈ C ⊂ 2N × Σ,
whereΣ is the set of all variable valuationsσ : V \ I → D and
M is a set satisfying

1) r ∈M ,
2) n ∈M, m(n) = Or implies 6 ∃n′ ∈ c(n) : n′ ∈M ,
3) n ∈M, m(n) = And implies ∀n′ ∈ c(n) : n′ ∈M .

Such a node setM is called avalid node configuration. We denote
c0 for the unique initial configuration of StatechartSC, given by
an initial valuation of the variablesσ0 and the node configuration
determined byd.
The set of all configurations of SC is denoted byConf .

With dc(M) for someM ⊂ N we refer to thedefault completion,
as the smallest superset of node setM , s. t. dc(M) is a valid
node configuration. In particulardc(M) comprises the default
node d(n), for all thoseOr nodesn ∈ dc(M), that are not
already represented by a child node inM . The scope completion
scc(e) of edge e is the maximal set of child nodes derived
by recursive application ofc to the edges scope nodesc(e).
Intuitively, configurations comprise all currentBasic nodes and
their parent nodes (given by inverse ofc) and a valuation of the
variablesV. In the following examples we will denote valuations
σ by equation tuples and the node setsM will, for the sake of
brevity, containBasic nodes only.

Example 3 Five possible configurations in the example chart in
Fig. 1 are given by

c01 = ({CTRL OFF,M INIT,S INIT,SAFE},
(TEMP=TOO COLD,HEATER=DISABLED,M ACTIVE=false,
S ACTIVE=false,S FAILED=false,SHUTDOWN=false))

c04 = ({HEATER ON,M OK,S OK,SAFE},
(TEMP=TOO COLD,HEATER=ENABLED,M ACTIVE=true,
S ACTIVE=true,S FAILED=false,SHUTDOWN=false))

c09 = ({HEATER ON,M OK,S OK,SAFE},
(TEMP=TOO HOT,HEATER=ENABLED,M ACTIVE=true,
S ACTIVE=true,S FAILED=false,SHUTDOWN=false))

c08 = ({HEATER OFF,M OK,S OK,SAFE},
(TEMP=TOO HOT,HEATER=DISABLED,M ACTIVE=true,
S ACTIVE=true,S FAILED=false,SHUTDOWN=false))

c16 = ({HEATER ON,EMERGENCY SHUTDOWN,S STUCK,WAIT},
(TEMP=TOO COLD,HEATER=ENABLED,M ACTIVE=false,
S ACTIVE=true,S FAILED=true,SHUTDOWN=true)).

The semantics of extended Statecharts is given by sequencesof
such configurations:

Definition 7 (Configuration Paths)
For extended StatechartSC, the transition relation−→ ⊆ C ×

A ∪̇ τ × C is composed of two types of transitions:
Internal Step.c = (M,σ)

τ
−→ c

′ = (M ′, σ′), iff there exists a
maximal set of edgesE = {ei : e1≤i≤k = (ni, ai, gi, si, n

′
i) ∈ E}

so that

1) E ⊆ Een = {e = (n, a, g, s, n′) ∈ E : n ∈ M andg

evaluates to true inσ},
2) ∀ei ∈ E : ai = τ and∀ei, ej ∈ E : ei⊥ej ,
3) ∀e ∈ Een \ E ∃e′ ∈ E , s. t. e 6⊥e′ ande ≤p e′,

andσ′ is obtained fromσ by applying the statement setss1≤i≤k

in some permutation onσ and M ′ = dc((M \
⋃k

i=1 scc(ei)) ∪

{n′
i}1≤i≤k).

External Step.c = (M,σ)
a
−→ c

′ = (M ′, σ′), iff

1) ∄e = (n, τ, g, s, n′) ∈ E : n ∈M andg evaluates to true in
σ,

2) ∃e = (n, a, g, s, n′) ∈ E : a ∈ A andn ∈M ,
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andσ′ is obtained fromσ by applying the statement sets on σ

andM ′ = dc((M \ scc(e)) ∪ {n′
i}1≤i≤n).

A sequence of alternating configurations and actions

c0
l0→ c1

l1→ c2
l2→ . . .

is calledconfiguration path.

In a nutshell, we embed the conventional Statechart configuration
transitions in theInternal Step rule. Such a step comprises
firing of a maximal set ofτ -labelled edges (thin arrows) in
orthogonal components, and thus implements truly concurrent
executions. Instead adelay transitionbetween Statechart con-
figurations is defined by theExternal Steprule. It restricts the
(bold) labelled edges to be firedin mutual isolation, and only
if no τ -labelled edge can be taken. Since bold edges relate to
time-relevant events, this mutual isolation allows us to recover
particular configuration transitions, relative to other transitions.
The semantics also embodies that internal steps do not take time,
by giving them precedence over external steps. This idea of
timeless computation is typical for the super-step semantics of
STATEMATE Statecharts [14].

Example 4 Starting in the initial configurationc0 = c01 of the
Statechart in Fig. 1, by firing the (τ labelled edges)e06, e11, e15
one after the other, finally configurationc04 is reached. Note that
the non-determinismintroduced by the input variableTEMP IN ∈ I
allows a second sequence, which comprisese14 instead ofe15 and
thus leads to configurationc08 instead ofc04. In c04 a delayed tran-
sition, comprising edgee08, e07 or e16 may be fired. In the overall
composition context, firing these transitions will be constrained by
(stochastic) delays: Whilee16 could be constrained to be fired every
n minutes,e08 ande16 are constrained to be fired after105 hours in
the mean, for example.
The operational behaviour updates (e16) the temperatureTEMP in
regular intervals and thus yields firing ofe02 and e01, respectively,
again depending on the value of the non-deterministic inputTEMP IN.
After some time the sensor fails (e07) and the temperature value is
stuck at the current value ofTEMP. Consequently, a configuration
is reached, whereS FAILED==true. Provided that the temperature
currently is stuck at the valueTEMP==TOO COLD and thus it holds
HEATER==ENABLED, immediately aninternal stepcomprisingcon-
current firing of the edgese03, e12 takes place.
Now the heater is in configurationc16. Theexternal stepe05 labelled
by SYNC may not be fired in this configuration, as furtherτ labelled
progress is possible:e13 is fired. Intuitively, the monitor has observed
the sensor failure and initiated an emergency shutdown. As this
behaviour does not yield a safety-critical situation, the node{TLE}
is not entered.

We allowhiding of action labels once the semantics is generated.
This is a simple transformation that replaces the respective
transition labels byτ . This allows us to keep the effect of external
steps without keeping their labels.

Example 5 In the running example, we hide the actionSYNC.

III. F ROM STATEMATE TO NUMBERS

This section presents a detailed description of our construction
and transformation process. This process starts with the input
parameters mentioned in Section I and returns the worst-case
probability to reach a safety-critical state within the provided time
bound. An overview of the steps is given in Fig. 2. The figure
indicates that the first two steps are applied to a symbolic (i. e.
BDD-based) representation of the system: The first, detailed in

Section III-A, transforms the STATEMATE design plus the delay
transitions and the safety-critical states into an LTS. Thesecond
step (Section III-B) minimises the system and produces an explicit
state representation of the system by computing the quotient of
the LTS w. r. t. a branching bisimulation induced by the labels
appearing in the LTS.
Up to this point, the delay transitions are contained in the
resulting model, but not their associated delay distributions. We
incorporate them as follows. First, the given delay distributions—
typical distributions in this context are Weibull, deterministic,
exponential distributions, or distributions obtained from empirical
measurements—are approximated by phase-type distributions,
which can be represented by absorbing Markov chains (Sec-
tion III-C). These chains are combined with the delay transitions
via the action labels associated with them. This is performed by
a dedicatedelapseoperator, that transforms the delay distribu-
tions into so-called time-constraint IMCs, governing the timely
occurrences of the delay transitions in the system (SectionIII-
D). These time-constraints are then weaved into the quotient LTS
(Section III-E) resulting in an IMC that encodes all user-specified
inputs (STATEMATE design, delay transitions plus their associated
delay distributions, and the safety critical states.). This IMC
represents thus the entire system under study and captures the
behavioural essence of both the functional and the dependability
aspects.
This monolithic system model is subjected to a transforma-
tion procedure (Section III-G) that preserves timed reachability
properties and computes theunderlying CTMDP of the IMC.
From this CTMDP we can compute the worst-case probabilities
to reach the set of safety-critical states within a given time
bound (Section III-H) by using the probabilistic model checker
MRMC [17]. Comparing this to the given threshold of the safety
requirement allows us to determine whether the requirementis
satisfied by the given system. As highlighted in the motivation,
this algorithm works only foruniform CTMDPs. In uniform
CTMDPs, state changes occur according to a Poisson process
in time. However, we ensure uniformity (Section III-F) all along
our tool chain and ensure that the resulting CTMDP is indeed
uniform.

A. LTS Generation

An extended StatechartSC = (N,A, V,G, S,E,m, r, d, c), with
initial configuration c0, can be considered as an LTSM =

(SM , ActM , TM , sM0 ) by setting

• SM = Conf ∪̇ {cinit}, the set of all valid configurations in
SC plus a unique pre-initial statecinit .

• ActM = A ∪̇ {τ} ∪̇{INIT}, the set of labels occurring in the
Statechart steps plus a unique labelINIT.

• TM = {(cinit , INIT, c0)} ∪ {(c, a, c
′) : c

a
−→ c

′} ⊆ SM ×

AM ×SM , the set of transitions possible between the State-
chart configurations plus an additional transitioncinit

INIT
−→ c0,

introduced to represent the system start.
• sM0 = cinit , a pre-initial configuration of StatechartSC.

Note that we added edge(cinit , INIT, c0) as a unique reference
anchor for the system start. Apart from this LTS, a set of safety
critical statesSM

cr ⊂ SM is distilled from the Statechart. This
set is induced by a user-specified characterisation of critical
Statechart nodesNcr ⊂ N , by settingSM

cr = {c = (Mc, σc) :

M
c
∩Ncr 6= ∅}.
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The first step of the translation extracts such an LTSM from the
extended StatechartSC, together with the setSM

cr .

c16

c17

c18

c19

c20

c22

c21

c23

τ

τ

τ

τ

τ

c00

c02 c01 c06

c03 c04 c05 c09 c08 c07

cr

c14

c15 c12 c13 c10 c11

INIT

τ τ

τ τ

τ ττ τ

UP UP

FS

τ

τ FM FM

τ τ

FS

FSFS

UP UP

UPUP

UP UP

Fig. 3. LTS of the heater example.

Example 6 Given the extended Statechart of Fig. 1 and the specifica-
tion of safety-critical states as the node set{TLE}, the LTS in Fig. 3 is
derived. The states of this LTS in particular refer to the configurations
of the examples in Section II-B. Moreover it shows the configuration
path to the safety-critical state we are interested in during thetimed
reachability analysis. Recall, that inc04 the sensor failure (FS) yields
a safe shutdown of the system. If insteadMONITOR (FM) fails prior
to theSENSOR (FS), thenc12 is reached. Here the shutdown (namely
Statechart edgee12) can no longer be taken. Hence, after theSensor
has failed (FS), in c14 no furtherτ progress is possible and thus the
SYNC edgee05 is fired.

The translation comprises several stages that finally result in an
efficient BDD-based encoding of the LTS.
In particular, some standard reduction techniques (e. g. cone-of-
influence reduction (COI) as presented in [18]) are used to elim-
inate variables whose values do not contribute to the reachability
of the safety-critical states. This elimination reduces the number
of possible variable valuations and therefore also the state space
of the resulting model. This COI reduction is property specific,
and as such, a core step allowing us to obtain small, property-
specific models from large designs.
The result of this stage is passed to an extended version of the VIS
model checker [19], that we primarily use to restrict the transition
relation to the reachable transitions only and as a framework to
implement the final semantics described above. Using VIS, we
get an LTS symbolically encoded as a BDD.
Three BDDs, coding the LTS, the set of safety-critical states
and the initial state, are then passed to the symbolic branching
bisimulation algorithm, which will be described in the next
section. The partition of the state space induced by the predicate
(into safety-critical and non-safety-critical states) will be used as
a starting point for this algorithm.

B. Symbolic Minimisation of the LTS

To further reduce the models (beyond the COI reduction) to a
size which can be handled by the explicit part of the tool chain,
the development of anentirely symbolicbranching minimisation
algorithm was necessary. We assume that the reader is familiar
with BDDs and the corresponding algorithms. For a comprehen-
sive treatment see e. g. [20].
In [21], Blom and Orzan presented a novel approach for the dis-
tributed computation of branching bisimulation. Their algorithm

is based on analysing thesignaturesof states w. r. t. the current
partition. The signature of a state is like a fingerprint identifying
possible actions which can be executed in that state. To preserve
branching bisimilarity, the unobservable actionτ is taken into
account by ignoring inert sequences ofτ -transitions.
Let P = {B0, . . . , Bp−1} be a partition of the state spaceS. The
signaturesig(P, s) of a states w. r. t. P is formally defined as

sig(P, s) =
{

(a,B) ∈ Act× P | ∃s′ ∈ S, s′′ ∈ B : s
τ∗

−−→
P

s′
a
−→ s′′ ∧

(a 6= τ ∨ s 6∈ B)
}

.

Then, a refinement of the partition can be computed by splitting
the blocks of the current partition according to the signatures of
their states:

sigref(P,B) =
{

{s′ ∈ B | sig(P, s) = sig(P, s′)}
∣

∣ s ∈ B
}

.

sigref(P ) =
⋃

B∈P

sigref(P,B).

Starting with the initial partition, which is provided by the
predicate separating safety-critical and non-critical states, we
iteratively apply thesigref-operator, until a fix-point is reached.

Theorem 1 (adapted from Blom/Orzan, [21]) Let
P (0), P (1), . . . be a sequence of partitions withP (i) =

sigref
(

P (i−1)
)

. Then there isn > 0 such thatP (n) = P (n−1).
P (n) is the coarsest branching bisimulation which refinesP (0).

We will illustrate the function of the algorithm in the following
example.

Example 7 For the heater example (cf. Fig. 3), we set the initial
partition P (0) =

(

{c00, . . . , c23}, {cr}
)

= (B0
0 , B

0
1), as induced

by the characterisation of configurations to be safety critical. It is
depicted in Fig. 3 by diamond-shaped and round circles, respectively.
Computing the signatures w. r. t.P (0), we obtain the following sets

sig(P (0), c00) =
{

(INIT, B0
0)
}

,

sig(P (0), c01) = sig(P (0), c02) = · · · = sig(P (0), c09),

=
{

(UP, B0
0), (FM, B

0
0), (FS, B

0
0)
}

,

sig(P (0), c16) = sig(P (0), c17) = · · · = sig(P (0), c19),

= sig(P (0), c20) = · · · = sig(P (0), c23),

= ∅,

sig(P (0), c10) = sig(P (0), c11) = · · · = sig(P (0), c13),

=
{

(UP, B0
0), (FS, B

0
0)
}

,

sig(P (0), c14) = sig(P (0), c15) =
{

(τ,B0
1)
}

,

sig(P (0), cr) = ∅.

Hence, the application of thesigref-operator splits the two blocks
of the initial partition into the following six parts:P (1) =
(

{c00}, {c01, . . . , c09}, {c16, . . . , c19, c20, . . . , c23}, {c10, . . . , c13},
{c14, c15}, {cr}

)

. Please note thatcr and, for example,c16 are
placed in different blocks, although they have the same signature
w. r. t. P (0), since they are not equivalent inP (0).
The iteration of this refinement step, until a fix-point is reached,
leads to the following final branching bisimulation, which comprises
nine blocks:P (n) =

(

{c00}, {c01}, {c10, c11}, {c12, c13}, {c14, c15},
{c02 . . . c05}, {c06 . . . c09}, {c16 . . . c23}, {cr}

)

. This partition is de-
picted in Fig. 3 using dashed frames around equivalent states.

In the following we describe briefly how this signature-based
refinement can be turned into a BDD-based algorithm.
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TABLE I

BASIC OPERATIONS FORSIGNATURE COMPUTATION

Operation BDD expression

τ -transitions T|a=τ (s, a, t)
Pairs of equivalent states inert(s, t) = ∃k :

`

P(s, k) ∧ P(t, k)
´

Non-τ - or non-inert (“observable”) transitions obs(s, a, t) = T (s, a, t) ∧ ¬(inert(s, t) ∧ a ≡ τ )
Reflexive transitive closure of R(s, t) Closure(R)
Concatenation of R1(s, t) and R2(s, t) ∃x :

`

R1(s, x) ∧R2(x, t)
´

Substitution of t in R(s, t) by its block number ∃t :
`

R(s, t) ∧ P(t, k)
´

Algorithm 1 Signature for Branching Bisimulation
1: procedure SIGBRANCHING
2: tauSteps(s, t)← Closure(T|a=τ (s, a, t)) ∧ inert(s, t)
3: seq(s, a, t) = ∃x :

(

tauSteps(s, x) ∧ obs(x, a, t)
)

4: return ∃t :
(

seq(s, a, t) ∧ P(t, k)
)

a) Data representation:The starting point is a BDDT for the
transition relation withT (s, a, t) = 1 iff s

a
−→ t. Note that the state

space is implicitly encoded byT . The BDD relies on a vector
of variabless, a, andt to encode the current state, the transition
label, and the target state, respectively.
Beside the system itself we have to represent partitions and
signatures symbolically. For the partition representation several
possibilities have been used in the literature: Bouali and de
Simone [22] represent the corresponding equivalence relation≡P ;
another possibility is to use one BDD per block or a compact
logarithmic encoding thereof [23]. We have decided to use the
following novel technique, since it supports partition refinement
and quotient computation very efficiently. To represent thecurrent
partition, we assign a unique number to each block, i. e.P =

{B0, . . . , Bn−1}, and encode it using additional BDD variables.
The representation is thus a BDDP(s, k) such thatP(s, k) = 1

iff s ∈ Bk. Additionally, we have a BDDS for the signatures
with S(s, a, k) = 1 iff (a,Bk) ∈ sig(s).
b) Signature computation:Given a partitionP(s, k) in our BDD-
based representation, we have to compute the signatures of the
states. To facilitate this, we provide several core operations which
are listed in Table I. The table contains a description of each
operation and an expression for the BDD-based implementation.
The notationT|a=τ denotes the co-factor operation on BDDs
(setting thea variables to the valueτ ). For the computation of
the reflexive transitive closureClosure(R) of a relationR, there
exist several symbolic algorithms, see e. g. [24], [25]. We apply
the (at least in our experiments) more efficient method of [24] to

compute τ∗

−−→
(P )

.

Algorithm 1 shows the pseudo-code for computing the signatures
for branching bisimulation.
At first, all pairs of states that are connected by an inert sequence
of τ -transitions are computed. In line 3 we extract all transitions
that are either not inert or not labelled withτ and concatenate
them with the inertτ -sequence. In the third step we replace the
target state of the transition sequence by its block number.The
signatures for other kinds of bisimulation can be computed in
a similar way. Please note that everything that does not depend
on the current partition, like the closure of theτ -steps, can be
computed once as a preprocessing step.
c) Partition refinement:The novelty of our approach is a ded-
icated BDD-operator for identifying states that have the same

s0s
′

0

Signature of

s and s
′

v

sns
′

n

Signature-BDD:

Fig. 4. Symbolic partition refinement.

signature, thus enabling a full BDD-based methodology. To do so,
we place thesi-variables at the beginning of the variable order of
the BDDs. Then,level(si) < level(aj) and level(si) < level(kl)

hold for all i, j, and l. This enables us to exploit the following
observation (see Fig. 4): Lets be the encoding of a state andv the
BDD node that is reached when following the path from the BDD
root according tos. The sub-BDD atv is a representation of the
signature ofs. Since the BDD is reduced, all states which have
the same signature ass lead to the same BDD-nodev. Therefore,
to get the representation of the new block that containss andall
other states having the same signature ass, we simply have to
replace the sub-BDD atv by the BDD for the encoding of the
new block numberk. This can be achieved by traversing the BDD
recursively in linear time in the size of the BDD.
d) Optimisation Techniques:Additionally, we integrate some
simple, but efficient optimisation techniques [26]:
The first observation is that the computation of the expression∃k :

P(s, k)∧P(t, k) is computationally very expensive, since the state
(s, t) and block number variables (k) are placed at different ends
of the variable order. To avoid the computation of this expression
we only refine one blockB(s) at a time. Then we can replace the
expensive expression byB(s)∧B(t). This enables us to update the
partition after the refinement of each block. So the finer partition
is already used for the subsequent blocks of the same iteration.
This reduces the number of iterations required to reach the fix-
point. Furthermore, by applying block-wise refinement we are
able to handle arbitrary initial partitions.
The second observation is that in each iteration (except in the first
few iterations) only a very small number of blocks is indeed split.
We can exploit this in the following way: Splitting a block only
influences the stability of blocks which are directly connected
with the split block by an observable transition. We capturethis
in the backward signature:

bwsig(P,B) =
{

B′ ∈ P | ∃s ∈ B∃a ∈ Act : (a,B′) ∈ sig(P, s)
}

.

Since the same problem as above—the dependence on the in-
ert τ -sequences—prevents an efficient implementation, we only
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Algorithm 2 Computation of the coarsest branching bisimulation

1: procedure BRANCHINGBISIMULATION (LTS M , PartitionP (0))
2: U,P ← P (0)

3: while U 6= ∅ do
4: Unew← ∅
5: for all blocksB ∈ U do
6: P ←

(

P \ {B}
)

∪ sigref(P,B)
7: Unew← Unew \ {B}
8: if B was splitthen
9: Unew← Unew∪ bwsigoa(P,B)

10: U ← Unew

11: return P

compute an over-approximation by ignoring thatτ -steps only
influence the stability of blocks if they are not inert. This leads
to bwsigoa(P,B).
The algorithm which applies all these optimisations is shown in
Algorithm 2.
P contains the current partition;U denotes the potentially unsta-
ble blocks which have to be refined in the current iteration.Unew

stores all blocks which became potentially unstable duringthe
current iteration. We iterate the following step until no unstable
blocks are left: We replace the current block in the current
partition by the result of its refinement and declare it as stable.
If it has been split, we add the blocks of its backward signature
to the potentially unstable blocks.
e) Quotient extraction:Finally, after we have reached the fix-
point, we have to extract the quotient LTS from the final partition.
This can be done by mapping all states of a block onto one
quotient state, which is given by the block number. Each quotient
state which is safety critical is decorated with a self-transition
labelled cr during the extraction. The resulting model is now
represented in an explicit form, i. e., all states are explicitly
enumerated, and passed on to the next phase of the tool chain.
We refer to [27], [28] for more details and for experimental
evaluations of this minimisation algorithm.

C. Phase-Type Approximation

The approach we follow renders the model under study into a
Markov model. To achieve this, we must represent the delay
distributions provided to us in a Markov chain. This is possible
by applying a widespread approach based on phase-type approx-
imation [29], [30].
A phase-type distribution is the distribution of the time until
absorption in a finite and absorbing Markov chain [31]. Let
(S,Act,R, s1) be CTMC withS = {s1, s2, · · · , sn, sa}. Further,
let sa be an absorbing state (i. e.,r(sa, S) = 0) and let all
other statessi, for 1 ≤ i ≤ n, be transient (i. e., there is a
non-zero probability that the state will never be visited once
it is visited). The set of Markovian transitionsR is related to
the corresponding infinitesimal generator matrixQ by: for all
s, s′ ∈ S, Q(s, s′) = R(s, s′) if s 6= s′ elseQ(s, s) = −r(s, S).
The generator matrix of the Markov chain can be written as

Q =

[

B ~B

0 0

]

.

Matrix B is non-singular because the firstn states in the Markov
chain are transient. Vector~B is a column vector where its
component~Bi, for 1 ≤ i ≤ n, represents the transition rate from
statesi to the absorbing state. Then the probability distribution

of the time to absorption in the CTMC is called aphase-type
distribution. Note that in our definition a phase-type distribution
starts from a single state with probability 1. This does not
restrict the generality of the definition, because any phase-type
distribution with arbitrary initial distribution can be transformed
into our form by using the procedure described in [32].
The class of phase-type distributions is topologically dense [33].
In principle, any probability distribution on[0,∞) can be ap-
proximated arbitrarily closely by a phase-type distribution given
enough phases, i. e., states. Efficient approximation algorithms are
available, such as those based on expectation-minimisation [29],
[30], [34] and that based on the least-square method [35]. We
implemented a variant thereof, based on orthogonal distance
fitting [36], which is a type of least-square fitting method where
the errors to be minimised are measured according to geometric
distance.
The approximation algorithms mentioned above are general pur-
pose. Two specific delay distributions are approximated in amore
straightforward manner. Delay distributions with an underlying
Poisson process are best represented by exponential distributions.
Erlang distributions are suitable for approximating deterministic
delay distributions or fixed delays [37], [38]. For instance, ac-
cording to [38], an Erlang distribution with shape parameter 5

and rate5 is sufficient to approximate a fixed delay at 1 time
unit. Better approximations may be achieved by increasing the
shape and rate parameters.

D. Elapse

We now assume that the delay of each delay transitiond in
the system model is given by a phase-type distributionPHd
determining the time until the transition occurs. Structurally,
PHd is a CTMC (S,Act, R, s1) with a distinguished initial state
s1 and an absorbing statesa. Operationally, the distribution
PHd can be viewed as describing the time up to which the
occurrence of transitiond has to be delayed, since it is triggered
by the occurrence of some delay transition (called starting) unless
another delay transition (called breaking) occurs in the mean
time. This interpretation is called atime-constraintin [39], where
an elapse operator is introduced. This operator enrichesPHd
with ‘synchronisation potentials’ needed to effectivelyweavethe
underlying CTMC ofPHd into the behaviour described by some
LTS or IMC.

Definition 8 (Elapse Operator)
Let s, d and b be the sets of starting, delay and break-
ing transitions, respectively.elapse(PHd, s,d,b) is an IMC
(S′, Act′, T, R, ss) where the following holds

1) if s− d− b 6= ∅ thenS′ = S ∪ {ss} elseS′ = S, ss = s1,
2) Act′ = Act ∪ s ∪ d ∪ b,
3) ∀s ∈ s− d− b : ss

s
−→ s1 ∈ T ,

4) ∀d ∈ d ∩ s : sa
d
−→ s1 ∈ T ,

5) ∀d ∈ d− s : ss
d
−→ ss, sa

d
−→ ss ∈ T ,

6) ∀b ∈ b ∩ s : ∀t ∈ S : t
b
−→ s1 ∈ T ,

7) ∀b ∈ b− s : ∀t ∈ S : t
b
−→ ss ∈ T .

Example 8 Three time-constraints are required in the running heater
example. The delays before the occurrences of sensor and monitor
failures (FM and FS) are initialised when the system starts, namely
whenINIT occurs. The delay before the occurrences of temperature
update (UP), on the other hand, is initialised byINIT, and afterwards
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s1 sa

λUP λUP

ss

s1 sa

INIT, UP
λUP λUP

UP

Fig. 5. A simple absorbing CTMC (left) and theelapse operator (right).

restarted continuously after each delay elapses. In this example, we
use simple exponential distributions with ratesλFM andλFS as the
phase-type distributions for the first two time-constraints. They are
denoted byExp(λFM ) andExp(λFS), respectively. For the third,
an Erlang distribution with rate parameterλUP and shape parameter
2—denoted byErl(λUP , 2)—is used. The three time-constraints are
obtained from the following elapse operations

1) elapse(Exp(λFS), {INIT}, {FS}, ∅),
2) elapse(Exp(λFM ), {INIT}, {FM}, ∅),
3) elapse(Erl(λUP , 2), {INIT, UP}, {UP}, ∅).

Fig. 5–left showsErl(λUP , 2), while Fig. 5–right depicts the IMC
of the third time-constraint.

E. Weaving the Time-Constraints

In elapse(PHd, s, {d},b), between any two occurrences of a delay
transitiond, there must be a delay which is given by the CTMC
PHd. To enforce this also for the LTS of our system under study,
we weave this uniform IMC with the LTS, where weaving is just
another word for interleaving, with proper synchronisation.
To this end, we use the process algebraic parallel composition
operator. Intuitively, given IMCsI andJ and their set of common
transitionsc, in I|[c]|J both IMCs have to synchronise onc-
transitions, while they interleave all other transitions.For I =

elapse(PHd, s, {d},b), this has the expected effect, namely that
between any twod-transitions inJ , the Markov chain associated
with PHd is weaved. The semantic rules of parallel composition
of IMCs are as follows (where it is understood that whenever
multiple distinct proof trees for the same Markov transition exist,
the respective rate is weighted by that multiplicity.)

s
a

−→s′ a/∈{a1...an}

s|[a1...an]|v
a

−→s′|[a1...an]|v

v
a

−→v′ a/∈{a1...an}

s|[a1...an]|v
a

−→s|[a1...an]|v′

s
a

−→s′ v
a

−→v′ a∈{a1...an}

s|[a1...an]|v
a

−→s′|[a1...an]|v′

s
λ

99Ks′

s|[a1...an]|v
λ

99Ks′|[a1...an]|v

v
λ

99Kv′

s|[a1...an]|v
λ

99Ks|[a1...an]|v′

With this operator, and the elapse operator, we can weave the
delay distributions one by one into the original system.
During this composition phase the IMC is explicitly represented
and grows in size. One way of counteracting this is to minimise
according to stochastic branching bisimulation. For this we use
a stochastic branching bisimulation minimisation algorithm [40],
together with theabstraction(or hiding) operator. The semantics
of the abstraction operator is as follows (we give it for single
actions only here for the sake of brevity.)

s
b

−→s′ a 6=b

hide a in (s)
b

−→hide a in (s′)

s
a

−→s′

hide a in (s)
τ

−→hide a in (s′)

s
λ

99Ks′

hide a in (s)
λ

99Khide a in (s′)

In our composition scheme, we start from the initial explicit
LTS asSys0, and incrementally build an IMC where the delay
distributions are weaved, which is achieved by constructing

hide hi in (elapse(PHdi
, si, {di},bi) |[si, {di},bi]| Sysi−1)

wherehi is the set of transitions that can be hidden at this stage,
namely those that will not be used in further synchronisations.
The result of the construction is then minimised with respect to
stochastic branching bisimulation to formSysi. If we are dealing
with n different delay transitions, then the resulting IMCSysn
does not contain any delay transitions anymore, but the delay
distributions now interleave in the correct way governing the time
to reach a safety-critical state.
The above approach alternates construction and minimisation
steps, and as such it deviates from the sequential procedure
indicated in Fig. 2: it replaces the trajectory fromquotient LTSand
uIMCs to uIMC by the one depicted in Fig. 6. Thiscompositional
approach is justified, because stochastic branching bisimulation
is compatible with the two operators we have introduced: it is a
congruence for parallel composition and hiding.

Stochastic branching bisimulation of

Sys
n−1

hide hn in (elapse(PHdn
, sn, {dn}, bn)|[sn, {dn}, bn]|Sysn−1)

Sys
n

Stochastic branching bisimulation of

Sys
1

Stochastic branching bisimulation of
hide h2 in (elapse(PHd2

, s2, {d2}, b2)|[s2, {d2}, b2]|Sys1)

hide h1 in (elapse(PHd1
, s1, {d1}, b1)|[s1, {d1}, b1]|Sys0)

Sys
2

..
.

Fig. 6. Compositional weaving of phase-type distributions.

F. Uniformity

So far we have ignored the word‘uniform’ (abbreviated ‘u’)
which is attached to the IMC models appearing in Fig. 2. We
recall that IMC I is called uniform, iff ∃e ∈ R+ such that
∀s ∈ S : s 6

τ
−→ implies r(s, S) = e.

In the following, we establish that parallel composition, hiding
and (stochastic) branching bisimulation preserve uniformity.

Theorem 2 Let I andJ be two uniform IMCs with uniform rate
EI andEJ , respectively.

1) For a given set of actionsA it holds that IMCI|[A]|J is
uniform with rateEI + EJ .

2) For a given actiona it holds that IMC hide a in (I) is
uniform with rateEI .

3) Suppose thatI and J are stochastic branching bisimilar
according to Definition 2. Then it holds thatEI = EJ .

For a detailed proof we refer to [13].
As a result of Theorem 2, we are left with the requirement thatall
our input models must be uniform in order to ensure uniformity
by construction. Since any LTS is a uniform IMC by definition,
we only need to ensure that the time-constraints, which are used
for composition, are uniform, too.
Technically, this can be achieved as follows. Let(S,Act, R, s1) be
the CTMC of some phase-type distributionPHd with initial state
s1 and absorbing statesa, and lete = maxs∈S r(s, S). To this
CTMC we associated a uniform CTMC(S,Act, R′, s1), where
R′(s, s′) = R(s, s′) if s 6= s′ and R′(s, s) = e − r(s, S\{s})

otherwise. Under the usual interpretation of CTMCs, there is no
difference between the two CTMCs (since the induced generator
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matrices are identical). For our purposes, however, we notea
seemingly minor difference, namely that in the uniform CTMC,
jumps occur on average after1/e time units, regardless of the state
considered2.
For the example in Fig. 5, the uniform variant is obtained by
equipping statesa with a looping λ-transition. Here, and in
general, the result can be easily ensured to be a uniform IMC.
All in all, the time-constraints, and the input LTS are uniform,
and thus our construction preserves uniformity all along.

G. CTMDP Transformation

In Section III-D time behaviour has been incorporated into the
system description, turning the LTS into an IMC. This section
describes a transformation from IMCs to CTMDPs that preserves
timed reachability properties and uniformity.
The model we are dealing with is the complete description of
the system under consideration, and therefore can be viewedas a
closed system. This means that the transformation to be carried out
now no longer needs to be compositional, because all necessary
composition operations have been performed in earlier steps of
the tool chain. As a consequence we will now employ anurgency
assumption, i. e., we assume that interactive transitions take zero
time (which is a non-compositional hypothesis [5]).
Given an IMC I = (S,Act, T,R, s0), we can partition the
set S into three disjoint sets of states. These are the sets of
(1) interactive states, where a state has no Markov transitions
(denotedSI ); (2) Markov states, where a state has only Markov
transitions (denotedSM ); and (3) hybrid stateswhere a state
has at least one Markov and at least one interactive transitions
(denotedSH ).
Recall that any CTMDP can be viewed as a special IMC in which
interactive states and Markov states occur in a strictly alternating
manner. Thus, in order to turn an IMCI into a CTMDPC we
have to ensure that all states are either Markov or interactive
states, and that they strictly alternate. We call this classof IMC
strictly alternating.
We now discuss a transformation which turns any IMC into a
strictly alternating one [13], while preserving the probabilistic
behaviour. The transformation involves: (1) ensuring thatthe
state space contains interactive and Markov states only (called
alternating IMC); (2) making the target state of each Markov
transition an interactive state (calledMarkov alternatingIMC);
and (3) making the target state of each interactive transition a
Markov state (calledinteractive alternatingIMC)—where the
order of steps 2 and 3 can be swapped. As a result we end up in a
strictly alternating IMC which directly corresponds to a CTMDP.
The terminology used here to name the various intermediate
models is inspired by Hansson [41].
We use the IMC depicted in Fig. 7(a) as an example to show the
effect of the singular transformation steps. This example is taken
from [10]. Here, states1 (light grey) is a hybrid state,s6, s7 and
s8 are Markov states (grey), and all other states are interactive
states (white).
Step (1): Alternating IMC:An alternating IMC does not possess
any hybrid states anymore. Whenevers was a hybrid state in
the closed IMCI, s is interpreted as interactive state in the

2The uniform CTMC is—strictly speaking—not an absorbing one, since
the statesa is now equipped with ane-loop. Nevertheless, the time to hit this
statesa is still distributed according toPHd.

alternating counterpart ofI, i. e., all of its emanating Markov
transitions are cut off, and the Markov transition relationis
changed to(SM × R+ × S)∩R. This is justified by theurgency
assumptionthat is imposed on the closed IMCI that is subject
to the transformation. The alternating IMC of the example IMC
is depicted in Fig. 7(b). In general, certain parts of the LTSmay
become unreachable as a result of this step, which in practice
often shrinks the state space to be considered in subsequentsteps
drastically.
Step (2): Markov alternating IMC:Turning an alternating IMC
into a Markov alternating IMC requires splitting the sequences
of Markov transitions, as follows. Supposes, s′ ∈ SM and

s
λ
99K s′. In order to break this sequence of Markov states, we

introduce a fresh interactive state(s, s′) which is connected tos

via s
λ
99K (s, s′). State(s, s′) in turn is connected via(s, s′) τ

−→ s′

to s′. This yields the following transformation step. For a given
alternating IMCI = (S = SM ∪̇ SI , Act, T,R, s0), we define its
Markov alternatingcounterpart as IMC(S′, Act, T ′, R′, s0) with

• S′ = S ∪̇ {(s, s′) ∈ SM × SM | ∃λ ∈ R+ : (s, s′) ∈ R},
• T ′ = T ∪̇ {((s, s′), τ, s′) ∈ S′ × {τ} × SM | ∃λ ∈ R+ :

(s, s′) ∈ R},
• R′ = R ∩ (SM × R+ × SI) ∪̇ {(s, λ, (s, s

′)) ∈ SM × R+ ×
S′ | (s, s′) ∈ R}.

We illustrate this transformation step in Fig. 7(c) wheres′6 =

(s6, s7) ands′7 = (s7, s8) are the freshly inserted states.
Step (3): Interactive alternating IMC:We now handle sequences
of interactive transitions ending in a Markov state. To compress
these sequences, we calculate the transitive closure of interactive
transitions for each interactive states that (is either the initial
state of the IMC or) has at least one Markov predecessor. The
computation is carried out in a way such that we get all Markov
successors ofs that terminate these sequences. We label the
resulting compressed transitions with words from the alphabet
A+ ∪̇ {τ} (also denotedWords). Interactive states that do not
have any Markov state as a predecessor will not be contained
in the resulting interactive (or strictly) alternating IMCany more.
These states violate the strict alternation of interactiveand Markov
states and therefore will not be contained in the CTMDP.
For Markov alternating IMCI = (S,Act, T,R, s0) we define
its strictly alternatingcounterpart as IMC(S′,Words, T ′, R, s0),
with

• S′ = SM ∪̇ S
′
I whereS′

I = {s ∈ SI | ∃t ∈ SM : t
λ
99K s, for

someλ ∈ R+} ∪ {s0},
• T ′ := {(s,W, t) ∈ S′

I ×Words × SM | s
W
=⇒ t}.

This yields a strictly alternating IMC. So, after applying steps
(1)–(3) to IMC M we obtain an IMCM′ which is strictly
alternating and where each interactive transition is labelled by
a word W from the alphabetA+ ∪̇ {τ}. The strictly alter-
nating IMC M′ = (S = SI ∪̇ SM ,Words,−→, 99K, s0) can
now be interpreted as a CTMDPCM = (SI ,Words,R, s0)

whereR := {(s,W,R)|R(s, s′) =
∑n

i=1 λi iff ∃u ∈ SM , λi ∈

R≥0 such thats W
−→ u ∧ u

λi

99K s′, i = 1, 2 . . . , n}.
Interpretation: A strictly alternating IMC can directly be inter-
preted as a CTMDP. Fig. 7(e) depicts the corresponding CTMDP
of the strictly alternating IMC in Fig. 7(d).

Example 9 Once the time-constraints described in the previous
example are woven into the quotient LTS of the heater example,
we obtain a monolithic uIMC. Using the CTMDP transformation,
the uIMC can be converted into a uCTMDP. The resulting uCTMDP
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Fig. 7. Transformation: (a) example IMC, (b) alternating IMC,(c) Markov alternating IMC, (d) strictly alternating IMC, and (e) the corresponding CTMDP.
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Fig. 8. uCTMDP of the heater example.

is depicted in Fig. 8, whereλs = λFS , λm = λFM , λu = λUP and
λc = λFS + λUP + λFM . The safety-critical states7 is marked by
a self-loop labelledcr.3

The non-determinism, modelling the unpredictable environmental
temperatures (cf. input variableTEMP IN in the Statechart), is rep-
resented in the statess0 and s9. Intuitively these non-deterministic
choices embody the temperature update to eitherTOO HOT or
TOO COLD. Sink states3 can be interpreted as a safe state: either
the heater has performed a safe shutdown, or simply does not heat,
as theSENSOR is stuck already at temperatureTOO HOT.

As indicated in the introduction to this section, the transfor-
mation preserves uniformity. To establish this formally and to
clarify more detailed correspondences of the two models, we
fix IMC I = (SI , Act,−→, 99K, s0) and let CTMDP C =

(SC ,Words,R, s0) denote the result of the transformation.

Theorem 3 If I is uniform thenC is uniform with the same rate.

This theorem is shown in [13]. Beside uniformity, the trans-
formation preserves the timed probabilistic behaviour in avery
strict sense. In particular, for each scheduler overI there exists
a scheduler over the correspondingC such that probabilities on
measurable sets of paths agree. Path correspondence is defined
via a mappingΨ, which for a given pathσ in I identifies the
unique corresponding pathΨ(σ) in CTMDP C.

Theorem 4 (1) For each schedulerD over I there exists a
schedulerD′ overC such that for all measurable setsP of paths
(in I)

PrI,D(P ) = PrC,D′(Ψ(P )) .

3Recall that all safety-critical states in the symbolic part are, in the explicit
part, decorated with a self-loop labelledcr. This encoding preserves the
relevant information, and is needed because the latter formatis strictly
transition-oriented, and does not allow information to be directly attached
to states. We remark that this strictness is what enables our compositional
approach, because state identities can be considered entirely irrelevant, the
entire information is in the transition structure. A more elaborate discussion
of the issue of state vs. transition labelling in the contextconsidered here can
be found in [10].

(2) For each schedulerD overC there exists a schedulerD′ over
I such that for all measurable setsP of paths (inC)

PrC,D(P ) = PrI,D′(Φ(P )) .

We refer to [13] for a detailed proof.

H. Timed Reachability Analysis

The model obtained after performing the transformation described
above is a uniform CTMDP, since the input IMC is uniform. Our
aim is to calculate the worst-case probability of reaching any of
the safety-critical states within a given time bound.
For CTMCs, the corresponding question can be reduced to an
instance of transient analysis [42], for which efficient andnumer-
ically stable iterative algorithms are known, based onuniformisa-
tion. Timed reachability analysis of stochastic systems with non-
determinism is not that straightforward. For uniform CTMDPs
this problem was tackled in [4]. For a uniform CTMDPC with
uniform rateE we aim at calculating the maximal probability to
reach a given set of statesB within t time units from a particular
states in C w. r. t. all schedulersD ∈ Sched . We denote this by

sup
D∈Sched

PrC,D(s,
≤t
 B),

wheres,
≤t
 B denotes the measurable set of paths starting ins

and hitting a states′ ∈ B within t time units. [4] studies the
problem of approximating this probability forSched being the
class of alluntimed history-dependent schedulersthat may use
randomisation. The algorithm is based on three observations: (1)
randomisation does not add to the power of the schedulers, (2)
history-dependence only adds in the form of step-dependence.
A step-dependent scheduler only counts state changes instead of
recording the entire history. Further, observation (3) is that the
step-dependence is only decisive up to a specific depthk which
can be precomputed on the basis ofE, t and the accuracyε of
the approximation.
Thus, it is sufficient to consider non-randomisedk-truncated step-
dependent schedulerD : S × {0, . . . , k} 7→ L. Unfortunately, the
number of such schedulers can be exponential in the value ofk.

However, in order to derive the maximal value ofPrC,D(s,
≤t
 

B), the actions to be selected by a (worst-case) schedulerD

can be computed by a greedy backward strategy. Due to space
constraints we refer to [4] for an elaborate discussion of this
greedy algorithm, which is linear ink and linear in the size ofL.
The algorithm returns for each state the worst-case probability to
reach a states ∈ B within time t.
We apply this algorithm to the uniform CTMDPC =

(S,L,R, s0), where the set of goal statesB ⊆ S corresponds
to the set of safety-critical states. By looking up the probability
returned for the initial states0, we finally arrive at the worst-case
probability to reach a safety-critical state within timet for the
system in question.
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Fig. 9. ETCS: RBC hand-over scenario and model architecture.

Example 10 We continue the heater example and setλFS = 0.005,
λFM = 0.0005 and λUP = 2. Thus, on average the sensor
fails once in 200 time units, the monitor fails once in 2000 time
units, while the updates commence once a time unit. In this case,
the worst-case probability for the heater to reach the safety-critical
states7 (in which the heater heats forever) within 1000 time units
( sup
D∈Sched

PrHeater,D(s0,
≤1000
 s7)) is calculated to be 0.0878864.

It is worth noting that this algorithm requires the CTMDP to
be uniform. Intuitively, the reason is that in uniform CTMDPs
with uniform rateE, jumps occur on average after1/E time
units, regardless of the state considered, while in non-uniform
CTMDPs the average time between two jumps varies from state
to state, and thus the precise history of visited states provides
more information about the estimated time that has elapsed,than
just counting the number of steps. We refer to [4] for a non-
uniform CTMDP example where this fact is exploited to construct
a history-dependent scheduler which is—with respect to timed
reachability—strictly more powerful than any step-dependent one.

IV. CASE STUDY

This section demonstrates the application of our tool chainto
an example taken from the context of the upcoming European
train control system (ETCS) standard. Our purpose is to study
and demonstrate the strength and limitations of the tool chain,
therefore we deviate in some aspects from the standard [43] and
set the focus on the STATEMATE design’s scalability.

A. Description

ETCS and GSM-R (Global System for Mobile communications–
Railway, an adaptation of the GSM wireless protocol) are de-
signed to replace the multitude of incompatible safety systems
used by European railways and to enable safe and fast transna-
tional railway service. In application level 2 of the upcoming
ETCS standard, trains report their exact position and direction
of travel via GSM-R to the so-called radio block centres (RBC).
These RBCs monitor the train movements, grant (or deny) ‘Move-
ment Authorities’ (MA) for a particular track segment and provide
additional route-related information, such as the permissible speed
to the trains. An RBC has two roles: as a neighbour RBC
(NRBC) to the train in the track segment prior to its scope and
as a hand-over RBC (HRBC) to the train in the track segment

RBC
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TRACK

SC TRACK

BRAKING

TRACK
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PASSAGE
STARTS

WAIT FOR
MA
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Fig. 10. Model of a single track segment.

inside its scope. Balises, mounted in the track bed, are used
as electronic milestones to indicate special track regions, such
as border positions that mark the end of an RBC’s scope. Here
NRBC takes over the responsibility of an approaching train from
the current HRBC. In this hand-over situation, the HRBC actsas
an agent between the NRBC and the train. In particular, it has
to request a valid MA for the subsequent track segment from the
NRBC and then to forward the MA, once it is granted, to the
train. A snapshot of this hand-over is depicted in Fig. 9.
In this case study, we examine the braking probabilities of trains
in such hand-over situations: As soon as a train reaches a border
position balise, it requests an MA for the track segment controlled
by the neighbour RBC via GSM-R. The train now waits for a
new MA for the subsequent track segment within a certain time
interval. If during this interval, the MA is not received, the train
must start a braking manoeuvre. The braking probabilities are
influenced by the interplay between (i) the connection losses in
the GSM-R-based MA communication and (ii) the variation of
permissible speeds of the trains.

B. Modelling

The STATEMATE model consists of the Statecharts depicted in
Fig. 10 and 11. The lower part of Fig. 9 shows the mappings
applied to combine these Statecharts to the overall model. For
example, when connecting an instance of theSC FIRST TRACK

with a SC TRACK chart, leaving the scope of the former means
entering the scope of the latter. Hence the mapping from
TRAIN ENTERS TO NRBC to TRAIN ENTERS FROM HRBC. The delay
distributions to be incorporated into the model are listed in
Table II.
The StatechartSC TRACK, divided into three concurrent compo-
nents, captures the model’s core behaviour. Initially the track
segment is free and the RBC is idle (NO TRAIN). In this state
an MA request for an approaching train (BORDER POS FROM HRBC)
is granted (MA TO HRBC:=true) immediately. Afterwards the per-
missible train speed is chosen (/PERMISSIBLE SPEED:=0,1,2,3)
non-deterministically. As soon as the approaching train leaves
the subsequent track segment (TRAIN LEAVES), the RBC is busy4

4Note the mapping from TRAIN LEAVES TO NRBC to
TRAIN ENTERS FROM HRBC (cf. Fig. 9.)
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Fig. 11. From top to bottom: model of (a) the first, (b) the last track segment,
and (c) the speed control unit.

(TRACK BUSY). The track is now passed by the train in accordance
to the chosen permissible speed (SC SPEED CONTROL, delays B1–
B4 in Table II), until the border position is reached (BORDER POS).
The train then informs the RBC (BORDER POS) that it is in the
border position; it starts a brake timer (BRAKE TIMER START,
delay C1) and waits for a new MA (MA). If the timer elapsed
(BRAKE TIMER ELAPSED) before the MA is received, the crit-
ical state (BRAKING) is reached, otherwise the timer is reset
(BRAKE TIMER BREAK).
The reception of the MA request by an RBC (BORDER POS)
depends on the state of the GSM-R connection (BORDER POS

and in(CONNECTED)). This connection is modelled in the
GSM R CONNECTION component. From time to time (delay A1) the
connection may be lost (CONNECTION LOSS) for a certain amount
of time (delay A2). Furthermore, in order for an MA to be granted
before the train starts braking, the next track segment has to be
cleared by the preceding train. Therefore the speed of the train in
that track segment is the second parameter influencing the overall
probability for observing a train braking.
Table II shows the parameters of the elapse operator. There are
eight types of time-constraints used in this case study, named
according to the first column. The starting, delay and breaking
transitions associated with these time-constraints are listed in
columns 2–4, respectively. The names of these transitions are
shorthands of those in Fig. 10 and 11, given by the underlined
characters.
We use two sets of phase-type distributions for the delays of
the time-constraints, denoted by “Expr. 1” (shorthand for Exper-
iment 1) and “Expr. 2” in columns 5–6 of Table II. Some of
the delays are distributed according to exponential distributions
Exp(λ), while others are given by deterministic distributions or
fixed delays. The latter are approximated by Erlang distributions
Erl(λ, k). Note that the phase-type distributions used for each
time-constraint in both experiments have the same mean value.
The Erlang distributions, however, have less variance.

C. Statistics

In this section, we provide some statistics that were obtained from
experiments on the ETCS case study where we vary the number
of track segments (Tracks) and speed profile choices (Choices).
Experiments related to the STATEMATE-plugin were carried out
on a PC with P4 2.66 GHz processor with 1 GB RAM running

TABLE II

PHASE-TYPES AND OTHER PARAMETERS OFELAPSE OPERATION

Name Starting Delay Breaking PH of Expr. 1 PH of Expr. 2

A1 INIT, C L E C L B - Exp(0.001) Exp(0.001)
A2 C L B C L E - Exp(10.0) Exp(10.0)
B1 SPEED 1 S SPEED 1 D - Exp(1.0) Erl(5.0, 5)
B2 SPEED 2 S SPEED 2 D - Exp(1.5) Erl(7.5, 5)
B3 SPEED 3 S SPEED 3 D - Exp(2.0) Erl(10.0, 5)
B4 SPEED 4 S SPEED 4 D - Exp(2.5) Erl(12.5, 5)
C1 B T S B T E B T B Exp(3.0) Exp(3.0)
D1 INIT, N T E N T E - Exp(0.4) Exp(0.4)

Windows XP SP2. All other experiments were run on PCs with P4
2.66 GHz processor with 2 GB RAM running Linux 2.6.15-1-k7.
1) Symbolic Transformation:In Table III we show the results
for the symbolic translation and minimisation steps.5 The table
lists both the number of bits necessary to encode the state space
and transitions (columns Potentials bitsandt bits) as well as the
actual size of the generated LTS (reachablestatesandtransitions).
The number of bits in thePotentialcolumns corresponds to a state
space size of2s states and2s+t transitions.
In order to emphasise the importance of the cone-of-influence
(COI) reduction prior to the translation into an LTS we also
performed additional experiments where the COI reduction was
disabled. From this column it is evident that the LTS size is only
marginally impacted but nevertheless it is an essential step in
the overall translation process. As can be seen from theTime
column, even relatively small models cannot be handled without
COI reduction since the intermediate models used during theLTS
computation become too large.
The columns in the middle of the table show the size of the actual
models that were used in subsequent experiments and those to
the right show the size of the LTS after the symbolic branching
bisimulation minimisation and the time needed to compute it.
2) IMC Construction:In Table IV, we report the result related to
the compositional construction and minimisation of the IMCs. For
each model, we provide the size of thelargest intermediate state
spacewe have to handle when weaving the time-constraints to
the minimised LTS model and the computation time (in seconds)
required to generate and minimise all intermediate models until
the final model is obtained. The sizes of the state spaces of the
final models are also provided. The table is divided into two parts,
which correspond to the two types of experiments specified in
Table II.
For both types of experiments, the state space and the computation
time increase with the number of track segments and speed
choices. The largest model we handle in the case study is the
4 tracks and 2 choices case in the second experiment. The final
IMC has 416274 states and it takes around 68 hours to compose.
3) CTMDP Transformation:In Table V, we present the result
related to the transformation from IMC to CTMDP. We provide
the number of states and transitions for the resulting CTMDPs,
together with the computation time (in seconds) required for the
corresponding transformations. The sizes of the quotient IMCs
input to these transformations are shown in the last two columns
of Table IV. The column depicting the number of CTMDP
transitions deserves a special comment. Since each transition in a
CTMDP is a tuple(s, l, R) with the functionR assigning rates to
the successor states, representing one transition may, in the worst

5Each entry marked by “∗)” in the table indicates that the corresponding
experiment cannot be completed due to the length of time required for its
computation.
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TABLE III

SYMBOLIC STEPS: STATEMATE SAFETY ANALYSIS AND M INIMISATION STATISTICS

Tracks Model Size Without COI Model Size With COI Branching Bisimulation
– Potential Reachable Time Potential Reachable Time Min. Result Time

Choices s bits t bits States Trans. (sec.) s bits t bits States Trans. (sec.) States Trans. (sec.)

1 – 1 37 18 102 397 24.7 37 16 102 157 2.3 36 87 0.05
1 – 2 45 20 203 650 2670.5 41 16 203 325 2.9 50 123 0.07
1 – 3 45 22 304 1010 5322.4 45 22 304 505 3.0 62 157 0.09
1 – 4 45 23 465 802 6945.7 45 23 405 697 9.0 74 191 0.10

2 – 1 64 33 1693 10315 867.8 64 29 1693 3451 16.3 411 1709 1.05
2 – 2 80 37 6769 114440 44970.8 72 29 6769 14305 413.1 852 3543 3.11
2 – 3 80 41 15229 533104 364276.6 80 41 15229 33319 994.8 1318 5655 5.37
2 – 4 *) *) *) *) *) 80 43 27073 61249 357.4 1880 8231 6.63

3 – 1 *) *) *) *) *) 91 42 28085 66857 164.6 4851 28455 42.59
3 – 2 *) *) *) *) *) 103 42 224673 553569 37.4 14616 84947 278.47
3 – 3 *) *) *) *) *) 115 60 758269 1931473 49.6 28208 169579 639.48

4 – 1 *) *) *) *) *) 118 55 457097 1205873 68.1 57381 434213 3555.73
4 – 2 *) *) *) *) *) 134 55 7313537 19953537 6960.6 250444 1861767 143334.70
4 – 3 *) *) *) *) *) 150 79 37024777 104353921 2923.8 *) *) *)

TABLE IV

EXPLICIT STEPS: COMPOSITION AND M INIMISATION STATISTICS

Expr.
Tracks – Compositional Construction Final Quotient IMC
Choices States Transitions Time (sec.) States Transitions

1 1 – 1 71 261 16.95 8 23
1 – 2 59 225 20.40 13 37
1 – 3 71 275 23.78 15 47
1 – 4 83 325 27.11 17 57

1 2 – 1 475 2640 27.62 35 150
2 – 2 999 5577 34.65 105 402
2 – 3 1440 8130 41.61 153 655
2 – 4 2099 12109 49.01 209 964

1 3 – 1 5683 41632 39.91 189 1060
3 – 2 17151 125035 61.69 922 4427
3 – 3 33007 242643 100.24 1680 9056

1 4 – 1 67237 610938 103.21 1061 7254
4 – 2 306699 2855455 3372.16 8450 47734

2 1 – 1 71 261 18.70 16 55
1 – 2 79 325 22.58 29 101
1 – 3 99 419 26.87 39 143
1 – 4 119 513 30.43 49 185

2 2 – 1 731 3888 31.72 187 1006
2 – 2 1755 11059 39.55 665 3442
2 – 3 3127 20737 47.71 1281 6991
2 – 4 4899 33495 57.83 2097 11780

2 3 – 1 10075 75377 50.01 2573 18260
3 – 2 53858 387501 293.53 16602 112011
3 – 3 134555 1061958 1114.82 44880 320504

2 4 – 1 143641 1343747 785.30 35637 313270
4 – 2 1350908 11619969 243687.33 416274 3452502

TABLE V

EXPLICIT STEPS: CTMDP TRANSFORMATION AND ANALYSIS STATISTICS

Expr.
Tracks – Uniform CTMDP Time Analysis (supD PrD(s,

≤t
 B) for different t) and Execution Time in µsec.

Choices States Transitions (sec.) t = 1 Time t = 5 Time t = 10 Time

1 1 – 1 13 25 (1.92) 0.36 0.0471218 192 0.3379318 156 0.5857440 193
1 – 2 19 39 (2.05) 0.36 0.0471218 277 0.3379318 283 0.5857440 364
1 – 3 23 51 (2.22) 0.36 0.0471219 349 0.3379318 381 0.5857440 500
1 – 4 27 63 (2.33) 0.36 0.0471219 411 0.3379318 547 0.5857440 647

1 2 – 1 59 167 (2.83) 0.36 0.0549173 633 0.3835667 878 0.6575970 1257
2 – 2 146 418 (2.86) 0.37 0.0483948 1980 0.3883743 3151 0.6621517 4539
2 – 3 226 693 (3.07) 0.37 0.0486557 3529 0.3924282 5622 0.6665755 8422
2 – 4 322 1032 (3.20) 0.38 0.0488844 5157 0.3957582 8971 0.6703472 14030

1 3 – 1 319 1159 (3.63) 0.37 0.0481474 3891 0.4036817 6821 0.6949978 10636
3 – 2 1308 4637 (3.55) 0.46 0.0484857 23783 0.4139489 44175 0.7053435 70686
3 – 3 2520 9590 (3.81) 0.55 0.0487916 53024 0.4224391 104475 0.7137807 174939

1 4 – 1 1787 7811 (4.37) 0.47 0.0481494 27827 0.4122475 56871 0.7166049 98012
4 – 2 11902 49676 (4.17) 1.26 0.0484907 304608 0.4271817 632008 0.7321903 1088549

2 1 – 1 29 65 (2.24) 0.50 0.0574318 321 0.3702204 358 0.6196606 442
1 – 2 51 119 (2.33) 0.48 0.0574318 545 0.3702204 704 0.6196606 991
1 – 3 71 171 (2.40) 0.48 0.0574318 774 0.3702204 1196 0.6196606 1733
1 – 4 91 223 (2.45) 0.48 0.0574318 1013 0.3702204 1747 0.6196606 2793

2 2 – 1 363 1175 (3.23) 0.50 0.0574456 3886 0.3885393 6396 0.6483349 9728
2 – 2 1202 3938 (3.27) 0.54 0.0574755 15412 0.3962310 29214 0.6583843 47731
2 – 3 2386 8037 (3.36) 0.57 0.0575228 35035 0.4037369 74749 0.6679403 132162
2 – 4 3970 13576 (3.41) 0.65 0.0575811 65762 0.4101266 161831 0.6760732 293089

2 3 – 1 4991 20599 (4.12) 0.69 0.0574456 74233 0.3976218 146828 0.6669833 241163
3 – 2 30028 124493 (4.14) 1.83 0.0574755 600453 0.4149666 1350805 0.6906316 2432469
3 – 3 83616 357302 (4.27) 4.54 0.0575229 1984091 0.4311642 5261678 0.7111358 9628030

2 4 – 1 69115 345667 (5.00) 3.93 0.0574456 1403805 0.4010432 3128218 0.6794333 5612398
4 – 2 751870 3764716 (5.00) 42.84 0.0574755 22297183 0.4251593 57290732 0.7149502 104880604
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case, already require space in the order of the number of states.
Of course, this is not the case: the functions are very sparse. The
numbers denoted in brackets are the average number of non-zero
entries per transition.
Overall, the transformation requires computation times inthe
order of seconds. For the biggest model, namely the 4 tracks
with 2 choices case in the second experiment, the transformation
runs for less than 42 seconds converting an IMC having 416274
states to a CTMDP having 751870 states.
4) CTMDP Analysis: In this section, we give the result of the
reachability analysis applied to the case study. The reachability
analysis basically provides us with the maximum probabilities
that any train is forced to brake in any track segment within
some duration of time. We supply several different settingsfor
the analysis by varying the numbers of tracks and speed choices.
A series of experiments is devoted to each of the set of time-
constraints specified in Table II. For both of these series, the
arrivals of a new train at the first track segment is governed by
an exponential distribution with rate0.4, which means on average
a train arrives once every2.5 time units. A time unit is the average
time for a train to pass through one track segment, when it travels
with the slowest speed (SPEED 1), which corresponds to the mean
values ofExp(1.0) andErl(5.0, 5).
In Table V columns 6–11, we summarise the obtained result. We
report the braking probabilities for different time boundst, i. e.,
for 1, 5, 10 time units. The runtime of the extendedMRMC model
checker in computing the probabilities (given in microseconds)
is shown for each time bound. The table shows that the runtime
grows according to the sizes of the CTMDPs and the time bounds.
The reason why the time bounds affect the computation time is
that in the uniformisation method used by the algorithm: larger
time bound requires more iterations for the same error bound.
For the biggest model, namely the 4 tracks with 2 choices case
in the second experiment, the tool runs for around 104 seconds
to obtain the probability for time boundt = 10.
Observing the obtained braking probabilities, we can conclude
that, in general, the probabilities increase when either the track
number, or the speed choice number, or the time bound is
increased. The experiments also indicate that tuning the speed
of the trains more precisely results in increased chances of
braking, as shown by the uniformly higher braking probabilities
in the second experiment than those of the first. Furthermore, the
braking probabilities can be deemed large, since within 10 time
units, which means that in average 4 trains have entered the first
track, the probability that any one of them has to brake is more
than one half in all experimental cases.

V. CONCLUSION

In this paper we demonstrated how to address dependability
properties in a typical, functional behaviour-oriented industrial
modelling environment. We defined extended Statecharts to en-
able the integration of real-time probabilistic phenomena, like
failure occurrences, with non-determinism that typicallyarises
in the specification of the functional behaviour. Thereby we
avoided a coherency gap between the dependability oriented
failure models and models explicating the functional behaviour of
the system, at the same time extending an existing industrial mod-
elling environment with quantitative (i. e. real-time probabilistic)
behaviour.

We demonstrated how to analyse the specifications, taking advan-
tage of recent advances in the area of both stochastic modelling
and stochastic model checking. By combining compositional
modelling and novel algorithmic analysis techniques, we arrive
at an overall methodology to compute the worst-case depend-
ability risk. The complexity challenges posed by the probabilistic
verification problem could only be addressed by (1) performing a
state space reduction on the non-deterministic part of the model
by means of asymbolicminimisation capable of handling huge
state spaces and (2) weaving stochastic time-constraintsafter this
reduction into the model. A key enabler for this compositional
approach was the selection of an adequate intermediate model that
generalises both labelled transition systems (LTS) and continuous-
time Markov chains: interactive Markov chains, which provides
the necessary compositional operations while preserving unifor-
mity which, in turn, allows for the use of existing stochastic model
checkers. The developed technology was applied to a non-trivial
case study from the train control domain with an explicationof
the improvements contributed by each of the relevant translation
steps.

One may wonder why we did not compare our experimental
results with simulation studies of the same system. This is an
important question with a short answer: it is impossible to use
simulation on the models we needed to consider. Simulation is
only possible if the model is a stochastic process, which is not the
case here. By fixing a particular scheduler it is possible to arrive
at a specific instance of the final CTMDP which is a stochastic
process (a CTMC), but we did not explore this, since there is no
estimate how far the values obtained from simulating that instance
differ from the worst-case result.

From a fault analysis perspective, our model-based approach is
exact in the sense that our quantification takes into accountthe
precise ordering of events on the critical paths leading to the
safety-critical situation. This is superior to more naive analyses
methods (like fault trees) that often are too pessimistic, since they
cannot incorporate the ordering.

CTMDPs constitute a model class that is well studied from the
operations research and artificial intelligence perspective. In this
paper we focused on timed reachability properties for CTMDP,
owed to its importance for dependability questions. However,
the CTMDP models generated by our construction process are
amenable to a variety of other analyses, for which algorithms are
available. We can analyse steady state properties such as the long-
run average (availability), the long-run expected reward rate, the
long-run instantaneous reward or the long-run expected accumu-
lated reward. Transient analyses that could be performed include
expected reward rate per time unit, instantaneous reward, and
expected accumulated reward. Most of these quantities require
the model to be decorated with a reward structure, specifying
the costs (or bonuses) for states and events. To derive such a
decoration from an extended Statechart model is not difficult.
Thus, our construction has paved the way for integrating also
these analyses coherently in a functional behaviour-oriented,
model-based development process.
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(INRIA Rhônes-Alpes) for their valuable support during the
preparation of this paper. The comments received during the
reviewing process were a great help in improving the paper.



16

REFERENCES

[1] J. Hillston,A compositional approach to performance modelling. Cam-
bridge University Press, 1996.

[2] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte,
Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons,
Inc., 1994.

[3] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A tool
for automatic verification of probabilistic systems,” inProc. of the 12th
Int’l Conf. on Tools and Algorithms for the Construction andAnalysis of
Systems (TACAS), ser. LNCS, vol. 3920. Springer, 2006, pp. 441–444.

[4] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort, “Effi-
cient computation of time-bounded reachability probabilities in uniform
continuous-time Markov decision processes.”Theoretical Computer
Science, vol. 345, no. 1, pp. 2–26, 2005.

[5] H. Hermanns,Interactive Markov Chains and the Quest for Quantified
Quality, ser. LNCS vol. 2428. Springer, 2002.

[6] ARP4761,Guidelines and Methods for Conducting the Safety Assess-
ment Process on Civil Airborne Systems and Equipment. Society of
Automotive Engineers: Aerospace Recommended Practice, 1996.
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