
AVACS – Automatic Verification and Analysis of Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Minimal Counterexamples for Refuting ω-Regular Properties
of Markov Decision Processes

– Extended Version –

by
Ralf Wimmer Nils Jansen Erika Ábrahám

Joost-Pieter Katoen Bernd Becker

AVACS Technical Report No. 88
September 2012
ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Bernd Finkbeiner, Martin Fränzle,
Ernst-Rüdiger Olderog, Andreas Podelski

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© September 2012 by the author(s)
Author(s) contact: Ralf Wimmer (wimmer@informatik.uni-freiburg.de).

Minimal Counterexamples for Refuting ω-Regular Properties
of Markov Decision Processes

– Extended Version –

Ralf Wimmera,∗, Nils Jansenb, Erika Ábrahámb, Joost-Pieter Katoenc, Bernd Beckera

aChair of Computer Architecture, Albert-Ludwigs-University Freiburg, Germany
bTheory of Hybrid Systems, RWTH Aachen University, Germany

cChair for Software Modeling and Verification, RWTH Aachen University, Germany

Abstract

Counterexamples for property violations have a number of important applications like supporting the
debugging of erroneous systems and verifying large systems via counterexample-guided abstraction refine-
ment. In this paper, we propose the usage of minimal critical subsystems of discrete-time Markov chains and
Markov decision processes as counterexamples for violated ω-regular properties. Minimality can thereby be
defined in terms of the number of states or transitions. This problem is known to be NP-complete for Markov
decision processes. We show how to compute such subsystems using mixed integer linear programming
and evaluate the practical applicability in a number of experiments. They show that our method yields
substantially smaller counterexample than using existing techniques.

Keywords: Markov chain, Markov decision process, counterexample, ω-regular property, mixed integer
linear programming

1. Introduction

Model checking is a prominent technique to check whether a system model exhibits any undesirable behaviors,
i. e., behaviors that violate the system specification. In fact, the main power of model checking is its ability to
generate such violating behaviors—called counterexamples—whenever possible. Model checking can thus be
viewed as an intelligent bug hunting technique. Even in cases when a full-fledged state-space exploration is
impossible, e. g., as the system’s size is too large to be effectively handled, model checking may be able to
generate counterexamples provided there is refuting behavior. As Edmund Clarke argues in his talk at the
celebration of 25 years of model checking [1]:

IThis work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center
“Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS), the EU-FP7 IRSES project MEALS “Mobility between
Europe and Argentina applying Logics to Systems”, and the DFG project “CEBug – Counterexample Generation for Stochastic Systems
using Bounded Model Checking”.
∗Corresponding author:

Ralf Wimmer
Lehrstuhl für Rechnerarchitektur
Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51
79110 Freiburg im Breisgau, Germany
Phone: +49 761 203 8179
Fax: +49 761 203 8142

Email addresses: wimmer@informatik.uni-freiburg.de (Ralf Wimmer), nils.jansen@informatik.rwth-aachen.de
(Nils Jansen), abraham@informatik.rwth-aachen.de (Erika Ábrahám), katoen@informatik.rwth-aachen.de
(Joost-Pieter Katoen), becker@informatik.uni-freiburg.de (Bernd Becker)

September 7, 2012

It is impossible to overestimate the importance of the counterexample feature. The counterexamples are
invaluable in debugging complex systems. Some people use model checking just for this feature.

Other uses of counterexamples include automated refinement of system abstractions as used in the successful
CEGAR (counterexample-guided abstraction refinement) framework [2–4].

Research on counterexample generation in model checking is abundant [5–9]. For linear-time specifica-
tions such as ω-regular properties, counterexamples are simply paths in the Kripke structure K modeling
the system. For instance, for a Büchi automaton specification A corresponding to the negation of an LTL
formula ϕ, a counterexample is an infinite path in the Kripke structure K that is admitted by A, i. e., a path
that visits one of A’s accepting states infinitely often thus violating ϕ. The nested depth-first search LTL
model-checking algorithm straightforwardly generates such counterexamples while performing the state
space exploration without an additional time penalty. Infinite counterexamples are represented in a finite
way by a finite path leading to an accepting state followed by a loop containing that state. For branching-time
logics such as CTL or modal µ-calculus, counterexamples can be (much) more complex, and in general have
a tree-like shape [7] instead of a simple path representation as for Büchi automata.

Probabilistic model checking is a variation of traditional model checking that uses system models equipped
with randomness such as transition probabilities and/or random delays. Prevailing models in this field are
discrete-time Markov decision processes (MDPs) and deterministic simplifications thereof, so-called discrete-time
Markov chains (DTMCs). MDPs are very well-suited to model—amongst others—randomized distributed
algorithms. Randomization is used in distributed algorithms to break the symmetry between identi-
cal processes in leader election and mutual exclusion algorithms, for routing purposes, or for obtaining
consensus—a problem that is known to be practically unsolvable in a deterministic setting as indicated
by various results (e. g., [10]). Markov chains are typically used in performance and reliability analysis
as for instance in fault tree analysis. Properties that can be model checked on MDP models are safety
properties like “The maximal probability to reach a safety-critical state is at most 10−3” or, more generally,
maximal probabilities of satisfying ω-regular properties [11] can be obtained. Solving linear programming
problems is at the heart of MDP model checking algorithms, whereas for DTMCs this reduces to solving
linear equation systems. Tools that support MDP model checking are PRISM [12] and LiQuoR [13]; DTMC
model checking is supported by, e. g., MRMC [14] and FMurphi [15]. The PRISM set of case studies [16]
convincingly witnesses the applicability of MDP and DTMC model checking.

An important limitation of probabilistic model checking is the lack of diagnostic feedback in case a property
is violated. Preferably a user would obtain information about why a given property is refuted. It is,
however, not clear upfront what counterexamples in the probabilistic setting actually are, let alone on how
to determine them algorithmically and efficiently. For instance, if the probability to reach a safety-critical
state in a DTMC exceeds the required threshold 10−3, this cannot be illustrated by a single path. In fact, a set
of paths all reaching the safety-critical state which together carry a probability mass exceeding 10−3 would
be needed. In case of an MDP, additionally a scheduler is required whose induced Markov chain exceeds
the probability threshold 10−3. In the last couple of years, the lack of diagnostic feedback has received more
and more attention. Initial approaches [17–20] have focused on computing such sets of paths with sufficient
probability mass. Recently, tree-based counterexamples have been proposed to provide evidence that an
MDP is not simulated by another one [21, 22].

For DTMCs, it was shown in [17] that computing the smallest number of such paths whose joint
probability mass maximally exceeds the threshold (thus yielding the largest possible deviation from the
threshold with a minimal number of witnesses) boils down to a k shortest-path problem. Here, k indicates
the number of paths in the counterexample and can be computed in an on-the-fly manner. Although
this provides a rather intuitive notion of a counterexample that can be efficiently computed (in pseudo-
polynomial time in k), the number of paths in many cases is however excessive. In some cases, it is
even doubly exponential in the problem size [17], rendering the counterexample practically unusable for
debugging purposes. Different proposals have been made to alleviate this problem. To mention a few, [17]
represents the path set as a (weighted) regular expression, [18] detects loops on paths, and [19] shrinks paths
through strongly connected components (SCCs) into single transitions.

2

As an alternative to these path-based counterexamples, the usage of winning strategies in probabilistic
games [23, 24] and of critical subsystems have been proposed in [25, 26]. A critical subsystem is a sub-DTMC
of the Markov chain at hand such that the probability to reach a safety-critical state (or, more generally,
to satisfy an ω-regular property) inside this sub-DTMC exceeds the probability threshold. This induces a
path-based counterexample by considering all paths leading through this subsystem. Put differently, the
sub-DTMC can be viewed as a representation of the set of paths constituting the counterexample. Contrary
to the path-based representation, the size of a critical subsystem is bounded by the size of the model under
consideration. So as to obtain comprehensive counterexamples, the aim is to obtain small critical subsystems.
Different heuristic methods have been proposed for computing small critical subsystems: Aljazzar and
Leue [25] apply best first search to identify a critical subsystem, while Jansen et al. [26] propose a technique
that is based on a hierarchical SCC-based abstraction of DTMCs in combination with heuristics for the
selection of the states to be contained in the subsystem. Both approaches use heuristic methods to select the
states of a critical subsystem and are implemented by the tools DiPro [27] and COMICS [28], respectively.
Although experimental results for these approaches show encouraging results, minimality of the generated
critical subsystems is not guaranteed (as we show). Moreover, the size is often significantly larger than the
minimum (up to two orders of magnitude in some cases).

This paper attempts to fill this gap by presenting an approach to compute a globally minimal critical
subsystem (MCS) of a given Markov chain or an MDP. Here, minimality refers to the number of states of
the subsystem, but our approach can straightforwardly be adapted to minimize the number of transitions.
With the notable exception of [29], most approaches for counterexample generation in probabilistic model
checking focus on reachability properties. Instead, this paper focuses on generating MCSs for the more
general class of ω-regular properties. So, the problem that we are considering is: Given an MDP, an ω-regular
property and a probability threshold λ, provide a minimal sub-MDP whose maximal probability to satisfy
the property exceeds λ. This problem has been proven to be NP-complete [4]. We first consider DTMCs and
provide two formulations to this MCS problem: A SAT-modulo theories (SMT) formulation and a mixed
integer linear program (MILP). As the MILP approach clearly outperforms the SMT-approach we focus
on the MILP technique and extend this towards MDPs. We will present a number of optimizations which
significantly speed up the computation times of the MILP formulation in many cases. Experimental results
on a large set of benchmark case studies are provided, which show the effectiveness of our approach and our
optimizations. We show that our MILP approach yields often considerably more compact counterexamples
than the heuristic methods [25, 26]. Even in cases where the MILPs cannot be solved to optimality due
to time restrictions, the resulting critical subsystems are often substantially smaller than for the heuristic
methods. For the sake of understandability, we first present our algorithms for reachability properties and
then show how they can be extended to the more general class of ω-regular properties.

Organization of the paper. In Section 2 we introduce the foundations that are needed for this paper. Section 3
presents the generation of MCSs for DTMCs; in Section 4 the approaches are extended to MDPs. In Section 5
we report on experiments on a number of case studies. Finally, we conclude the paper in Section 6.

This paper is an extended and refined version of the papers [30] and [31] that mainly covered DTMCs.
This paper discusses the underlying theory in much more depth and extends the theoretical and experimental
results to MDPs and ω-regular properties. The correctness of the approach is based on a series of theorems
(Theorems 3–6, 8, 9), which are deduced in this paper. Their proofs are provided in the appendix.

2. Foundations

We first introduce the probabilistic models and properties that we consider in this paper, briefly describe
the model checking algorithms for them, define minimal critical subsystems, and introduce the solver
techniques used in this paper.

2.1. Discrete-Time Markov Decision Processes
Let S be a finite or countable set. A (sub-stochastic) distribution on S is a function µ : S → [0, 1] ⊆ R such
that ∑s∈S µ(s) ≤ 1. We denote the set of all distributions on S by Distr(S).

3

Definition 1 (Discrete-time Markov decision process) Let AP be a finite set of atomic propositions. A discrete-
time Markov decision process (MDP) is a tupleM = (S, sinit, Act, P, L), where

• S is a finite or countable set of states,

• sinit ∈ S is an initial state,

• Act is a finite set of actions,

• P : S ×Act× S → [0, 1] ⊆ R assigns to each state a set of action-distribution1 pairs such that ∀s ∈ S ∀α ∈
Act : ∑s′∈S P(s, α, s′) ≤ 1, and

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set of atomic propositions that are true
in s.

If s ∈ S is the current state of an MDP M, its successor state is determined as follows: First a non-
deterministic choice between the entries of Act is made; say α is chosen. Then the successor state of s is
determined probabilistically according to the distribution P(s, α, ·). We fix the sets

succM(s, α) = {s′ ∈ S | P(s, α, s′) > 0}, succM(s) =
⋃

α∈Act succM(s, α),
predM(s, α) = {s′ ∈ S | P(s′, α, s) > 0}, predM(s) =

⋃
α∈Act predM(s, α), and

EM =
{
(s, s′) ∈ S × S

∣∣ s′ ∈ succM(s)
}

.

We sometimes skip the indexM when it is clear from the context.
A finite path π ofM = (S, sinit, Act, P, L) is a sequence π = s0α0s1α1 . . . sn with si ∈ S for i ∈ {0, . . . , n}

and αi ∈ Act for i ∈ {0, . . . , n− 1} such that si+1 ∈ succM(si, αi) for all i ∈ {0, . . . , n− 1}. We write last(π)

for the last state of π, i. e., last(π) = sn. We denote the set of all finite paths inM by Pathsfin
M and all finite

paths that start in s by Pathsfin
M(s).

An infinite path π of M is an infinite sequence π = s0α0s1α1 . . . with si ∈ S, αi ∈ Act and si+1 ∈
succM(si, αi) for all i ≥ 0. We use the notation Pathsinf

M for the set of all infinite paths and Pathsinf
M(s) for those

starting in s. The trace of a (finite or infinite) path π = s0α0s1α1 . . . is the sequence trace(π) = L(s0)L(s1) . . .
Before probability measures can be defined for MDPs, the non-determinism has to be resolved. This is

done by an entity called scheduler.

Definition 2 (Scheduler) A scheduler for an MDPM = (S, sinit, Act, P, L) is a function σ : Pathsfin
M(sinit)→

Distr(Act). We denote the set of schedulers onM by SchedM.

A scheduler can be used to transform the non-deterministic choice of the next action into a probabilistic
choice which depends on the path along which the current state is reached from the initial state. The
resulting MDP is deterministic regarding the choice of actions.

Definition 3 (Discrete-time Markov chain) A discrete-time Markov chain (DTMC) is an MDP D = (S, sinit,
Act, P, L) with |Act| = 1.

We useM as notation for arbitrary MDPs and D for DTMCs. In the case of DTMCs we omit the action
and write, e. g., P(s, s′) instead of P(s, α, s′) for transition probabilities, s0s1 . . . instead of s0α0s1α1 . . . for
paths and (S, sinit, P, L) instead of (S, sinit, Act, P, L) for DTMCs. For a DTMC D a probability measure
is defined on certain sets of infinite paths using the following construction: The cylinder set of a finite
path π = s0s1 . . . sn ∈ Pathsfin

D (s0) is the set cyl(π) = {π′ ∈ Pathsinf
D (s0) |π is a prefix of π′} of all infinite

extensions of π. For the DTMC D and a state s ∈ S, a probability space (Ω,F , Prs
D) can be defined as follows:

1Please note that we allow sub-stochastic distributions. Usually, the sum of probabilities is required to be exactly 1. This can be
obtained by definingM′ = (S] {s⊥}, sinit, Act, P′, L′) such that (i) s⊥ is a fresh sink state, (ii) P′ extends P with P′(s⊥, α, s⊥) = 1,
P(s, α, s⊥) = 1−∑s′∈S P(s, α, s′) and P′(s⊥, α, s) = 0 for all s ∈ S and α ∈ Act, and (iii) L′ extends L with L(s⊥) = ∅.

4

The sample space Ω = Pathsinf
D (s) is the set of all infinite paths starting in s. The events F ⊆ 2Ω are given by

the unique smallest σ-algebra that contains the cylinder sets of all finite paths in Pathsfin
D (s), i. e., it is the

closure of the cylinder sets under complement and countable union containing Ω. The probability measure
Prs
D : F → [0, 1] ⊆ R is the unique measure extending Prs

D
(
cyl(s0s1 . . . sn)

)
= ∏n−1

i=0 P(si, si+1) to the whole
σ-algebra [32]. A set Π of paths is measurable iff Π ∈ F .

Now we return to MDPs and schedulers. A scheduler σ ∈ SchedM for an MDPM = (S, sinit, Act, P, L)
induces an (infinite) DTMCMσ = (Pathsfin(sinit), sinit, Pσ, Lσ) with Pσ(π, π′) = σ(π)(α) · P(last(π), α, s)
if π′ = παs, and Pσ(π, π′) = 0 otherwise. The labeling function Lσ is given by Lσ(π) = L

(
last(π)

)
. The

probabilities of path properties of MDPs under scheduler σ are computed in this induced DTMC.
In the following, we do not need schedulers in their full generality, whose return value may depend on the

complete path that led from the initial state to the current state. Instead, for our purposes—the computation
of counterexamples for ω-regular properties—the subclass of memoryless deterministic schedulers suffices [33,
Lemma 10.102]. The distribution assigned to a finite path by a memoryless scheduler depends only on the
last state of the path. Note that for finite MDPs this yields a finite DTMC. A scheduler is deterministic if it
removes the non-determinism by choosing for each finite path a single action with probability 1.

Definition 4 (Memoryless and deterministic schedulers) LetM = (S, sinit, Act, P, L) be an MDP. A sched-
uler σ forM is memoryless iff for all π, π′ ∈ Pathsfin

M with last(π) = last(π′) we have that σ(π) = σ(π′). A
scheduler σ forM is deterministic iff for all π ∈ Pathsfin

M there is an α ∈ Act such that σ(π)(α) = 1.

Memoryless deterministic schedulers can be regarded as functions σ : S → Act. The induced DTMC
of a memoryless scheduler σ is bisimilar toMσ,md = (S, sinit, P′, L) with P′(s, s′) = P(s, σ(s), s′). If not
stated differently, in the following we always refer toMσ,md (instead ofMσ) as the DTMC induced by a
memoryless deterministic scheduler.

2.2. Reachability Properties and their Model Checking
A linear-time property over the set AP of atomic propositions is a set L of traces γ0γ1γ2 . . . with γi ⊆ AP for
all i. In this paper we will deal with a certain class of linear-time properties, namely ω-regular properties.
Before dealing with this more general case, we address the important subclass of reachability properties.

2.2.1. Reachability Properties
A reachability property is a linear-time property which contains all traces that have a sequence element
containing a given proposition.

Definition 5 (Reachability property) The reachability property ♦ a for proposition a ∈ AP is the linear-time
property:

♦ a = {γ1γ2 . . . ∈ (2AP)ω | ∃i ≥ 0 : a ∈ γi}.

A path π of a DTMC D satisfies a reachability property ♦ a with a ∈ AP, written π |= ♦ a, if trace(π) ∈
♦ a. We are interested in the total probability Prsinit

D (♦ a) of all paths2 starting in the initial state and satisfying
the reachability property ♦ a. To be more precise, we want to check whether this total probability is between
some bounds. The case for lower bounds can be led back to upper bounds. In the following we restrict
ourselves to non-strict upper bounds; the case for strict upper bounds is similar. We use the notation
D |= P≤λ(♦ a) to express that Prsinit

D (♦ a) is less than or equal to the bound λ ∈ [0, 1] ⊆ R. For MDPs,
M |= P≤λ(♦ a) expresses that for all schedulers σ ofM we have thatMσ |= P≤λ(♦ a).

2In the notation Prs
D(♦ a) we overload ♦ a to denote the set of paths of D starting in s and satisfying ♦ a. Note that this set of paths

is measurable in the probability space introduced in Section 2.1, see [34].

5

2.2.2. Model Checking Reachability Properties
Prior to checking D |= P≤λ(♦ a), the states that can neither reach an a-state nor can be reached from the

initial state sinit can be safely removed from the DTMC D. Let Srel(a)
D denote the set of remaining states,

referred to as relevant states of D for proposition a ∈ AP. The set Srel(a)
D can be determined in linear time by

a backward reachability analysis from the set of a-states and a forward reachability analysis from sinit. After
this pre-processing, property P≤λ(♦ a) for DTMC D is checked by computing Prs

D(♦ a) for all states s ∈ S
and comparing this probability for the initial state with the bound λ. The probabilities ps = Prs

D(♦ a) are
obtained as the unique solution of the following linear equation system [33, p. 760]:

• ps = 1 if a ∈ L(s),

• ps = 0 if s 6∈ Srel(a)
D , and

• ps = ∑s′∈S P(s, s′) · ps′ in all other cases.

For MDPs, the procedure is similar. As a first step for reachability properties on MDPs, irrelevant states
are removed.

Definition 6 (Relevant states of MDPs) LetM = (S, sinit, Act, P, L) be an MDP and a ∈ AP. Then

Srel(a)
M = {s ∈ S | ∃σ ∈ SchedM : Prs

Mσ (♦ a) > 0}

is the set of relevant for proposition a. If s 6∈ Srel(a)
M , then s is called irrelevant for a.

The set of irrelevant states can be computed in linear time by a backward reachability analysis onM [33,
Algorithm 46]. The removal of irrelevant states does not affect the reachability probabilities. To check
whether Mσ |= P≤λ(♦ a) holds for all schedulers σ of MDP M, it suffices to consider a memoryless
deterministic scheduler σ∗, say, that maximizes the reachability probability for ♦ a and check whether
Prsinit
Mσ∗ (♦ a) ≤ λ [33, Lemma 10.102]. The maximal probabilities ps = Prs

Mσ∗ (♦ a) for each s ∈ S can be
characterized by the following equation system:

• ps = 1 if a ∈ L(s),

• ps = 0 if s 6∈ Srel(a)
M and

• ps = max
{

∑s′∈S P(s, α, s′) · ps′ | α ∈ Act
}

otherwise.

This equation system can be transformed into a linear optimization problem that yields the maximal
reachability probability together with an optimal scheduler [33, Theorem 10.105].

2.3. ω-Regular Properties and their Model Checking
Now we consider the more general class of ω-regular properties and briefly describe the model checking
algorithms for such properties.

2.3.1. ω-Regular Properties
For defining and model checking ω-regular properties on MDPs, we follow the standard automata-theoretic
approach, as described, e. g., in [33, 35–37]. We use deterministic Rabin automata.

Definition 7 (Deterministic Rabin automaton) A deterministic Rabin automaton (DRA) is a tuple A =
(Q, qinit, Σ, δ, F) such that Q is a finite, nonempty set of states, qinit ∈ Q is an initial state, Σ is an input alphabet,
δ : Q× Σ→ Q is a transition function, and F ⊆ 2Q × 2Q is an acceptance condition.

6

A run r of A is a state sequence q0q1q2 . . . ∈ Qω with q0 = qinit such that for all i ≥ 0 there is a γi ∈ Σ
with qi+1 = δ(qi, γi). We say that r is the (unique) run of A on the infinite word γ0γ1 . . . over Σ. By
inf(r) we denote the set of all states which appear infinitely often in the run r. Given the acceptance
condition F =

{
(Ri, Ai) | i = 1, . . . , n

}
, a run r is accepting if, for some i ∈ {1, . . . , n}, inf(r) ∩ Ri = ∅ and

inf(r) ∩ Ai 6= ∅. We denote the set of infinite words over Σ with an accepting run of A by L(A).

Definition 8 (ω-Regular property, Safra [38]) A linear-time property L is ω-regular iff there is a DRA A with
L = L(A).

Assume a set AP of atomic propositions, a DRA A with alphabet 2AP and the ω-regular property
L = L(A). A path π of a DTMC D satisfies L if the run of A on trace(π) is accepting. We are interested in
the question whether D |= P≤λ(L), i. e., whether the total probability3 Prsinit

D (L) to walk along a path in D
which starts in sinit and satisfies L is at most a given upper bound λ ∈ [0, 1] ⊆ R. An MDPM satisfies the
property P≤λ(L) iff the property is satisfied for all schedulers, i. e., ifMσ |= P≤λ(L) for all σ ∈ SchedM.

2.3.2. Model Checking ω-Regular Properties
We consider an ω-regular property L and assume that a DRA A = (Q, qinit, 2AP, δ, F) with L = L(A) is
given. Checking the property L for an MDPM can be carried out by building the product automaton of the
MDPM with the DRA A and computing reachability probabilities therein.

Definition 9 (Product automaton) Let M = (S, sinit, Act, P, L) be an MDP and A = (Q, qinit, 2AP, δ, F) a
DRA with F =

{
(Ri, Ai)

∣∣ i = 1, . . . , n
}

. The product automaton of M and A is an MDP M⊗A =

(S ×Q, (s, q)init, Act, P′, L′) over the set AP′ of atomic propositions such that

• (s, q)init =
(
sinit, δ(qinit, L(sinit))

)
,

• P′
(
(s, q), α, (s′, q′)

)
=

{
P(s, α, s′) if q′ = δ

(
q, L(s′)

)
,

0 otherwise,

• AP′ = {Ri, Ai | i = 1, . . . , n}, and

• Ai ∈ L′(s, q) iff q ∈ Ai, and Ri ∈ L′(s, q) iff q ∈ Ri, for i = 1, . . . , n.

For checking ω-regular properties, we first concentrate on DTMCs and show afterwards how to handle
arbitrary MDPs. Given a DTMC D and an ω-regular property L, we consider the product automaton of D
with the DRA A of L. Note that the product automaton in this case is again a DTMC. The next step is to
determine the strongly connected components (SCCs) of the product DTMC.

Definition 10 (Strongly connected component) Let D = (S, sinit, P, L) be a DTMC and ∅ 6= S′ ⊆ S.

1. S′ is strongly connected iff for all s, s′ ∈ S′ there is a path s0s1 . . . sn ∈ Pathsfin
D with s0 = s, sn = s′ and

si ∈ S′ for all i = 1, . . . , n.
2. S′ is a strongly connected component (SCC) of D iff it is strongly connected and maximal, i. e., for all

strongly connected sets S′′ ⊆ S we have that S′ 6⊂ S′′.
3. S′ is a bottom SCC (BSCC) iff it is an SCC and for all s ∈ S′ we have that ∑s′∈S′ P(s, s′) = 1.
4. The set of input states of S′ is defined as In(S′) = {s ∈ S′ |predD(s) ∩ (S \ S′) 6= ∅}.
5. The set of output states of S′ is defined as Out(S′) = {s ∈ S \ S′ |predD(s) ∩ S′ 6= ∅}.

3Again, in P≤λ(L) we overload L to denote the set {π ∈ Pathsinf
D (s) | trace(π) ∈ L} of paths of D starting in s and satisfying L.

For each ω-regular property L, this set of paths is measurable in the probability space defined in Section 2.1, see [34].

7

The SCC structure of a directed graph can be determined by Tarjan’s algorithm in linear time [39]. The input
states of an SCC S′ are those states in S′ through which paths enter S′. Analogously, the output states of
an SCC S′ are those states outside S′ through which paths exit S′. As the set of output states of a BSCC is
empty, the probability to visit each state in a BSCC infinitely often is one.

Definition 11 (Accepting BSCC) Let DTMC D = (S, sinit, P, L), DRA A = (Q, qinit, 2AP, δ, F) and D ⊗A =
(S × Q, (s, q)init, Act, P′, L′) their product. BSCC B ⊆ S × Q of D ⊗ A is called accepting iff there are some
(Ri, Ai) ∈ F such that Ai ∈ L′(s, q) for some (s, q) ∈ B and Ri 6∈ L′(s′, q′) for all (s′, q′) ∈ B.

We introduce the proposition accept and extend the labelling by accept ∈ L′(s, q) iff (s, q) is a state in an
accepting BSCC of D ⊗A. Then the following theorem holds:

Theorem 1 ([35]) Let D be a DTMC, L an ω-regular property, and A a DRA with L = L(A). Then:

Prsinit
D (L) = Pr(s,q)init

D⊗A (♦ accept).

For MDPs, the corresponding notion to a BSCC is a so-called end component.

Definition 12 (Accepting end component) LetM = (S, sinit, Act, P, L) be an MDP.

1. A sub-MDP ofM is a non-empty set of states S′ ⊆ S such that there exists an action function A : S′ → 2Act \∅
with succM(s, α) ⊆ S′ holds for all states s ∈ S′ and actions α ∈ A(s).

2. A sub-MDP S′ with action set A is an end component of M if the directed graph G = (S′, V) with
V =

{
(s, s′) ∈ S′ × S′ | ∃α ∈ A(s) : s′ ∈ succM(s, α)

}
is strongly connected and ∑s′∈S′ P(s, α, s′) = 1 for

all s ∈ S′ and α ∈ A(s).
3. Let A = (Q, qinit, 2AP, δ, F) be a DRA with F =

{
(Ri, Ai)

∣∣ i = 1, . . . , n
}

and B ⊆ S ×Q an end component
ofM⊗A. B is accepting if there is i ∈ {1, . . . , n} such that for all (s, q) ∈ B : Ri 6∈ L′(s, q) and there is
(s, q) ∈ B : Ai ∈ L′(s, q).

Intuitively speaking, S′ is an end component iff there is a scheduler σ such that S′ is a BSCC of the
induced DTMC. An end component is accepting iff there is a pair (Ri, Ai) ∈ F such that the label Ai occurs
in the end component while Ri does not. We again extend the labeling ofM⊗A such that accept ∈ L′(s, q)
iff (s, q) belongs to an accepting end component. To determine whether P≤λ(L) is satisfied byM, it suffices
to compute whether Prs

Mσ∗ (L) = max
σ∈SchedM

Prs
Mσ (L) is at most λ.

Theorem 2 ([35]) LetM be an MDP, L an ω-regular property and A a DRA with L(A) = L. Then:

Prsinit
Mσ∗ (L) = Pr(s,q)init

Mσ∗⊗A(♦ accept) .

2.4. Minimal Critical Subsystems
LetM be an MDP and consider P≤λ(L) for ω-regular property L. Assume that Prsinit

M (L) > λ. The goal is
to identify a smallest possible partM′ ofM such that Prsinit

M′ (L) > λ.

Definition 13 (Minimal critical subsystem) LetM = (S, sinit, Act, P, L) be an MDP.

1. MDPM′ = (S′, s′init, Act′, P′, L′) is a subsystem ofM if S′ ⊆ S, s′init = sinit, L′(s) = L(s) for all s ∈ S′,
Act′ ⊆ Act, and P′(s, α, s′) > 0 implies P′(s, α, s′) = P(s, α, s′) for all s, s′ ∈ S′ and α ∈ Act′.

2. SubsystemM′ ofM is critical for property P≤λ(L) ifM′ 6|= P≤λ(L).
3. A minimal critical subsystem (MCS) ofM for P≤λ(L) is a critical subsystem ofM for P≤λ(L) with minimal

number of states among all critical subsystems.

8

s1 s2 s3

1

s4 s5

s6 s7

1

a0.7

0.3

0.7

1

0.5

0.50.25
0.25

0.5

0.3

(a) Example DTMC

s1 s2 s3

1

a0.7 0.7

0.3

(b) Minimal Critical Subsystem

Figure 1: DTMC D and Minimal Critical Subsystem D′ for P≤0.7(♦ a).

Alternatively, minimality of critical subsystems could be defined in terms of the number of transitions.
Although in this paper we focus on state-minimality, our approach can be easily adapted to transition-
minimality. Given that an MCSM′ violates P≤λ(♦ a), there exists a memoryless deterministic scheduler σ
onM′ such that the probability of ♦ a in the induced DTMCM′σ exceeds λ. For ω-regular properties L,
the same holds for the product with a DRA for L. Thus, in order to determine an MCS of an MDP, it suffices
to consider memoryless deterministic schedulers. This fact is exploited in our approach later on.

Example 1 We illustrate the concept of an MCS by means of a DTMC. Consider the DTMC D in Figure 1(a) with
initial state s1 and the reachability property P≤0.7(♦ a). State s3 is the only target state. The overall probability of
reaching s3 is 0.9 which means the property is violated. An MCS for D and P≤0.7(♦ a) is given in Figure 1(b).

2.5. SAT-Modulo-Theories
SAT-modulo-theories (SMT) [40] refers to a generalization of the classical propositional satisfiability problem
(SAT). Compared to SAT problems, in an SMT formula atomic propositions may be replaced by atoms of a
given theory, e. g., linear or polynomial (in)equalities. We use linear real arithmetic (LRA) as theory for the
computation of MCSs. SMT problems are typically solved by the combination of a DPLL-procedure (as used
for deciding SAT problems) with a theory solver that is able to decide the satisfiability of conjunctions of
theory atoms. For a description of such a combined algorithm for SMT problems over LRA see [41]. Several
tools for solving SMT formulae over LRA are available, e. g., Z3 [42], CVC [43], and MathSAT [44].

2.6. Mixed Integer Linear Programming
A mixed integer linear program optimizes an objective function under a condition specified by a conjunction
of linear inequalities. A subset of the variables in the inequalities is restricted to take only integer values,
which makes solving MILPs NP-hard [45, Problem MP1].

Definition 14 (Mixed integer linear program) Let A ∈ Qm×n, B ∈ Qm×k, b ∈ Qm, c ∈ Qn, and d ∈ Qk.
A mixed integer linear program (MILP) consists in computing min cTx + dTy such that Ax + By ≤ b and
x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm with the generation of
so-called cutting planes. These algorithms heavily rely on the fact that relaxations of MILPs which result
by removing the integrality constraints can be efficiently solved. MILPs are widely used in operations
research, hardware-software code design, and numerous other applications. Efficient open source as well as
commercial implementations are available like SCIP [46] or CPLEX [47] by IBM. We refer the reader to, e. g.,
[48] for more information on solving MILPs.

9

3. Minimal Critical Subsystems for DTMCs

In this section we present two approaches for computing MCSs of DTMCs: one using SMT and one using
MILP solvers. We start with reachability properties. Since our practical experiments revealed that the
MILP approach is clearly superior in terms of computation times, we only generalize the MILP approach to
ω-regular properties. An important advantage of using MILP solvers is that during the solving process a
lower bound on the optimal solution is obtained while both the current solution (i. e., the currently obtained
critical subsystem) and the lower bound are successively improved. That is to say, on halting the MILP
solver, a user obtains the best solution so far, as well as a precise indication of the size of an MCS. We start
with a basic encoding of the problem to find an MCS, and then provide several optimizations in the form of
redundant constraints that are aimed at speeding up the solving process by detecting conflicts at an earlier
stage.

3.1. Reachability Properties: An SMT Formulation
In order to obtain an MCS for a DTMC D = (S, sinit, P, L) and property P≤λ(♦ a), we provide an SMT
formula over LRA whose satisfying variable assignments correspond to the critical subsystems (of arbitrary
size) of D. Let Ta =

{
s ∈ S

∣∣ a ∈ L(s)
}

be the set of target states. We assume that DTMC D contains only
relevant states for a. An MCS is then obtained by minimizing over the number of relevant states in D.

For our SMT formulation we introduce for each state s ∈ S a characteristic variable xs ∈ [0, 1] ⊆ R where
xs = 1 or xs = 0 will be ensured by the formula. A state s ∈ S is contained in the subsystem iff xs = 1 in
the satisfying assignment. Additionally, we use a real-valued variable ps ∈ [0, 1] ⊆ R for each state s ∈ S
for keeping track of the reachability probability of a target state from s within the subsystem. The SMT
formulation reads:

minimize ∑
s∈S

xs (1a)

such that

∀s ∈ Ta :
(

xs = 0∧ ps = 0
)
⊕
(

xs = 1∧ ps = 1
)

(1b)

∀s ∈ S \ Ta :
(

xs = 0∧ ps = 0
)
⊕
(

xs = 1∧ ps = ∑
s′∈succ(s)

P(s, s′) · ps′
)

(1c)

psinit > λ, (1d)

where ⊕ denotes exclusive or. As we are interested in a minimal critical subsystem, we have to minimize the
number of xs-variables with value 1. This corresponds to minimizing the sum over all xs-variables (line 1a).
If xs is zero, the corresponding state s does not belong to the subsystem. Then its reachability probability
is zero (first summand in line 1b). Target states that are contained in the subsystem have probability one
(second summand in line 1b). Note that an MCS does not need to contain all target states. The reachability
probability of all non-target states in the subsystem is given as the weighted sum over the probabilities of
their successor states (line 1c). In order to obtain a critical subsystem we additionally require psinit to exceed
λ (line 1d). Note that the size of the resulting SMT formula is linear in the size of D. The correctness of the
SMT formulation is stated as follows (and proven in Appendix A):

Theorem 3 The SMT formulation (1a)–(1d) yields an MCS for DTMC D and property P≤λ(♦ a).

Since most state-of-the-art SMT solvers for LRA cannot cope with minimizing objective functions, we
apply a binary search in the range

{
1, . . . , |S|

}
to obtain the optimal value of the objective function. Starting

with kl = 1 and ku = |S|, we iteratively search for critical subsystems whose number of states is between kl
and km := kl + (ku − kl)/2. If we find such a subsystem with k states, then we set ku to k−1; otherwise, we
set kl to km+1. The search is repeated until ku < kl . The smallest k for which a solution was found yields
the size of the MCS at hand. The SMT encoding yields a suitable and intuitive method to compute MCSs.
However, our experiments reveal that obtaining a solution for larger DTMCs is rather time-consuming. This
is mainly due to the high number of disjunctions in the formula. This triggers relatively few implications,
forcing the solver to attempt many different cases while searching for a solution.

10

3.2. Reachability Properties: An MILP Formulation
To overcome this limitation, we now provide an MILP formulation for finding an MCS for reachability
properties. As before, we assume the DTMC at hand to only contain relevant states. In order to avoid
disjunctions, we explicitly require the characteristic variables xs for each s ∈ S to be integer. As before, we
have variables ps ∈ [0, 1] ⊆ R. The MILP formulation of finding an MCS for reachability properties on
DTMCs is as follows:

minimize − 1
2

psinit + ∑
s∈S

xs (2a)

such that
∀s ∈ Ta : ps = xs (2b)

∀s ∈ S \ Ta : ps ≤ xs (2c)

∀s ∈ S \ Ta : ps ≤ ∑
s′∈succ(s)

P(s, s′) · ps′ (2d)

psinit > λ . (2e)

The probability ps of a state s ∈ Ta is 1 iff the state is contained in the MCS, i. e., iff xs = 1 (cf. line (2b)).
Analogously, for every state s ∈ S \ Ta that is not in the subsystem (i. e., xs = 0), ps is zero. This is achieved
by requiring ps ≤ xs (line 2c). Note that for states in the critical subsystem, this does not restrict the value
of ps. An additional upper bound on the probability ps is given by the weighted sum of the reachability
probabilities ps′ of the successor states s′ (line 2d). The final constraint is as before. Constraints (2b)–(2e)
together with the same objective function as in the SMT formulation (line 1a) yield an MCS. The objective
function can be improved in two aspects. Since constraint (2d) only imposes an upper bound on ps, we
do not obtain—in contrast to the SMT formulation—the desired reachability probability as the value of
psinit , but only a lower bound. Additionally it is desirable to obtain an MCS with maximal probability. Both
can be achieved by maximizing the value of psinit . To that end, we add psinit to the minimizing objective
function with a negative coefficient. A factor 0 < c < 1 is needed because, if we only subtract psinit , then
the solver may add an additional state if this would yield psinit = 1. We choose c = 1

2 . This yields objective
function (2a).

Theorem 4 The MILP formulation (2a)–(2e) yields an MCS for DTMC D and property P≤λ(♦ a).

A proof of this theorem can be found in Appendix B. As our experiments revealed that the MILP
formulation yields substantial reductions to computation times compared to the SMT formulation, we will
focus on the MILP approach in the remainder of this paper. We first consider several optimizations.

3.3. Optimizations
The optimizations consist of adding redundant constraints to the MILP formulation. These constraints are
aimed to detect unsatisfiable or non-optimal branches in the search space at an early stage of the solving
process. As we will show, they do not affect the correctness. Imposing extra constraints to the MILP
formulations intuitively means adding cutting planes which tighten the LP-relaxation of the MILP and may
lead to better lower bounds on the optimal value which allow to prune parts of the search tree. All our
constraints aim at guiding the MILP solver to only add states that are on paths from the initial state to a
target state (in the MCS), as only such states will be part of an MCS.

3.3.1. Forward and Backward Constraints
We require that every non-target state has a successor state in the MCS. These constraints are called forward
cuts (line 3a). Likewise, we add backward cuts, which enforce every state except sinit to have a predecessor in
the MCS (line 3b). To avoid self-loops, we exclude a state itself from its successor and predecessor states.

∀s ∈ S \ Ta : −xs + ∑
s′∈succ(s)\{s}

xs′ ≥ 0 (3a)

11

∀s ∈ S \ sinit : −xs + ∑
s′∈pred(s)\{s}

xs′ ≥ 0 . (3b)

These constraints are trivially satisfied if state s is not contained in the subsystem as xs is 0. If state s
is chosen (i. e., xs = 1), then at least one successor/predecessor state s′ must be contained (i. e., xs′ = 1)
yielding the sum over all successor/predecessor states to exceed one.

3.3.2. SCC Constraints
The forward/backward cuts do not encode the complete reachability of target states from the initial state:
During the assignment process a connected subset of states could be selected even if its states are neither
connected to the initial nor to any target state inside the subsystem. To partially remedy this situation, we
utilize the SCC decomposition of the input DTMC. States of an SCC S′ (except the initial state sinit) have to
be reached through one of its input states In(S′). Therefore we ensure that a state of an SCC can only be
selected if at least one the SCC’s input states is selected. The corresponding constraints are referred to as the
SCC input cuts (line 4a). Analogously we define SCC output cuts: Paths from a state inside an SCC S′ that
do not contain a target state have to lead through one of the SCC’s output states Out(S′). Therefore, if no
output state of an SCC S′ is selected, we do not select any state of the SCC (line 4b). Note that these SCC
cuts do not enforce that the subsystem corresponding to a satisfying solution contains only states on a path
from the initial state to target states. This is still only ensured by minimizing the objective function.

∀SCC S′, sinit 6∈ S′ : ∑
s∈S′\In(S′)

xs ≤
∣∣S′ \ In(S′)

∣∣ · ∑
s∈In(S′)

xs (4a)

∀SCC S′, S′ ∩ Ta = ∅ : ∑
s∈S′

xs ≤
∣∣S′∣∣ · ∑

s∈Out(S′)
xs . (4b)

3.3.3. Reachability Constraints
If an SCC is selected which is connected to the input state and to one of the target states, nevertheless an
isolated loop inside the SCC may be selected. We now present a set of constraints which ensures complete
reachability. An assignment will only satisfy these additional constraints if all states are reachable from
the initial state and a target state is reachable. Without these constraints, this is only ensured by the state-
minimality as forced by the objective function. We introduce the notions of forward and backward reachability.
For the encoding of forward reachability, we use a variable r→s ∈ [0, 1] ⊆ R for each state s. These variables
define a partial order on the states. For each transition (s, s′) ∈ ED we introduce a characteristic integer
variable t→s,s′ ∈ [0, 1] ⊆ Z. The constraints for forward reachability are as follows:

∀s ∈ S ∀s′ ∈ succ(s) : 2t→s,s′ ≤ xs + xs′ (5a)

∀s ∈ S ∀s′ ∈ succ(s) : r→s < r→s′ + (1− t→s,s′) (5b)

∀s ∈ S \ {sinit} : (1− xs) + ∑
s′∈pred(s)

t→s′ ,s ≥ 1 . (5c)

If s ∈ S is selected and reachable from sinit, then there is a path sinit = s0 . . . sn = s such that r→si
< r→si+1

for all 0 ≤ i < n and all states on the path are selected, i. e., xsi = 1 for all 0 ≤ i ≤ n. This is reflected in the
constraints: Each transition (s, s′) ∈ ED with t→s,s′ = 1 connects selected states s and s′ (line 5a). If t→s,s′ = 1,
r→s < r→s′ has to hold (line 5b), which defines the partial order on selected states. The constraints defined in
line (5c) imply that from each selected state s not being the initial state, an incoming transition t→s′ ,s has to be
selected. One can show by induction that this ensures that for each selected state s there is a path in the
subsystem from sinit to s.

The constraints defining backward reachability from the target states are built analogously with variables
r←s for all states s ∈ S and variables t←s,s′ for all transitions (s, s′) ∈ ED :

∀s ∈ S ∀s′ ∈ succ(s) : 2t←s,s′ ≤ xs + xs′ (6a)

12

∀s ∈ S ∀s′ ∈ succ(s) : r←s < r←s′ + (1− t←s,s′) (6b)

∀s ∈ S \ Ta : (1− xs) + ∑
s′∈succ(s)

t←s,s′ ≥ 1 . (6c)

In the assignment process, the forward and backward reachability constraints eliminate all critical
subsystems with unreachable states. However, as there are additional variables for all states and for all
transitions, the usage of these cuts is expensive, as we discuss in detail when presenting the experiments in
Section 5. For MDPs (cf. Section 4), the backward reachability constraints are not only used as optimizations,
but they are needed for correctness. The fact that the above optimizations are correct follows from the
following result, which is proven in Appendix C:

Theorem 5 The SMT formulation (1a)–(1d) together with any (combination) of the three above optimizations yields
an MCS for DTMC D and property P≤λ(♦ a).

3.4. ω-Regular Properties
We now generalize our MILP formulation to arbitrary ω-regular properties. Let L be such a property and
DRA A with L(A) = L. As before, we want to compute an MCS D′ for which Prsinit

D′ (L) > λ holds. We
follow the model-checking algorithm for ω-regular properties on DTMCs as described in Section 2.3.2. We
consider the product D ⊗A of the DTMC D and the DRA A as in Definition 9 and assume (as before) that
all irrelevant states have been removed. Let T1, . . . , Tn be the accepting BSCCs of D ⊗A and T =

⋃n
i=1 Ti.

We introduce characteristic variables xTi ∈ {0, 1} ⊆ Z for all T1, . . . , Tn and xs ∈ {0, 1} ⊆ Z for all states
s ∈ S. We like to emphasize that the xs variables are not defined for every state of D⊗A, but for all states of
the DTMC D. This corresponds to our aim to obtain an MCS of D. As the reachability probability for all
states of the product automaton is needed, we use variable p(s,q) for every state (s, q) ∈ S ×Q. We obtain:

minimize − 1
2

p(s,q)init
+ ∑

s∈S
xs (7a)

such that
∀i = 1, . . . , n ∀(s, q) ∈ Ti : p(s,q) = xTi (7b)

∀i = 1, . . . , n ∀(s, q) ∈ Ti : xs ≥ xTi (7c)
∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤ xs (7d)

∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤ ∑
(s′ ,q′)∈succD⊗A((s,q))

P
(
(s, q), (s′, q′)

)
· p(s′ ,q′) (7e)

p(s,q)init
> λ . (7f)

Intuitively, the probability of a state in an accepting BSCC of D ⊗A is one iff that BSCC is selected
(line 7b). A BSCC can only be selected if (the projections of) all of its states on D are selected (line 7c).
If the probability contribution of a state (s, q) exceeds 0, the DTMC-state s is selected (line 7d). Using
constraint (7e), the probability of reaching accepting BSCCs inside the MCS is computed. This constraint
is similar as in the initial MILP formulation for reachability probabilities. The correctness of the MILP
formulation is proven in Appendix E, and reads as follows:

Theorem 6 The MILP formulation (7a)–(7f) yields an MCS for DTMC D and ω-regular property P≤λ(L).

4. Minimal Critical Subsystems for MDPs

In this section we extend the approaches described in Section 3 to find MCSs for MDPs. This task is a
bit more complicated than for DTMCs as we additionally have to find a scheduler which yields a critical
subsystem of minimum size. As before, we start by considering reachability probabilities and then treat
ω-regular properties.

13

4.1. Reachability Properties
Whereas the theoretical complexity of computing MCSs for reachability properties of DTMCs is (to our
knowledge) unknown4, for MDPs it holds:

Theorem 7 ([4]) LetM be an MDP withM 6|= P≤λ(♦ a) and k ∈N. Then the problem to decide if there exists a
critical subsystem ofM for P≤λ(♦ a) with at most k states is NP-complete.

Let M = (S, sinit, Act, P, L) be an MDP, P≤λ(♦ a) a property violated by M and Ta = {a ∈ S | a ∈
L(s)} ⊆ S the set of target states. We assume that all irrelevant states for a (and their adjacent edges) have
been removed fromM.

It is easy to see that there is a DTMC under the MCSs ofM for P≤λ(♦ a): Assume an MDPM′ that is an
MCS ofM for P≤λ(♦ a). SinceM′ is critical, it violates the property P≤λ(♦ a). Then there is a memoryless
deterministic scheduler inducing a DTMC D′ with a probability mass exceeding λ. Furthermore, sinceM′

is minimal and D′ is a subsystem ofM′, also D′ is minimal.
To encode such a scheduler, we use a binary variable σs,α ∈ {0, 1} ⊆ Z for each state s ∈ S \ Ta and each

action α ∈ Act such that σs,α = 1 iff action α is selected in state s by the scheduler under consideration. Like
for DTMCs, we use a binary characteristic variable xs ∈ {0, 1} ⊆ Z for each state s ∈ S to encode whether
s belongs to the subsystem or not, and a real-valued variable ps ∈ [0, 1] ⊆ R to encode the reachability
probability under the given scheduler (determined by the variables σa,α) within the selected subsystem
(determined by the variables xs).

The core MILP formulation (i. e., the formulation without any optimizations) for reachability properties
of MDPs is more complicated than for DTMCs. This is due to the fact that the reachability of target states in
MDP subsystems does not exclusively depend on the states but also on the actions of the subsystem. Recall
that a state s ∈ S is irrelevant if there is no scheduler yielding Ta to be reachable from s. However, for a
relevant state s, Ta might be reachable under some schedulers and might not be reachable under others.
We therefore impose additional constraints to assure that we consider only schedulers under which the
target state set is reachable from all subsystem states. Note that these constraints are not optional: The
reachability properties are encoded based on backward reachability from the target states. Without these
additional constraints, the reachability probabilities for states in a bottom SCC of the induced DTMC could
be incorrectly determined to be 1 if it does not contain a target state, leading to wrong results. Let

Sprobl(a)
M = {s ∈ S | ∃σ ∈ SchedM : Prs

Mσ (♦ a) = 0}

be the set of problematic states in MDPM for proposition a. If s 6∈ Sprobl(a)
M then s is called unproblematic

for a. Our additional constraints prevent from obtaining a scheduler that chooses the “wrong” actions in
problematic states (i. e., actions that yield the Ta states in the MCS to be unreachable) by requiring that
such states are backward reachable from some unproblematic state. These MILP constraints are defined

in a similar way to the backward reachability constraints (6a)–(6c) for DTMCs. Let Actprobl(a)
M =

{
(s, α) ∈

S×Act | succM(s, α) ⊆ Sprobl(a)
M

}
be the set of state-action pairs such that selecting α in s yields a problematic

state (for a). We use a real-valued variable r←s ∈ [0, 1] ⊆ R for each problematic state s ∈ Sprobl(a)
M that

defines a partial order on the problematic states (for a). The binary variables t←s,s′ ∈ {0, 1} ⊆ Z are used to

indicate the existence of an edge in the MCS between states s and s′ ∈ Sprobl(a)
M where (s, α) ∈ Actprobl(a)

M for
an action α ∈ Act. We thus propose the following MILP formulation:

minimize − 1
2

psinit + ∑
s∈S

xs (8a)

such that

4The problem of finding an MCS for a PCTL-formula on DTMCs is NP-complete [4]. This result however exploits nested PCTL-
formulas.

14

psinit > λ (8b)
∀s ∈ Ta : ps = xs (8c)

∀s ∈ S \ Ta : ps ≤ xs (8d)

∀s ∈ S \ Ta : (1− xs) + ∑
α∈Act

σs,α = 1 (8e)

∀s ∈ S \ Ta ∀α ∈ Act : ps ≤ (1− σs,α) + ∑
s′∈succM(s,α)

P(s, α, s′) · ps′ (8f)

∀(s, α) ∈ Actprobl(a)
M ∀s′ ∈ succM(s, α) : 2t←s,s′ ≤ xs + xs′ (8g)

∀(s, α) ∈ Actprobl(a)
M ∀s′ ∈ succM(s, α) : r←s < r←s′ + (1− t←s,s′) (8h)

∀(s, α) ∈ Actprobl(a)
M : (1− xs) + (1− σs,α) + ∑

s′∈succM(s,α)
t←s,s′ ≥ 1 . (8i)

The constraints (8a)–(8d) are the same as for DTMCs. Equation (8e) ensures that in each selected non-target
state a single action is selected by the scheduler. Line (8f) corresponds to line (2d) of the MILP for DTMCs.
The only change is that if the action α, to which the constraint belongs, is not selected by the scheduler,
i. e., if σs,α = 0, then the constraint is automatically satisfied due to the term (1− σs,α). The following three
constraints (8g)–(8i) ensure for each problematic state the backward reachability from an unproblematic
state. The correctness of the MILP formulation is captured by the following theorem; its proof is provided in
Appendix G.

Theorem 8 The MILP formulation (8a)–(8i) yields an MCS for MDPM and property P≤λ(♦ a).

In addition, our MILP formulation yields a memoryless deterministic scheduler σ such that the reacha-
bility probability of ♦ a in the DTMC induced by σ on the MCS exceeds λ. The optimizations for DTMCs in
Section 3.3 can, with the exception of the SCC cuts, be directly transferred to MDPs. For the sake of brevity,
we omit the details here.

4.2. ω-Regular Properties
Determining MCSs for ω-regular properties of MDPs is more involved than for DTMCs, as we need to know
the set of accepting end components of the product MDP. Their number can be exponential in the size of the
MDP. Instead of computing them in a pre-processing step (as we did for BSCCs in the DTMC setting), we go
a different way: We encode the state sets that almost surely satisfy the ω-regular property directly into the
MILP and use these state sets as target states.

Let MDPM = (S, sinit, Act, P, L) and DRA A = (Q, qinit, 2AP, δ, F) with F =
{
(Ri, Ai)

∣∣ i = 1, . . . , n
}

such that L(A) = L for ω-regular property L. The property of interest is P≤λ(L) and assumeM 6|= P≤λ(L).
Furthermore, we assume thatM⊗A has no irrelevant states. To determine the relevant states ofM⊗A,
we compute its maximal end components. This can be done efficiently [49]. States from which a maximal
end component containing a state in

⋃n
i=1 Ai is reachable under at least one scheduler, are relevant.5

To simplify notation we use U = S ×Q, u = (s, q), and u′ = (s′, q′). Let nu,α = |succM⊗A(u, α)| denote
the number of successor states of u under action α. We have characteristic variables xs ∈ {0, 1} ⊆ Z for
all s ∈ S indicating whether a state of the original MDP is contained in the subsystem and pu ∈ [0, 1] ⊆ R

which stores the probability of satisfying the property within the subsystem. The variables σu,α ∈ {0, 1} ⊆ Z

for u ∈ U and α ∈ Act store the selected scheduler. Please note that, as deterministic memoryless schedulers
on the product-MDP suffice for ω-regular properties, this encoding suffices. The identification of the set of
target states is based on the following lemma:

5Strictly speaking, this condition is not sufficient since end components additionally have to satisfy a condition on the Ri states to
be accepting. However, exactly identifying the relevant states would require to determine all end components, which is in general
computationally infeasible. Therefore we resort to an over-approximation of the relevant states. Since we explicitly add reachability
constraints, this does not affect the correctness (as we will show).

15

Lemma 1 Let (Ri, Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act a scheduler, and Mi ⊆ U
a set of states with the following properties:

1. ∀u ∈ Mi : ∑
u′∈succ(u,σ(u))∩Mi

P′(u, σ(u), u′) = 1,

2. Mi ∩ (S × Ri) = ∅, and
3. for each state u ∈ Mi there is a path from u to a state in S × Ai.

Then the probability of satisfying the acceptance condition F because of the pair (Ri, Ai) is 1 for all u ∈ Mi.

For each (Ri, Ai) ∈ F and u ∈ U we introduce a characteristic variable mi
u ∈ {0, 1} ⊆ Z where mi

u = 1
indicates that state u is contained in set Mi. For satisfying the third condition of Lemma 1, we need to
ensure backward reachability from Ai and use variables ti

u,u′ ∈ {0, 1} ⊆ Z for all (u, u′) ∈ EM⊗A and
ru ∈ [0, 1] ⊆ R for all states u ∈ U.

The MILP for computing a minimal critical subsystem ofM such that P≤λ(L) is violated is shown
below.

minimize − 1
2

p(s,q)init
+ ∑

s∈S
xs (9a)

such that

• selection of at most one action per state:

∀(s, q) ∈ U : (1− xs) + ∑
α∈Act

σ(s,q),α ≤ 1 (9b)

∀u ∈ U : pu ≤ ∑
α∈Act

σu,α (9c)

• for all i = 1, . . . , n the definition of set Mi (closure w. r. t. succ(u, α) for α ∈ Act):

∀u ∈ U ∀α ∈ Act with ∑
u′∈U

P′(u, α, u′) < 1 : mi
u ≤ 1− σu,α (9d)

∀u ∈ U ∀α ∈ Act : nu,α · (2− σu,α −mi
u) + ∑

u′∈succM⊗A(u,α)
mi

u′ ≥ nu,α (9e)

∀u ∈ S × Ri : mi
u = 0 (9f)

• for all i = 1, . . . , n backward reachability of S × Ai within Mi:

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : 2ti
u,u′ ≤ mi

u + mi
u′ + 2(1− σu,α) (9g)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM(u, α) : ri
u < ri

u′ + (1− ti
u,u′) + (1− σu,α) (9h)

∀u ∈ S × (Q \ Ai) ∀α ∈ Act : (1−mi
u) + (1− σu,α) + ∑

u′∈succM⊗A(u,α)
ti
u,u′ ≥ 1 (9i)

• probability computation:

p(s,q)init
> λ (9j)

∀i = 1, . . . , n ∀(s, q) ∈ U : xs ≥ mi
(s,q) (9k)

∀i = 1, . . . , n ∀u ∈ U : pu ≥ mi
u (9l)

∀(s, q) ∈ U : p(s,q) ≤ xs (9m)

16

∀u ∈ U ∀α ∈ Act : (9n)

pu ≤ (1− σu,α)+
n

∑
i=1

mi
u + ∑

u′∈succM⊗A(u,α)
P(u, α, u′) · pu′ (9o)

• backward reachability of M =
⋃n

i=1 Mi within the subsystem:

∀(s, q) ∈ U ∀α ∈ Act ∀(s′, q′) ∈ succM⊗A
(
(s, q), α

)
: 2tM

(s,q),(s′ ,q′) ≤ xs + xs′ + 2(1− σ(s,q),α) (9p)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : rM
u < rM

u′ + (1− tM
u,u′) + (1− σu,α) (9q)

∀(s, q) ∈ U ∀α ∈ Act :

(1− xs) + (1− σ(s,q),α) +
n

∑
i=1

mi
(s,q)+ ∑

(s′ ,q′)∈succM⊗A
(
(s,q),α

)tM
(s,q),(s′ ,q′) ≥ 1 . (9r)

The target function is defined as before. Constraint (9b) defines a valid scheduler by ensuring that for
each selected state at most one action is chosen. The reason for selecting at most one action is the following:
If a subsystem S′ ⊆ S of the MDP is selected, we select the subsystem S′ ×Q of the product automaton. By
this it is not guaranteed that in the DTMC induced by the scheduler of the product automaton from each
state (s, q) an accepting BSCC is reachable. Since we later require that from each state in S′ ×Q an accepting
BSCC is reachable under the selected action, we solve this problem by allowing not to select an action. If no
action is chosen, (9c) ensures that the probability pu is zero.

The next step is to define the sets Mi (i = 1, . . . , n) according to Lemma 1. The first condition, i. e., that
for each u ∈ Mi the probability of staying in Mi is 1, is ensured in two steps: First we forbid in (9d) that a
state u is in Mi if under the selected action the sum of the probabilities of the out-going edges is less than
one. Note that for each state in Mi at least one out-going action is selected, since the probability of states
without selected action is zero, but (9l) sets the probability of Mi-states to one.

Second we ensure in (9e) the closure of Mi under successors. If state u belongs to Mi (i. e., mi
u = 1)

and action α is chosen by the scheduler (i. e., σu,α = 1), all successors of u w. r. t. action α have to belong
to Mi. The term nu,α(2− σu,α −mi

u) is zero iff α is selected in u and u ∈ Mi. In this case the sum over the
corresponding variables mi

u′ of the successors u′ of u has to be at least the number of the successors of u.
Equation (9f) ensures that Mi does not contain an Ri state (second condition of Lemma 1).
In order to ensure backward reachability from S × Ai within Mi, we use the constraints known from the

DTMC optimizations and MDP reachability properties (cf. Section 3.3.3). The corresponding constraints are
given in (9g)–(9i). These constraints are defined separately for all sets (Ri, Ai) ∈ F. They ensure that, under
the chosen scheduler, from each state in Mi an Ai-state is reachable, as requested in the third condition of
Lemma 1. They are satisfied for a set Mi that contains accepting BSCCs of the induced DTMC, which are
reachable from all states in Mi. If no element of S × Ai is contained, no partial order on the states can be
defined by (9g)–(9i) (see also Appendix C).

The remaining constraints are analogous to the MILP for reachability properties: Constraint (9j) ensures
criticality of the subsystem. Constraints (9k) and (9l) force the states of the sets Mi (i. e., target states) to be
included in the subsystem and to have probability 1. Constraint (9m) assigns probability 0 to all states not
in the subsystem and (9o) computes the probability of reaching a state in Mi for all remaining states. Since
we do not know the target states in advance, we have to ensure that (9o) is also satisfied for target states.
This is the case due to the expression ∑n

i=1 mi
u which is at least 1 if u is a target state.

The last three constraints are again backward reachability constraints, analogous to the reachability
constraints for problematic states in the case of reachability properties. They ensure that from each state
with a selected action in the subsystem an Mi state is reachable with non-zero probability.

Theorem 9 The MILP formulation (9a)–(9r) yields an MCS for MDPM and ω-regular property P≤λ(L).

A proof of this theorem can be found in Appendix H.

17

A remark on the result of the MCS computation is in order. Whereas for reachability properties, the
result of our MILP formulation is a DTMC (in fact, an MDP plus a scheduler on this MDP) this is not the
case for ω-regular properties. Instead our MILP formulation yields a DTMC as substructure of the product
M⊗A. Projecting this onto the MDPM however yields (in general) an MDP, as e. g., states of the form
(s, q) and (s, q′) are projected onto the state s inM but may have different outgoing distributions.

5. Experimental Evaluation

To demonstrate the feasibility of our approaches, we implemented the algorithms described in the previous
sections in C++ in a tool named LTLSubsys. It supports the generation of MCS for DTMCs and MDPs
with LTL properties [50]. LTL is a popular specification language for linear-time properties, which form a
subclass of ω-regular properties including reachability. We use the symbols � for “globally”, ♦ for “finally”,
and© for “next”. E. g., �♦ ϕ holds if infinitely often ϕ holds at some time point in the future.

All experiments were carried out on a Dual-Core AMD OpteronTM Processor 2220 running at 2.8 GHz
clock frequency with 16 GB of main memory under Kubuntu 12.04 Linux running in 64 bit mode. We use
IBM Cplex 12.4.0.1 [47] as the MILP solver, and Microsoft Z3 4.0 [42] as the SMT solver for linear real
arithmetic. We started Cplex with a single thread. To generate DRAs from LTL properties, we use the tool
ltl2dstar [51] which first calls ltl2ba [52] to generate nondeterministic Büchi automata and afterwards
determinizes them.

As benchmark models we use the following randomized protocols and algorithms, which are all available
from the PRISM benchmark repository [16] at http://www.prismmodelchecker.org/casestudies.

The following case studies are DTMCs:

• sleader-N-K is a synchronous leader election protocol [53]. Its purpose is to identify a leader node in a
symmetric synchronous network ring of N participants. Each node randomly chooses a value from
{1, . . . , K} and sends its drawn number around the ring. The node with the highest unique number
becomes the leader. If there is no unique number, a new round starts. We check if a leader is finally
elected with a large enough probability (Property 1) and if the probability to need at least three election
rounds is small enough (Property 2).

– Property 1: P≤λ(♦ elected)
– Property 2: P≤λ(start∧©♦ (start∧©♦ (start∧©♦ elected)))

• crowds-N-R is a model of the crowds protocol [54], which provides a mechanism for anonymous
surfing on the internet. The idea is that each node sends a packet with probability p = 0.8 directly
to the target node, but with probability 1− p it is sent to a randomly chosen node in the crowd. A
fixed percentage of the members are corrupt and try to identify the sender of a packet. The parameter
R denotes the number of rounds in which packets are sent, N is the number of non-corrupt crowd
members. We check the property that the sender gets identified by a corrupt crowds member once
(Property 1) and infinitely often (Property 2), respectively.

– Property 1: P≤λ(♦ identified) (identified once)
– Property 2: P≤λ(�♦ identified) (infinitely often identified)

• nand-N-K: This case study is about constructing reliable computation from unreliable components [55,
56]. It uses a redundancy technique called NAND multiplexing. The model operates in stages, each of
which contains N NAND gates. K is the number of stages. We check the property that a reliable state
is never reached.

Property: P≤λ(�¬reliable)

• brp-N-K is the bounded retransmission protocol [57, 58]. A file which consists of N chunks has to be
transferred over an unreliable network. On the way to the target node, chunks might get lost. Therefore
each chunk is transferred up to K times until the target node has received it properly and the sender

18

node has obtained an acknowledgment thereof. We check the property that the sender is unsure
whether the target node has successfully received the file.

– Property: P≤λ(♦ sender is unsure)

We additionally used the following MDP case studies:

• aleader-N is the asynchronous leader election protocol [53]. Here, a leader is chosen from an asyn-
chronous ring of N nodes in a network. Every node sends a number 0 or 1, each with probability 0.5, to
the next node in the ring. If a node chooses 0 while his predecessor has sent 1, the node is deactivated.
If only one node remains active it becomes the leader. As the ring is not synchronized, the message
sending has to be regulated by a scheduler.

– Property: P≤λ(♦ one node is elected as leader)

• consensus-N-K is the randomized consensus shared coin protocol [59] that establishes agreement between
N asynchronous processes. The processes access a global counter which is increased or decreased in
dependence of a coin flipping which is performed when a process enters the protocol. Dependent on
the current counter value and the values of N and K the process decides whether it agrees or not. The
protocol proceeds in rounds as long as no agreement is achieved. As different processes may try to
access the protocol at the same time, it is nondeterministically decided which process may flip a coin.

– Property: P≤λ(♦ all processes have flipped their coin and made their decision)

• csma-N-K is a PRISM-model of the IEEE 802.3 CSMA/CD communication protocol, which is described
in [60]. The protocol aims at the minimization of data collision in a network of N processes with one
single channel. If a process tries to send data while the channel is busy, the process waits a number of
time slots, which is determined by K.

– Property: P≤λ(♦ all processes have delivered their message)

We compare the results of our tool LTLSubsys with the tools COMICS [28] and DiPro [27] that apply
(different) heuristics to obtain small critical subsystems. For the former we use its global search algorithm
on the non-abstracted DTMC, the latter applies an extended stochastic breadth-first search (XBF). COMICS
supports only reachability properties on DTMCs. DiPro also only supports reachability properties, but
besides DTMCs it can handle MDPs. All experiments that could not be carried out due to tool limitations
are marked with “—”. Unless otherwise stated, a time limit of 3600 seconds and a memory limit of 16 GB
were set.

Table 1 lists the benchmark results for a series of instances of the DTMC and MDP case studies described
above. The first block of columns contains the name of the benchmark, its number of states and transitions,
the property we used and the value of probability bound λ. The next two blocks contain the results of
COMICS and DiPro. For each tool we give the size of the computed critical subsystem and the running
time in seconds. The last block of columns contains the results of our tool LTLSubsys. Its first column
|Smin| lists the number of states in the MCS, the second column the running time of the tool without any
optimizations, the third column the best running time we could achieve with the optimizations. If the tool
did not terminate within one hour, the entry is marked with “TO”. For benchmarks that could not be solved
even with optimizations, we give the best solution that could be found up to this point (entries marked with
“∗”). Additionally, we give the best computed lower bound for the MCS in brackets (“TO (value)”). The last
column contains the memory consumption if it exceeded 1 GB.

Regarding the size of the computed subsystem we can observe that none of the heuristic tools was able
to find an MCS, COMICS being often slightly better, but sometimes slower than DiPro. In some cases the
differences to the MCS are considerable, cf. aleader-4, for which DiPro returned 1312 states, while the MCS
contains at most 295 states. The gap is even larger for crowds12-6: When we interrupted DiPro after 1 hour,
it had already collected 18 665 states for a subsystem that was not yet critical, while LTLSubsys has found a
critical subsystem with 270 states within this time.

The running time of LTLSubsys is often significantly larger than the times of the heuristic tools. How-
ever, LTLSubsys solves the optimization problem exactly, while COMICS and DiPro apply heuristics

19

COMICS DiPro LTLSubsys
[28] [27] Time Time Mem.

Model |S| |E| ϕ Pr(L) λ |Sheur| Time |Sheur| Time |Smin| (no cuts) (best) (GB)
DTMCs:
crowds-5-4 3 515 6 035 1 0.235 0.1 143 0.28 118 3.93 81 16.92 9.14 < 1

2 0.235 0.1 — — — — 335 16.01 9.72 < 1
crowds-5-6 18 817 32 677 1 0.427 0.1 143 18.62 118 3.62 83 419.51 81.44 < 1

2 0.427 0.1 — — — — 415 272.13 193.52 < 1
crowds-5-8 68 740 120 220 1 0.591 0.1 143 224.75 118 3.82 83 1 684.52 343.41 < 1

2 0.591 0.1 — — — — 1 034∗ TO (835) < 1
crowds-12-6 829 669 2 166 277 1 0.332 0.1 TO TO 270∗ TO (235) 15.8

2 0.332 0.1 — — — — 2 523∗ TO (1 519) 2.2
sleader-4-4 782 1 037 1 1 0.5 401 0.05 564 6.16 392 0.91 0.76 < 1

2 0.02441 0.01 — — — — 394 TO 2.05 < 1
sleader-4-6 3 902 5 197 1 1 0.5 1 957 0.37 3 542 19.85 1 953 14.39 7.58 < 1

2 0.005487 0.001 — — — — 949 TO 3.89 < 1
sleader-4-8 12 302 16 397 1 1 0.5 6 157 4.59 6 222 53.19 6 150 24.69 22.35 < 1

2 0.001846 0.0005 — — — — 3 718 TO 33.20 < 1
sleader-8-4 458 847 524 382 1 1 0.5 TO TO 229 411∗ TO (229 390) 3.8

2 0.057478 0.01 — — — — 458 847∗ TO (7 989) 10.2
nand-5-2 1 728 2 505 1 0.389 0.2 — — — — 394 22.46 17.04 < 1
nand-5-3 2 526 3 639 1 0.384 0.2 — — — — 614 87.81 63.33 < 1
nand-5-4 3 324 4 773 1 0.386 0.2 — — — — 854 407.10 242.74 < 1
nand-25-2 347 828 541 775 1 0.435 0.1 — — — — 9 075∗ TO (2 816) 3.5
brp-32-2 1 349 1 731 1 2.61 · 10−5 10−5 235 0.04 990 7.54 218 3.3 0.5 < 1
brp-512-2 21 509 27 651 1 2.61 · 10−5 10−5 9 140 13.83 15 875 153.81 9 023∗ TO (4 311) < 1
MDPs:
consensus-2-2 272 400 1 1 0.1 — — 100 1.44 15 TO 733.26 < 1
consensus-2-4 528 784 1 1 0.1 — — 228 1.69 34∗ TO (14) < 1
csma-2-2 1 038 1 054 1 1 0.1 — — 214 2.04 195 TO 2 866.13 < 1
csma-2-4 7 958 7 988 1 1 0.1 — — 792 3.68 410 TO 1 415.97 < 1
csma-2-6 66 718 66 788 1 1 0.1 — — 627 3.66 415∗ TO (392) < 1
aleader-3 364 573 1 1 0.5 — — 254 1.95 66∗ TO (21) < 1
aleader-4 3 172 6 252 1 1 0.5 — — 1 312 7.24 295∗ TO (10) < 1

Table 1: Benchmark results for DTMCs and MDPs. All times are measured in seconds, memory consumption in GB. The time limit was
set to 3600 seconds, the memory limit to 16 GB.

without any guarantee on the solution quality. Therefore LTLSubsys is only able to solve smaller instances
of a few thousand states to optimality. In many cases in which the computation has to be terminated prema-
turely, LTLSubsys returns a subsystem that is much smaller than the heuristically computed subsystems by
COMICS and DiPro. State-of-the-art MILP solvers apply very sophisticated heuristics to find good solutions
quickly. Additionally a lower bound on the value of the best solution is obtained from an MILP solver.
This allows to judge how far the found solution is at most from the optimum. For some instances, the gap
between the best solution and the lower bound is fairly small—see, for example, sleader-8-4 with a solution
of 229 411 states and a lower bound of 229 390 states. In other cases, the gap is much larger, e. g., for aleader-4
with 295 compared to 10.

Our optimizations, presented for DTMCs in Section 3.3, have a great impact on the solving times.
Especially the forward-cuts and backward-cuts improved the feasibility of our approaches for all case-
studies. However, it was not always predictable which cut improved the running-times on individual
benchmarks, e. g. the complete reachability constraints sometimes slowed down the computations due
to the high amount of variables while they highly enhanced the running times for both leader election
protocols. Consider the sleader-4-4 benchmark, where without optimizations a timeout was reached while
the MILP together with the complete reachability cuts was solved to optimality within 2.05 seconds.

We also compare the MILP formulation against the SMT formulation. However, Z3 runs into a timeout
for all instances in Table 1. We applied Z3 then to the smaller instance crowds-3-3 with λ = 0.1. It consists of

20

0

1000

2000

3000

4000

5000

6000

0 0.05
0.1 0.15

0.2 0.25
0.3 0.35

0.4 0.45

N
um

be
r

of
st

at
es

Probability bound

100

101

102

103

104

105

0 0.05
0.1 0.15

0.2 0.25
0.3 0.35

0.4 0.45

C
om

pu
ta

ti
on

ti
m

e
(s

)

Probability bound

LTLSubsys
COMICS
DiPro

Figure 2: Size of the computed subsystem of crowds-5-6 and its computation time for different values of λ, comparing COMICS and
DiPro with LTLSubsys. The time limit was set to 5 hours.

396 states and has an MCS with 39 states. Z3 needed for this instance 8 526.30 seconds, while Cplex solved
it within 0.09 seconds.

In Figure 2 we study the evolution of the sizes of computed critical subsystems and the computation
times. We computed a critical subsystem of crowds-5-6 for λ ∈ [0, 0.41] with each of the three tools. The left
graphic shows the sizes of the subsystems, the right one the computation times. We can observe that the gap
between the heuristically computed and the minimal subsystems increases together on increasing λ. The
computation time of COMICS stays more or less constant with the exception of the largest values of λ, while
the time of DiPro increases linearly. LTLSubsys runs into a timeout for larger values of λ. In this case the
best found solution is shown.

In principle, the heuristic tools and LTLSubsys can also be combined: One can first compute a small
critical subsystem using COMICS or DiPro and feed its solution into the MILP solver. If a good heuristic
solution is available early during the search for an optimal solution it enables the solver to prune branches of
the search space which cannot contain a better solution. This can speed up the computation in some cases.

6. Conclusion

In this paper we presented methods for the computation of optimal counterexamples in the form of minimal
critical subsystems for DTMCs and MDPs. Our algorithms are based on mixed integer linear programming.
We presented the MILP formulation, proved its correctness, and suggested several optimizations to speed
up the MILP solver. Contrary to available tools, our methods are not restricted to reachability properties but
can also handle arbitrary ω-regular properties. Our experiments with a prototype implementation have
shown that in most cases they yield (much) smaller subsystems than the available heuristic tools, in some
cases even up to two orders of magnitude. Even in case the exact minimization does not terminate within
the given time limit, our methods yield very good approximative solutions together with a lower bound on
the size of the MCS. This allows to judge the quality of the approximation. None of the other tools is able to
give such information or the actual proof of minimality.

As future work we will investigate the complexity of MCS for reachability properties of DTMCs. For
MDPs it has been proven to be NP-complete, but for DTMCs such a result is missing. Furthermore we will
develop more optimizations, in particular for MDPs, to speed up the computation. As most benchmarks are
given as compositional models, we want to extend out approaches such that optimal counterexamples on
the basis of the single components are computed, in contrast to the monolithic composed system. We will
investigate the extension of our approaches to further models whose model checking algorithms are based
on the solution of linear equation systems.

21

References

[1] E. M. Clarke, The birth of model checking, in: 25 Years of Model Checking – History, Achievements, Perspectives, Vol. 5000 of
LNCS, Springer, 2008, pp. 1–26.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: Proc. of CAV, Vol. 1855 of
LNCS, Springer, 2000, pp. 154–169.

[3] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: Proc. of CAV, Vol. 5123 of LNCS, Springer, 2008, pp. 162–175.
[4] R. Chadha, M. Viswanathan, A counterexample-guided abstraction-refinement framework for Markov decision processes, ACM

Transactions on Computational Logic 12 (1) (2010) 1–45.
[5] P. Gastin, P. Moro, M. Zeitoun, Minimization of counterexamples in SPIN, in: Proc. of SPIN, Vol. 2989 of LNCS, Springer, 2004, pp.

92–108.
[6] E. M. Clarke, O. Grumberg, K. L. McMillan, X. Zhao, Efficient generation of counterexamples and witnesses in symbolic model

checking, in: Proc. of DAC, IEEE Computer Society, 1995, pp. 427–432.
[7] E. M. Clarke, S. Jha, Y. Lu, H. Veith, Tree-like counterexamples in model checking, in: Proc. of LICS, IEEE Computer Society, 2002,

pp. 19–29.
[8] S. Busard, C. Pecheur, Rich counter-examples for temporal-epistemic logic model checking, in: Proc. of IWIGP, Vol. 78 of EPTCS,

2012, pp. 39–53.
[9] V. Schuppan, A. Biere, Shortest counterexamples for symbolic model checking of LTL with past, in: Proc. of TACAS, Vol. 3440 of

LNCS, Springer, 2005, pp. 493–509.
[10] M. J. Fischer, N. A. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process, Journal of the ACM 32 (2)

(1985) 374–382.
[11] D. Bustan, S. Rubin, M. Y. Vardi, Verifying ω-regular properties of Markov chains, in: Proc. of CAV, Vol. 3114 of LNCS, Springer,

2004, pp. 189–201.
[12] M. Z. Kwiatkowska, G. Norman, D. Parker, PRISM 4.0: Verification of probabilistic real-time systems, in: Proc. of CAV, Vol. 6806 of

LNCS, Springer, 2011, pp. 585–591.
[13] F. Ciesinski, C. Baier, Liquor: A tool for qualitative and quantitative linear time analysis of reactive systems, in: Proc. of QEST,

2006, pp. 131–132.
[14] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, D. N. Jansen, The ins and outs of the probabilistic model checker MRMC,

Performance Evaluation 68 (2) (2011) 90–104.
[15] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, M. V. Zilli, Finite horizon analysis of Markov chains with the Murphi verifier,

Software Tools for Technology Transfer 8 (4-5) (2006) 397–409.
[16] M. Kwiatkowska, G. Norman, D. Parker, The PRISM benchmark suite, in: Proc. of QEST, IEEE CS Press, 2012, (to appear).
[17] T. Han, J.-P. Katoen, B. Damman, Counterexample generation in probabilistic model checking, IEEE Trans. on Software Engineering

35 (2) (2009) 241–257.
[18] R. Wimmer, B. Braitling, B. Becker, Counterexample generation for discrete-time Markov chains using bounded model checking,

in: Proc. of VMCAI, Vol. 5403 of LNCS, Springer, 2009, pp. 366–380.
[19] M. E. Andrés, P. D’Argenio, P. van Rossum, Significant diagnostic counterexamples in probabilistic model checking, in: Proc. of

HVC, Vol. 5394 of LNCS, Springer, 2008, pp. 129–148.
[20] M. Günther, J. Schuster, M. Siegle, Symbolic calculation of k-shortest paths and related measures with the stochastic process

algebra tool CASPA, in: Proc. of DYADEM-FTS, ACM Press, 2010, pp. 13–18.
[21] A. Komuravelli, C. S. Pasareanu, E. M. Clarke, Assume-guarantee abstraction refinement for probabilistic systems, in: Proc. of

CAV, Vol. 7358 of LNCS, Springer, 2012, pp. 310–326.
[22] A. Komuravelli, C. S. Pasareanu, E. M. Clarke, Learning probabilistic systems from tree samples, in: Proc. of LICS, IEEE Computer

Society, 2012, pp. 441–450.
[23] M. Kattenbelt, M. Huth, Verification and refutation of probabilistic specifications via games, in: Proc. of FSTTCS, Vol. 4 of LIPIcs,

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009, pp. 251–262.
[24] H. Fecher, M. Huth, N. Piterman, D. Wagner, PCTL model checking of Markov chains: Truth and falsity as winning strategies in

games, Performance Evaluation 67 (9) (2010) 858–872.
[25] H. Aljazzar, S. Leue, Directed explicit state-space search in the generation of counterexamples for stochastic model checking, IEEE

Trans. on Software Engineering 36 (1) (2010) 37–60.
[26] N. Jansen, E. Ábrahám, J. Katelaan, R. Wimmer, J.-P. Katoen, B. Becker, Hierarchical counterexamples for discrete-time Markov

chains, in: Proc. of ATVA, Vol. 6996 of LNCS, Springer, 2011, pp. 443–452.
[27] H. Aljazzar, F. Leitner-Fischer, S. Leue, D. Simeonov, DiPro – A tool for probabilistic counterexample generation, in: Proc. of SPIN,

Vol. 6823 of LNCS, Springer, 2011, pp. 183–187.
[28] N. Jansen, E. Ábrahám, M. Volk, R. Wimmer, J.-P. Katoen, B. Becker, The COMICS tool – Computing minimal counterexamples for

DTMCs, in: Proc. of ATVA, Vol. 7561 of LNCS, Springer, 2012, pp. 349–353, (to appear).
[29] M. Schmalz, D. Varacca, H. Völzer, Counterexamples in probabilistic LTL model checking for Markov chains, in: Proc. of CONCUR,

Vol. 5710 of LNCS, Springer, 2009, pp. 587–602.
[30] R. Wimmer, B. Becker, N. Jansen, E. Ábrahám, J.-P. Katoen, Minimal critical subsystems for discrete-time Markov models, in: Proc.

of TACAS, Vol. 7214 of LNCS, Springer, 2012, pp. 299–314.
[31] R. Wimmer, B. Becker, N. Jansen, E. Ábrahám, J.-P. Katoen, Minimal critical subsystems as counterexamples for ω-regular DTMC

properties, in: Proc. of MBMV, Verlag Dr. Kovač, 2012, pp. 169–180.
[32] J. R. Norris, Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 1997.
[33] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

22

[34] M. Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: Proc. of FOCS, IEEE Computer Society,
1985, pp. 327–338.

[35] L. de Alfaro, Formal verification of probabilistic systems, Ph.D. thesis, Stanford University (1997).
[36] M. Y. Vardi, Probabilistic linear-time model checking: An overview of the automata-theoretic approach, in: Proc. of ARTS, Vol.

1601 of LNCS, Springer, 1999, pp. 265–276.
[37] J.-M. Couvreur, N. Saheb, G. Sutre, An optimal automata approach to LTL model checking of probabilistic systems, in: Proc. of

LPAR, Vol. 2850 of LNCS, Springer, 2003, pp. 361–375.
[38] S. Safra, Complexity of automata on infinite objects, Ph.D. thesis, The Weizmann Institue of Science, Rehovot, Israel (1989).
[39] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2) (1972) 146–160.
[40] L. M. de Moura, N. Bjørner, Satisfiability modulo theories: introduction and applications, Communications of the ACM 54 (9)

(2011) 69–77.
[41] B. Dutertre, L. M. de Moura, A fast linear-arithmetic solver for DPLL(T), in: Proc. of CAV, Vol. 4144 of LNCS, Springer, 2006, pp.

81–94.
[42] L. M. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: Proc. of TACAS, Vol. 4963 of LNCS, Springer, 2008, pp. 337–340.
[43] C. Barrett, C. Tinelli, CVC3, in: Proc. of CAV, Vol. 4590 of LNCS, Springer, 2007, pp. 298–302.
[44] A. Griggio, A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic, Journal on Satisfiability, Boolean Modeling

and Computation 8 (2012) 1–27.
[45] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman & Co Ltd,

1979.
[46] T. Achterberg, SCIP: Solving constraint integer programs, Mathematical Programming Computation 1 (1) (2009) 1–41.
[47] IBM CPLEX optimization studio, version 12.4, http://www-01.ibm.com/software/integration/optimization/

cplex-optimization-studio/ (2012).
[48] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1986.
[49] K. Chatterjee, M. Henzinger, Faster and dynamic algorithms for maximal end-component decomposition and related graph

problems in probabilistic verification, in: Proc. of SODA, 2011, pp. 1318–1336.
[50] A. Pnueli, The temporal logic of programs, in: Proc. of FOCS, 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.
[51] J. Klein, C. Baier, Experiments with deterministic ω-automata for formulas of linear temporal logic, Theoretical Computer Science

363 (2) (2006) 182–195.
[52] P. Gastin, D. Oddoux, Fast LTL to Büchi automata translation, in: Proc. of CAV, Vol. 2102 of LNCS, Springer, Paris, France, 2001,

pp. 53–65.
[53] A. Itai, M. Rodeh, Symmetry breaking in distributed networks, Information and Computation 88 (1) (1990) 60–87.
[54] M. K. Reiter, A. D. Rubin, Crowds: Anonymity for web transactions, ACM Trans. on Information and System Security 1 (1) (1998)

66–92.
[55] J. von Neumann, Probabilistic logics and synthesis of reliable organisms from unreliable components, in: Automata Studies,

Princeton University Press, 1956, pp. 43–98.
[56] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, Evaluating the reliability of NAND multiplexing with PRISM, IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 24 (10) (2005) 1629–1637.
[57] P. D’Argenio, B. Jeannet, H. Jensen, K. Larsen, Reachability analysis of probabilistic systems by successive refinements, in: Proc. of

PAPM/PROBMIV, Vol. 2165 of LNCS, Springer, 2001, pp. 39–56.
[58] P. R. D’Argenio, J.-P. Katoen, T. C. Ruys, J. Tretmans, The bounded retransmission protocol must be on time!, in: Proc. of TACAS,

Vol. 1217 of LNCS, Springer, 1997, pp. 416–431.
[59] J. Aspnes, M. Herlihy, Fast randomized consensus using shared memory, Journal of Algorithms 15 (1) (1990) 441–460.
[60] M. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model checking for probabilistic timed automata, Information and

Computation 205 (7) (2007) 1027–1077.

23

Appendix A. SMT-Formulation for Reachability Properties of DTMCs

Let Var be the set of variables of an SMT or MILP. Each variable v ∈ Var has a domain dom(v). For real
variables v, dom(v) = [0, 1] ⊆ R, for integer variables dom(v) = {0, 1} ⊆ Z. A variable assignment is a
function ν : Var→ R such that ν(v) ∈ dom(v) for all v ∈ Var. A constraint is satisfied by an assignment ν,
if replacing each variable v ∈ Var by ν(v) yields a tautology.

Lemma 2 Let D = (S, sinit, P, L) be a DTMC and T ⊆ S a (possibly empty) set of target states. Assume that for all
s ∈ S holds: either a state in T is reachable from s or a state s∗ with ∑s′∈S P(s∗, s′) < 1. Then the linear equation
system

ps =

1, if s ∈ T,
∑

s′∈S\T
P(s, s′) · ps′ + ∑

s′∈T
P(s, s′), otherwise (A.1)

has a unique satisfying assignment.

PROOF. We follow the proof idea of [33, Theorem 10.19]. The solution of (A.1) is unique iff the solution of
the corresponding homogeneous equation system is unique. Therefore consider

ps =

0, if s ∈ T,
∑

s′∈S\T
P(s, s′) · ps′ , otherwise. (A.2)

The assignment ν(ps) = 0 for all s ∈ S is a solution of (A.2).
Assume that there is a further satisfying assignment µ for (A.2) such that µ(ps) 6= 0 for some s ∈ S \ T.

Since S is finite, the maximum of |µ(ps)| exists. Let µ̂ be this maximum and M̂ =
{

s ∈ S
∣∣ µ̂ = |µ(s)|

}
⊆ S \T.

Since µ(ps) 6= 0 for some s ∈ S \ T, we have that µ̂ > 0 and M̂ 6= ∅. Because of P(s, s′) ≥ 0 for all s′ ∈ S
and ∑s′∈S P(s, s′) ≤ 1 we have for s ∈ M̂:

µ̂ = |µ(ps)| ≤ ∑
s′∈succD′ (s)\T

P(s, s′) · |µ(ps′)| ≤ µ̂ · ∑
s′∈succD′ (s)\T

P(s, s′) ≤ µ̂ .

This implies that
µ̂ = |µ(ps)| = ∑

s′∈succD′ (s)\T
P(s, s′) · |µ(ps′)| = µ̂ · ∑

s′∈S\T
P(s, s′) .

Since µ̂ > 0 we have ∑s′∈succD′ (s)
P(s, s′) = 1 and µ(ps′) = µ̂ for all s′ ∈ succD′(s) \ T. By induction it

follows that ∑s′∈succD′ (s
′′) P(s′′, s′) = 1 for all states s′′ which are reachable from s within D′. There is a path

s = s0s1 . . . sn such that either P(sn, t) > 0 for some t ∈ T or ∑s′∈succ(sn) P(sn, s′) < 1. The latter case is a
direct contradiction. In the former case, P(sn, t) > 0 for some t ∈ T. Therefore ∑s′∈succD(sn)\T < 1, which is
again a contradiction. Therefore our assumption that µ(ps) 6= 0 for some s ∈ S was wrong. �

Now we can prove the correctness of the SMT-formulation for reachability properties of DTMCs.

minimize ∑
s∈S

xs (A.3a)

such that

∀s ∈ Ta :
(

xs = 0∧ ps = 0
)
⊕
(
xs = 1∧ ps = 1

)
(A.3b)

∀s ∈ S \ Ta :
(

xs = 0∧ ps = 0
)
⊕
(
xs = 1∧ ps = ∑

s′∈succD(s)
P(s, s′) · ps′

)
(A.3c)

psinit > λ, (A.3d)

Theorem 3 The SMT formulation (A.3a)–(A.3d) yields an MCS for DTMC D and property P≤λ(♦ a).

24

PROOF. Let D be a DTMC and P≤λ(♦ a) a reachability property that is violated by D. We assume that D
does not contain any irrelevant states for a and that D′ = (S′, sinit, P′, L′) is a critical subsystem of D. We
show that there is a satisfying assignment ν for the SMT formulation with ν(xs) = 1 iff s ∈ S′.

Since D′ is a critical subsystem, model checking yields the following linear equation system with
variables qs for the probability to reach a Ta-state from s [33]:

qs =

1 if s ∈ Ta,
0 if Ta is unreachable from s within D′, and
∑s′∈S′ P′(s, s′) · qs′ , otherwise.

(A.4)

Let µ be a satisfying assignment of this equation system. Since D′ is critical, we know that µ(qsinit) > λ.
We define the following assignment ν:

ν(xs) =

{
1, if s ∈ S′,
0, otherwise

and ν(ps) =

{
µ(qs), if s ∈ S′,
0, otherwise.

We need to show that ν satisfies the SMT constraints. For constraints (A.3b) and (A.3d) this is obviously
the case. So consider the remaining constraint (A.3c). If s 6∈ S′, according to the definition of ν, we have
ν(xs) = 0 and ν(ps) = 0. This satisfies the first part of the constraint (and violates the second part). So the
constraint is fulfilled because of the exclusive or between the two parts. If s ∈ S′, we have ν(xs) = 1 and
distinguish two cases: First assume from s a state in Ta is reachable within D′. Then:

ν(ps) = µ(qs) = ∑
s′∈S′

P′(s, s′) · µ(qs′) = ∑
s′∈S′

P(s, s′) · µ(qs′)

= ∑
s′∈S′∩succD(s)

P(s, s′) · µ(qs′) = ∑
s′∈succD(s)

P(s, s′) · ν(ps′) .

Therefore the SMT constraint is satisfied.
Otherwise, if from s the set Ta of target states is unreachable within D′, we have ν(ps) = µ(qs) = 0. We

need to show that in this case also the equation ps = ∑s′∈succD(s) P(s, s′) · ps′ of the SMT problem is fulfilled.
Let S0 = {s ∈ S′ | Ta is unreachable within D′ from s}. We can observe that succD′(s) ⊆ S0 for all s ∈ S0.

Now consider the linear equations of constraint (A.3c) that define the probabilities of the states s ∈ S0. Since
the probability of states outside of the subsystem is 0, we can restrict the sum to the states in D′. We have
the following linear equation system:

∀s ∈ S0 : ps = ∑
s′∈succD′ (s)

P(s, s′) · ps′ . (A.5)

This is a homogeneous equation system with ν(ps) = 0 as a solution. As D does not contain any irrelevant
states, we can apply Lemma 2, which tells us that the solution of this equation system is unique. This then
implies that the assignment ν that corresponds to the subsystem D′ satisfies the SMT constraints.

We have herewith shown that for each critical subsystem there is an assignment that satisfies the SMT
constraints. Now we show the opposite direction: Given a satisfying assignment for the SMT constraints,
there is a corresponding critical subsystem.

Assume ν is a satisfying assignment for the SMT-constraints. We define the subsystemD′ = (S′, sinit, P′, L′)
by s ∈ S′ iff ν(xs) = 1, P′(s, s′) = P(s, s′) for s, s′ ∈ S′, and L′(s) = L(s) for s ∈ S′. We have to show that the
subsystem is critical. Consider the linear equation system (A.4) from above. For states S′ ∩ Ta, the equation
system is obviously satisfied. Assume s ∈ S′ \ Ta such that from s a Ta-state is reachable. Then

ν(ps) = ∑
s′∈succD(s)

P(s, s′) · ν(ps′) due to the SMT constraints

25

= ∑
s′∈succD(s)∩S′

P(s, s′) · ν(ps′) since ν(ps′′) = 0 for all s′′ 6∈ S′

= ∑
s′∈S′

P(s, s′) · ν(ps′) since P(s, s′) = 0 for s′ 6∈ succD(s′)

= ∑
s′∈S′

P′(s, s′) · ν(ps′) since P′(s, s′) = P(s, s′) for s, s′ ∈ S′.

Hence, ν satisfies equation system (A.4).
The only remaining case is that there is no path from s to a Ta-state within S′. We have to show that

the SMT constraints yield ν(ps) = 0. Since we assumed that D contains no irrelevant states, we can apply
Lemma 2 to show that ν(s) = 0, which satisfies the model checking equations. Hence the solution of (A.4)
coincides with ν and we have that the subsystem is critical, since ν(psinit) > λ.

As we have shown, there is a one-to-one correspondence between the satisfying assignments ν of the
SMT constraints and the critical subsystems of D. Since ∑s∈S ν(xs) is exactly the number of states in the
subsystem, we obtain an MCS by minimizing this sum. �

Appendix B. MILP-Formulation for Reachability Properties of DTMCs

Lemma 3 Let D = (S, sinit, P, L) be a DTMC without irrelevant states, S′ ⊆ S with sinit ∈ S′, and T ⊆ S a set of
target states. If

ps ≤ ∑
s∈succD(s)∩S′\T

P(s, s′) · ps′ + ∑
s′∈succD(s)∩S′∩T

P(s, s′) (B.1)

has a satisfying assignment µ with µ(psinit) > λ, then the satisfying assignment ν of

ps = ∑
s∈succD(s)∩S′\T

P(s, s′) · ps′ + ∑
s′∈succD(s)∩S′∩T

P(s, s′) (B.2)

also satisfies ν(psinit) > λ.

PROOF. First, the solution of (B.2) is unique according to Lemma 2.
Let µopt be an assignment for (B.1) such that µopt(psinit) = max{µ(psinit) | µ satisfies (B.1)} is maximal

among all satisfying assignments of (B.1). Since the domains of all variables are bounded, this maximum
exists and is finite.

We claim that for all states that are reachable from sinit the inequalities (B.1) are satisfied by µopt with
equality. Assume the converse is true, i. e., there is a state s ∈ S′ \ T that is reachable from sinit such that

0 < ε :=
(

∑
s∈succD(s)∩S′\T

P(s, s′) · µopt(ps′) + ∑
s′∈succD(s)∩S′∩T

P(s, s′)
)
− µopt(ps) .

Let sinit = s0s1 . . . sn = s be a path vom sinit to s. We can increase the value µopt(psn) by at least εn = ε
(more, if psn also appears on the right-hand side; note that 0 ≤ P(sn, sn) < 1 holds). This does not violate
any inequality, since in the inequalities for the other states psn appears with a non-negative coefficient.
Assume, for some i ≤ n, we have increased the value of si by εi. Then the right-hand side of the inequality
for si−1 increases by at least P(si−1, si) · εi > 0. Therefore we can also increase the value of psi−1 by
P(si−1, si) · εi. This can be continued along the path back to sinit = s0, whose value may be increased by
ε0 = ε ·∏n−1

i=0 P(si, si+1) > 0. Therefore µopt(psinit) was not optimal, contradicting our assumption. This
means, the inequalities of all states that are reachable from sinit are satisfied with equality for the optimal
solution. We do not have to take the values of unreachable states into account, because they do not influence
the value of sinit. �

26

minimize − 1
2

psinit + ∑
s∈S

xs (B.3a)

such that
∀s ∈ Ta : ps = xs (B.3b)

∀s ∈ S \ Ta : ps ≤ xs (B.3c)

∀s ∈ S \ Ta : ps ≤ ∑
s′∈succD(s)

P(s, s′) · ps′ (B.3d)

psinit > λ . (B.3e)

Theorem 4 The MILP formulation (B.3a)–(B.3e) yields an MCS for D and the property P≤λ(♦ a).

PROOF. We show that each satisfying assignment of the SMT constraints (A.3b)–(A.3d) has a corresponding
satisfying assignment of the MILP constraints and vice versa.

Let ν be a satisfying assignment of the SMT constraints. For target states s ∈ S we have either ν(xs) =
0 and ν(ps) = 0 or ν(xs) = 1 and ν(ps) = 1, i. e., ν(xs) ∈ {0, 1} and ν(ps) = ν(xs). Consequently
constraint (B.3b) is fulfilled.

If s ∈ S \ Ta, the SMT constraints require that either ν(xs) = 0 and ν(ps) = 0 or ν(xs) = 1 and
ν(ps) = ∑s′∈succD(s) P(s, s′) · ν(ps′). In the former case 0 = ν(ps) ≤ ν(xs) = 0 holds and in the latter case
[0, 1] 3 ν(ps) ≤ ν(xs) = 1. So ν satisfies constraint (B.3c).

Now consider constraint (B.3d). For states s in the subsystem, i. e., ν(xs) = 1, this constraint is satisfied
with equality by ν. For states not in the subsystem, i. e., ν(xs) = 0, we have ν(ps) = 0. Since P(s, s′) ≥ 0 for
all s, s′ ∈ S and ν(ps′) ≥ 0 for all s′ ∈ S, the right-hand side of the inequality is non-negative. Therefore this
constraint holds for all states.

Finally constraint (B.3e) is the same as constraint (A.3d) and holds therefore, too. This means, each
assignment that satisfies the SMT constraints also satisfies the MILP.

Now assume that ν is a satisfying assignment of the MILP constraints. We show that there is a satisfying
assignment ν′ for the SMT-constraints such that ν′(xs) = ν(xs) for all s ∈ S. We set S′ = {s ∈ S | ν(xs) = 1}.
Let ν′(ps) = 1 for all s ∈ Ta ∩ S′ and ν′(ps) = 0 for s 6∈ S′. We have to determine ν′(ps) for s ∈ S′ \ Ta such
that the constraint (A.3c) is satisfied for all s ∈ S \ Ta. This is trivially the case for states s ∈ S \ S′. For
s ∈ S′ \ Ta we have to satisfy the linear equation system:

ps = ∑
s∈succD(s)∩S′\Ta

P(s, s′) · ps′ + ∑
s′∈succD(s)∩S′∩Ta

P(s, s′). (B.4)

According to Lemma 2, it has a unique satisfying assignment by which we extend our partial assignment
ν′. We have to show that the such defined assignment ν′ corresponds to a critical subsystem, i. e., that
ν′(psinit) > λ.

Now return to the MILP formulation. For states s ∈ S′ \ Ta, the value ν(ps) is restricted by the inequality

ps ≤ ∑
s′∈succD(s)

P(s, s′) · ps′ .

Because of ν(ps) = 1 for s ∈ Ta ∩ S′ and ν(ps) = 0 for s 6∈ S′, this simplifies to

ps ≤ ∑
s∈succD(s)∩S′\Ta

P(s, s′) · ps′ + ∑
s′∈succD(s)∩S′∩Ta

P(s, s′). (B.5)

Applying Lemma 3 tells us that ν′(psinit) > λ. This means the constructed assignment ν′ represents a critical
subsystem of D. �

27

Appendix C. Correctness of Optimizations

Appendix C.1. Forward/Backward Cuts

∀s ∈ S \ Ta : −xs + ∑
s′∈succ(s)\{s}

xs′ ≥ 0 (C.1a)

∀s ∈ S \ sinit : −xs + ∑
s′∈pred(s)\{s}

xs′ ≥ 0 . (C.1b)

Lemma 4 The forward and backward cuts are satisfied for each MCS of DTMC D and property P≤λ(♦ a).

PROOF. Let D′ = (S′, sinit, P′, L′) be an MCS of D = (S, sinit, P, L) and property P≤λ(♦ a). Assume (C.1a)
is violated for state s ∈ S′, i. e., for the corresonding assigment ν, we have ν(xs) = 1, but ν(xs′) = 0 for all
s′ ∈ succD(s) \ {s}. Then ν(ps) ≤ ∑s′∈succD(s′) P(s, s′) · ν(ps′) = ∑s′∈succD(s′)\{s} P(s, s′) · 0 + P(s, s) · ν(ps),
since ν(ps′) = 0 for all s′ ∈ S with ν(xs′) = 0. The only solution is ν(ps) = 0. Therefore state s is irrelevant
and can be removed from the MCS without altering the probability of the initial state. This contradicts the
minimality of D′.

Assume now that (C.1b) is violated for state s ∈ S′, i. e., for the corresponding assignment ν we have
ν(xs) = 1, but ν(xs′) = 0 for all s′ ∈ predD(s) \ {s}. Then in the equation system which determines the
probability of sinit, ps does not appear. Therefore removing s does not change the probability of the initial
state and the criticality, which is a contraction to D′ being an MCS. �

Appendix C.2. SCC Cuts

∀SCC C, sinit 6∈ C : ∑
s∈C\In(C)

xs ≤
∣∣C \ In(C)

∣∣ · ∑
s∈In(C)

xs (C.2a)

∀SCC C, C ∩ Ta = ∅ : ∑
s∈C

xs ≤
∣∣C∣∣ · ∑

s∈Out(C)
xs . (C.2b)

Lemma 5 The input and output SCC cuts are satisfied for each MCS of DTMC D and property P≤λ(♦ a).

PROOF. LetD′ = (S′, sinit, P′, L′) be an MCS ofD = (S, sinit, P, L) and property P≤λ(♦ a). Let C ⊆ S \ {sinit}
be an SCC which violates (C.2a). All paths in D from sinit to Ta passing through C contain a state in In(C).
Since S′ ∩ In(C) = ∅, there is no path in D′ from sinit to Ta containing a state from C. Therefore all states in
C ∩ S′ 6= ∅ are irrelevant and can be removed from D′ without alternating the probability of sinit, which
contradicts the minimality of D′.

Now assume that (C.2b) is violated. With the same argument we can show that again all states in
C ∩ S′ 6= ∅ are irrelevant. �

Appendix C.3. Forward Reachability Constraints
Let S be a finite set and I ⊆ S such that pred(s) 6= ∅ for all s ∈ S \ I. Consider the forward reachability
constraints with xs ∈ {0, 1} ⊆ Z, t→s,s′ ∈ {0, 1} ⊆ Z and r→s ∈ [0, 1] ⊆ R for all s, s′ ∈ S:

∀s′ ∈ S \ I ∀s ∈ pred(s) : 2t←s,s′ ≤ xs + xs′ (C.3)

∀s′ ∈ S \ I ∀s ∈ pred(s) : r←s < r←s′ + (1− t←s,s′) (C.4)

∀s′ ∈ S \ I : (1− xs′) + ∑
s∈pred(s′)

t←s,s′ ≥ 1 . (C.5)

28

Lemma 6 Let ν be a satisfying assignment of (C.3)–(C.5). Then ν(xs′) = 1 implies that there is a path s0s1 . . . sn =
s′ from a state s0 ∈ I to s′ with ν(xsi) = 1 for all 0 ≤ i ≤ n.

PROOF. Constraint (C.5) enforces that each state s′ ∈ S \ I with ν(xs′) = 1 has a predecessor state
s ∈ pred(s′) with t→s,s′ = 1. Constraint (C.3) ensures that for this predecessor state ν(xs) = 1 holds.
Constraint (C.4) finally ensures that ν(r→s) < ν(r→s′).

Assume there is a state u0 ∈ S \ I such that the statement of the lemma is false. Then we can construct an
infinite sequence u0u1u2 . . . such that ui+1 ∈ pred(ui), ν(ui) = 1, ν(t→ui+1,ui

) = 1, and ν(r←ui+1
) < ν(r←ui

) for
all i ≥ 0.

Since S is finite there are i < k with ui = uk. However ν(r←uk
) < ν(r←ui

). Contradiction. Therefore our
assumption was wrong and the lemma is valid. �

Lemma 7 Let S′ ⊆ S such that each state s ∈ S′ is reachable from a state t ∈ I. Then there is a satisfying assignment
ν of (C.3)–(C.5) with ν(xs) = 1 iff s ∈ S′.

PROOF. Reverse all edges between states in S′. The shortest paths from the states in S′ to I in the reversed
graph form a forrest rooted at the I-states. Let n be the length of the longest such path. If a node s has
distance k from the I-states, assign ν(r→s) := k/n. Assign ν(t→s,s′) := 1 iff (s′, s) is contained in the shortest
path forrest. One can easily check that the three constraints are satisfied by ν. �

Appendix C.4. Backward Reachability Constraints
Let S be a finite set and T ⊆ S such that succ(s) 6= ∅ for all s ∈ S \ T. Consider the following constraints
with xs ∈ {0, 1} ⊆ Z, t←s,s′ ∈ {0, 1} ⊆ Z and r←s ∈ [0, 1] ⊆ R for all s, s′ ∈ S:

∀s ∈ S \ T ∀s′ ∈ succ(s) : 2t←s,s′ ≤ xs + x′s (C.6)

∀s ∈ S \ T ∀s′ ∈ succ(s) : r←s < r←s′ + (1− t←s,s′) (C.7)

∀s ∈ S \ T : (1− xs) + ∑
s′∈succ(s)

t←s,s′ ≥ 1 . (C.8)

Lemma 8 Let ν be a satisfying assignment of (C.6)–(C.8). Then ν(xs) = 1 implies that there is a path s = s0s1 . . . sn
from s to a state sn ∈ T with ν(xsi) = 1 for all 0 ≤ i ≤ n.

PROOF. Constraint (C.8) enforces that each state s ∈ S \ T with ν(xs) = 1 has a successor state s′ ∈ succ(s)
with t←s,s′ = 1. Constraint (C.6) ensures that for this successor state ν(xs′) = 1 holds. Constraint (C.7) finally
ensures that ν(r←s) < ν(r←s′).

Assume there is a state u0 ∈ S \ T such that the statement of the lemma is false. Then we can construct
an infinite path u0u1u2 . . . such that ui+1 ∈ succ(ui), ν(ui) = 1, ν(t←ui ,ui+1

) = 1, and ν(r←ui
) < ν(r←ui+1

) for all
i ≥ 0.

Since S is finite there are i < k with ui = uk. However ν(r←ui
) < ν(r←uk

). Contradiction. Therefore our
assumption was wrong and the lemma is valid. �

Lemma 9 Let S′ ⊆ S such that from each state s ∈ S′ a state t ∈ T is reachable. Then there is a satisfying assignment
ν of (C.6)–(C.8) with ν(xs) = 1 iff s ∈ S′.

PROOF. The shortest paths from the states in S′ to T form a forrest rooted at the T-states. Let n be the
length of the longest such path. If a node s has distance k from the T-states, assign ν(r→s) := k/n. Assign
ν(t→s,s′) := 1 iff (s′, s) is contained in the shortest path forrest. One can easily check that the three constraints
are satisfied by ν. �

29

Appendix D. SMT Formulation for ω-Regular Properties of DTMCs

Let D = (S, sinit, P, L) be a DTMC and P≤λ(L) an ω-regular property which is violated by D. A =
(Q, qinit, 2AP, δ, F) is a DRA such that L(A) = L. Let {T1, . . . , Tn} be the set of accepting BSCCs of D ⊗A
and T =

⋃n
i=1 Ti. As always we assume that the product automaton D ⊗A = (S×Q, (s, q)init, P′, L′) does

not contain any irrelevant states.
The SMT formulation for MCSs of ω-regular properties is as follows:

minimize ∑
s∈S

xs (D.1a)

such that
psinit > λ (D.1b)

∀i = 1, . . . , n ∀(s, q) ∈ Ti : (xTi = 0∧ p(s,q) = 0)⊕ (xTi = 1∧ p(s,q) = 1∧ xs = 1) (D.1c)

∀(s, q) ∈ (S ×Q) \ T :
(

xs = 0∧ p(s,q) = 0
)
⊕(

xs = 1∧ p(s,q) = ∑
(s′ ,q′)∈succD⊗A(s)

P′
(
(s, q), (s′, q′)

)
· p(s′ ,q′)

)
. (D.1d)

Lemma 10 Let D = (S, sinit, P, L) be a DTMC, P≤λ(L) a violated ω-regular property and S′ ⊆ S a critical
subsystem of D. Then there is a satisfying assignment ν of the SMT constraints (D.1b)–(D.1d) such that ν(xs) = 1
iff s ∈ S′.

PROOF. Let S′ ⊆ S be a critical subsystem of D and A = (Q, qinit, 2AP, δ, F) a DRA with F = {(Ri, Ai) | i =
1, . . . , n} and L(A) = L. Π = {π ∈ Pathsinf

D (sinit) |π � L ∧ ∀i ≥ 0 : πi ∈ S′} denotes the set of infinite
paths within the subsystem that satisfy L. Since S′ is a critical subsystem, Pr(Π) > λ holds.

For π = s0s1 . . . ∈ Π let π∗ = (s0, q0)(s1, q1) . . . with q0 = δ
(
qinit, L(sinit)

)
and qi+1 = δ

(
qi, L(si+1)

)
be

the unique extension of π to the product automaton D ⊗A. Let Π∗ = {π∗ |π ∈ Π} and inf(π) the set of
states which occur infinitely often on π. Since all stepwise probabilities are preserved by the extension, we
have that PrD(Π) = PrD⊗A(Π∗) > λ.

We now consider the subsystem S′ ×Q of D ⊗A. Π∗ contains only paths in S′ ×Q. Let BSCC(D ⊗A)
denote the set of bottom SCCs of D ⊗A. Then Pr{π ∈ Pathsinf

D⊗A((s, q)init) | inf(π) ∈ BSCC(D ⊗A)} =
1 [33, Theorem 10.27]. Contrarily, Pr{π ∈ Pathsinf

D⊗A((s, q)init) | inf(π) 6∈ BSCC(D ⊗ A)} = 0. We can
conclude:

0 ≤ Pr{π∗ ∈ Π∗ | inf(π∗) 6∈ BSCC(D ⊗A)}
≤ Pr{π∗ ∈ Pathsinf

D⊗A((s, q)init) | inf(π∗) 6∈ BSCC(D ⊗A)}
= 0

and
λ < Pr(Π∗) = Pr({π∗ ∈ Π∗ | inf(π∗) ∈ BSCC(D ⊗A)}).

We now set C := {inf(π∗) |π∗ ∈ Π∗} ∩ BSCC(D ⊗A). We make the following observations:

• all elements of C are BSCCs, and

• ∀c ∈ C ∃i ∈ {1, . . . , n} : (∀(s, q) ∈ C : Ri 6∈ L′(s, q)) ∧ (∃(s, q) ∈ c : Ai ∈ L′(s, q)), i. e., C contains only
accepting BSCCs. Otherwise the paths in Π∗ were not accepted.

We define the following variable assignment ν for the decision variables: ν(xs) = 1 iff s ∈ S′ and
ν(xTi) = 1 iff Ti ∈ C. These assignments trigger the following implications in the SMT constraints above:

p(s,q) =

0, if s 6∈ S′,
1, if (s, q) ∈ Ti ∈ C,

∑
(s′ ,q′)∈S×Q

P′((s, q), (s′, q′)) · p(s′ ,q′), otherwise.

30

Using Lemma 2, we can show that this linear equation system has a unique satisfying assignment which
describes the probability of reaching a target state within the subsystem S′ × Q. Therefore p(s,q)init

=

Pr(s,q)init
D⊗A (♦ accept) ≥ PrD⊗A(Π∗) = PrD(Π) > λ. �

This lemma also implies that the subsystems are independent of the actual DRA used for the property.

Lemma 11 Let D = (S, sinit, P, L) be a DTMC, L an ω-regular property, and A a DRA with L(A) = L. For
each satisfying assignment ν of the SMT-constraints there is a critical subsystem of D with state space S′ = {s ∈
S | ν(xs) = 1}.

PROOF. Let ν be a satisfying assignment of the SMT constraints (D.1b)–(D.1d). We define a subsystem
D′ = (S′, sinit, P′, L′) by S′ = {s ∈ S | ν(xs) = 1}, P′(s, s′) = P(s, s′) for all s, s′ ∈ S′, and L′(s) = L(s) for
s ∈ S′. We have to show that D′ is critical.

We construct the product automaton D′ ⊗A. It consists of all states (s, q) ∈ S×Q with ν(xs) = 1. Let
B = {Ti | ν(xTi) = 1}. It holds

⋃
B ⊆ S′ ×Q since ν(xTi) = 1 implies ν(xs) = 1 for all s ∈ Ti. Therefore the

set of accepting BSCCs of D′ ⊗A is a superset of B. Therefore the probability to reach an accepting BSCC is
at least the probability to reach a state in

⋃
B. Now consider the linear equation system which determines

the reachability probabilities for (s, q) ∈ S×Q \⋃ B:

p(s,q) =

0, if
⋃

B is not reachable from s,
∑

(s′ ,q′)∈succD′⊗A(s,q)
P((s, q), (s′, q′)) · p(s′ ,q′), otherwise.

In the SMT-formulation we have the equation ps = ∑
(s′ ,q′)∈succD′⊗A(s,q)

P((s, q), (s′, q′)) · p(s′ ,q′) for all states

s ∈ S × Q \ T. Since D ⊗ A does not contain any irrelevant states, we can use Lemma 2 to show both
formulations are equivalent. Then Pr(s,q)init

D′×A (♦ accept) ≥ Pr(s,q)init
D′×A (♦

⋃
B) = ν(p(s,q)init

) > λ. Hence the
constructed subsystem is critical. �

Now we can use both lemmas to prove the following theorem:

Theorem 10 The SMT formulation (D.1a)–(D.1d) yield an MCS for DTMC D and ω-regular property P≤λ(L).

PROOF. According to Lemma 10, there is a satisfying assignment for each critical subsystem. Lemma 11
states that also the converse holds. Consequently there is a one-to-one mapping between the critical
subsystems of D and the satisfying assignments of the SMT constraints. Since ∑s∈S ν(xs) is equal to the
number of states in the subsystem, minimizing this sum yields an MCS. �

Appendix E. MILP-Formulation for ω-Regular Properties of DTMCs

Let D = (S, sinit, P, L) be a DTMC, P≤λ(L) an ω-regular property, which is violated by D, and A =
(Q, qinit, 2AP, δ, F) a DRA with L(A) = L. The MILP-formulation for an MCS for D and L is as follows:

minimize − 1
2

p(s,q)init
+ ∑

s∈S
xs (E.1a)

such that
p(s,q)init

> λ (E.1b)

∀i = 1, . . . , n ∀(s, q) ∈ Ti : p(s,q) = xTi (E.1c)

∀i = 1, . . . , n ∀(s, q) ∈ Ti : xs ≥ xTi (E.1d)
∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤ xs (E.1e)

31

∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤ ∑
(s′ ,q′)∈succD⊗A((s,q))

P
(
(s, q), (s′, q′)

)
· p(s′ ,q′) . (E.1f)

Theorem 6 The MILP formulation (E.1a)–(E.1f) yields an MCS for DTMC D and ω-regular property P≤λ(L).

PROOF. We show the theorem by proving the equivalence of the MILP and the SMT formulation given in
Appendix D.

SMT→MILP: It is easy to see that each satisfying assignment of the SMT constraints also satisfy the
MILP constraints.

MILP → SMT: Let ν be a satisfying assignment of the MILP constraints. We construct a satisfying
assignment µ of the SMT constraints:

• µ(xs) = ν(xs for all s ∈ S,

• µ(xTi) = ν(xTi) for i = 1, . . . , n,

• µ(p(s,q)) = 0 if ν(xs) = 0, and

• µ(p(s,q)) = 1 if ν(xs) = 1 and (s, q) ∈ T.

For the remaining states (s, q) ∈ S×Q \ T we have to satisfy the following equation system:

p(s,q) = ∑
(s′ ,q′)∈succD(s,q)

P((s, q), (s′, q′)) · p(s′ ,q′).

According to Lemma 2 its solution is unique. Let µ(p(s,q)) be this solution. We have to show that µ(p(s,q)init
) >

λ. This, however, directly follows from Lemma 3. �

Appendix F. Complexity of MCSs for MDPs

Theorem 7 ([4]) Let MDPM withM 6|= P≤λ(♦ a) and k ∈N. Then: the problem to decide if there exists a critical
subsystem ofM for P≤λ(♦ a) with at most k states is NP-complete.

PROOF. (Adapted from [4].) The problem is in NP, since one can guess a scheduler and a subsystem of
M and verify in polynomial time (using the DTMC model-checking algorithms) that it is critical. The
NP-hardness follows from a reduction from the exact 3-cover (X3C) problem [45, Problem SP1]:

Let X be a set with |X| = 3r, r ∈N, and C ⊆ 2X a collection with ∀c ∈ C : |c| = 3.
Question: does there exist B ⊆ C that exactly covers X?

Here, B covers X whenever the subsets in B are pairwise disjoint and
⋃

c∈B c = X. As B covers X by sets of
cardinality three, B is called an exact 3-cover of X. It is not difficult to see that an exact 3-cover B of X with
|X| = 3r has cardinality |B| = r.

The idea of the proof is to construct (starting from a set X with |X| = 3r) an MDP and a reachability
property such that there exists a critical subsystem of bounded size iff X has an exact 3-cover. Let the MDP
M = (S, sinit, Act, P, L) be as follows:

• S = X ∪̇ C ∪̇ {sinit, t} with L(t) = {a} and L(s) = ∅ otherwise.

• Act = {α} ∪̇ {αc | c ∈ C}, and

• P is given by

– P(sinit, α, x) = 1
3r for x ∈ X and P(sinit, α, y) = 0 for all y ∈ S \ X,

– for x ∈ X we have P(x, αc, c) = 1 for c ∈ C and P(x, αc, y) = 0 for all y ∈ S \ C,

32

– for all c ∈ C we have P(c, α, t) = 1 and P(c, α, y) = 0 for all y ∈ S \ {t},
– P(t, α′, t) = 1 for all α′ ∈ Act, and finally

For all actions in Act that are not explicitly mentioned in the definition of P for any state s ∈ S, we assume
that they form a self-loop at s with probability 1.

Let ϕ = P≤λ(♦ a) with λ = 1− 1
3r . As the maximal probability to reach t from sinit is one,M 6|= ϕ. We

show that there is a critical subsystem of size ≤ 2 + 4r iff X has an exact 3-cover.

“⇐” Let B ⊆ C be an exact 3-cover for X. Thus, |B| = r. Consider the subsystem with state space
{sinit, t} ∪̇ X ∪̇ B together with the following deterministic memoryless scheduler σ onM: σ(sinit) =
σ(c) = α for all c ∈ C and σ(x) = αc if c is the unique element of B such that x ∈ c.

Then for all x ∈ X there is a path with probability 1 from x to t. We have:

Prs,σ(♦ a) = ∑
x∈X

Pσ(s, x) · Prx,σ(♦ a)

= ∑
x∈X

Pσ(s, x) · 1 = ∑
x∈X

1
3r
· 1

= |X| · 1
3r

= 1.

Thus we have found a critical subsystem ofM with 2 + |X|+ |B| = 2+4r states.

“⇒” LetM′ be a critical subsystem ofM with state space S′ of size ≤ 2 + 4r. Then the probability to reach
t from s withinM′ exceeds 1− 1

3r . Since the probability is a multiple of 1
3r , it must equal 1. We can

conclude that all x-states must be contained inM′ and that from each x-state there is a path with
probability 1 to t. Therefore for each x ∈ X there must be some c ∈ ∩C inM′ such that x ∈ c. The
number of c-states in S′ is at most 2 + 4r− |{s, t}| − |X| = r. Therefore B = S′ ∩ C is an exact 3-cover
of X.

�

Appendix G. MILP-Formulation for Reachability Properties of MDPs

minimize − 1
2

psinit + ∑
s∈S

xs (G.1a)

such that
psinit > λ (G.1b)

∀s ∈ Ta : ps = xs (G.1c)
∀s ∈ S \ Ta : ps ≤ xs (G.1d)

∀s ∈ S \ Ta : (1− xs) + ∑
α∈Act

σs,α = 1 (G.1e)

∀s ∈ S \ Ta ∀α ∈ Act : ps ≤ (1− σs,α) + ∑
s′∈succM(s,α)

P(s, α, s′) · ps′ (G.1f)

∀(s, α) ∈ Actprobl(a)
M ∀s′ ∈ succM(s, α) : 2t←s,s′ ≤ xs + xs′ (G.1g)

∀(s, α) ∈ Actprobl(a)
M ∀s′ ∈ succM(s, α) : r←s < r←s′ + (1− t←s,s′) (G.1h)

∀(s, α) ∈ Actprobl(a)
M : (1− xs) + (1− σs,α) + ∑

s′∈succM(s,α)
t←s,s′ ≥ 1 . (G.1i)

33

Lemma 12 Let M = (S, sinit, Act, P, L) be an MDP and P≤λ(♦ a) a violated reachability property. Let ν be a
satisfying assignment of the MILP constraints (G.1b)–(G.1i). Then the subsystem M′ = (S′, sinit, P′, L′) with
S′ = {s ∈ S | ν(xs) = 1}, P(s, s′) = P(s, σ(s), s′) and L′(s) = L(s) for all s, s′ ∈ S with σ(s) = α iff ν(σs,α) = 1
is critical.

PROOF. The scheduler σ is well-defined, since constraint (G.1e) ensures that for each s ∈ S′ there is one and
only one action α ∈ Act with σs,α = 1. We can observe that constraints (G.1f) and (G.1i) are satisfied for all
α 6= σ(s).

Now consider the DTMCM′ induced by σ and the following linear equation system:

ps =

{
1 if s ∈ Ta,
∑s′∈succM′ (s)

P′(s, s′) · ps′ otherwise.

For s ∈ S′ \ Ta, we obtain

ps = ∑
s′∈succMσ (s)\Ta

P′(s, s′) · ps′ + ∑
s′∈succMσ (s)∩Ta

P′(s, s′) . (G.2)

From all unproblematic states s ∈ S′ \ Sprobl(a)
M there is a path inMσ′ to a target state for all schedulers

σ′. Due to the backward reachability constraints (G.1g)–(G.1i), from all problematic states an unproblematic
state and therefore inMσ also a target state is reachable. SinceM does not contain irrelevant states, we
can apply Lemma 2. It states that this equation system has a unique solution, which is the reachability
probabilities for Ta.

Now consider again the MILP. Due to the constraint ps = xs for Ta-states, ν satisfies the equation for
target states. Consider the implications which are triggered by the values of xs and σs,α for s ∈ S′ \ Ta:

ps ≤ ∑
s′∈succM(s)

P(s, α, s′) · ps′

which simplifies to
ps ≤ ∑

s′∈succMσ (s)\Ta

P′(s, s′) · ps′ + ∑
s′∈succMσ (s)∩Ta

P′(s, s′) . (G.3)

We now apply Lemma 3, which tells us that the solution of (G.2) is not smaller than any solution of (G.3),
which is larger than λ by assumption. Therefore the subsystem is critical. �

Lemma 13 Let S′ ⊆ S be a critical subsystem of the MDPM = (S, sinit, Act, P, L) under scheduler σ. We require
that from any state s ∈ S′ a target state in Ta is reachable within the subsystem. Then there exists a satisfying
assignment ν of the MILP constraints (G.1a)–(G.1i) with ν(xs) = 1 iff s ∈ S′ and σs,α = 1 iff σ(s) = α.

PROOF. LetM′ = (S′, sinit, P′, L′) be such a subsystem and σ the corresponding scheduler. We construct
an assignment ν as follows: ν(xs) = 1 iff s ∈ S′, ν(ps) = 0 if s 6∈ S, σs,α = 1 iff α = σ(s) and s ∈ S′. Since
from each state s ∈ S′ a target state can be reached, Lemma 9 ensures that the reachability constraints have
a satisfying assignment. Let ν(r→s) and ν(t→s,s′) be the values of such an assignment. It remains to satisfy
ps ≤ ∑s′∈succM′ (s)

P(s, σ(s), s′) · ps′ . This constraint is fulfilled with equality by the probabilities of reaching
a T-state withinM′. If we let ν(ps) be these reachability probabilities, all constraints are satisfied. �

Theorem 8 The MILP formulation (G.1a)–(G.1i) yields an MCS for MDPM and property P≤λ(♦ a).

PROOF. Every solution of the MILP corresponds to a critical subsystem. Every subsystem in which from
each state a target state is reachable is a solution of the MILP. This is the case for every MCS. Since ∑s∈S ν(xs)
is the number of states in the subsystem corresponding to the satisfying assignment ν, we obtain an MCS by
minimizing this sum. �

34

Appendix H. MILP-Formulation for ω-Regular Properties of MDPs

Lemma 1 Let (Ri, Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act a scheduler, and Mi ⊆ U
a set of states with the following properties:

1. ∀u ∈ Mi : ∑
u′∈succ(u,σ(u))∩Mi

P′(u, σ(u), u′) = 1,

2. Mi ∩ (S × Ri) = ∅, and
3. for each state u ∈ Mi there is a path from u to a state in S × Ai.

Then the probability of satisfying the acceptance condition F because of the pair (Ri, Ai) is 1 for all u ∈ Mi.

PROOF. Since Mi is closed under successors w. r. t. scheduler σ, this set forms a sub-MDP of M. The
probability to reach a BSCC under scheduler σ is 1 for every state of Mi. Let M′i ⊆ Mi be such a BSCC. As
M′i is strongly connected, it forms an end component ofM. As a state out of S× Ai is reachable from every
state of Mi, at least one state of S× Ai has to be included in M′i . Hence, M′i is an accepting end component
ofM. As this holds for every BSCC included in Mi, the probability to reach an accepting end component
inside Mi is one. �

Lemma 14 Let M = (S, sinit, Act, P, L) be an MDP, P≤λ(L) a violated ω-regular property and (S′, A) with
S′ ⊆ S and A : S′ → 2Act a critical subsystem ofM. Then there is a satisfying assignment ν of the MILP (9a)–(9r)
such that ν(xs) = 1 iff s ∈ S′.

PROOF. Let A = (Q, qinit, 2AP, δ, F) be a DRA with F = {(Ri, Ai) | i = 1, . . . , m} such that L = L(A).
Consider the MDPM′ = (S′, sinit, Act, P′, L′) with P′(s, s′) = P(s, s′) and L′(s) = L(s) for s, s′ ∈ S′ and the
product automatonM′ ⊗A. Since the subsystem is critical, there is a memoryless deterministic scheduler
σ such that (1) σ(s, q) ∈ A(s) for all (s, q) ∈ S′ × Q and (2) Pr(s,q)init

(M′⊗A)σ (♦ accept) > λ. Let B be the set of
accepting BSCCs of (M⊗A)σ and Mi =

⋃{C ∈ B |C ∩ Ri = ∅ ∧ C ∩ Ai 6= ∅}.
We define the following (partial) variable assignment:

• ν(xs) = 1 iff s ∈ S′

• ν(σs,α) = 1 iff s ∈ S′, σ(s, q) = α and an accepting BSCC is reachable from (s, q), and

• ν(p(s,q)) = Pr(s,q)
(M′⊗A)σ (♦ accept).

Now we check all constraint for satisfaction:

(9b) This constraint is satisfied since we do not select any action for states (s, q) with s 6∈ S′ and σ selects
exactly one action for each state (s, q) with s ∈ S′.

(9c) ∑α∈Act σ(s,q),α = 0 for s ∈ S′ iff no accepting BSCC is reachable from (s, q). Then Pr(s,q)
(M′⊗A)σ (♦ accept) =

0 holds and the constraint is satisfied.

(9d) Since all states of Mi are contained in a BSCC, and —for all states in a BSCC— the probability that a
successor state is also in a BSCC is 1, this constraint is fulfilled.

(9e) For states outside Mi and for actions not chosen by σ, the constraint is satisfied because in these cases
(2−mi

(s,q) − σ(s,q),α) ≥ 1. For states (s, q) with s ∈ S′ and action α = σ(s, q), ν(mi
(s′ ,q′)) = 1 is required

for all successor states (s′, q′) of (s, q). This is the case since Mi is a union of BSCCs.

(9f) In the Definition of Mi we have required that Mi ∩ Ri = ∅. Therefore this constraint is fulfilled.

(9g)–(9i) Each accepting BSCC in Mi contains by construction a state from Ai. Since in a BSCC each state is
reachable from each state, we can apply Lemma 9 to obtain a satisfying assignment for these backward
reachability constraints.

35

(9j) ν(p(s,q)init
) = Pr(s,q)init

(M′⊗A)σ (♦ accept) > λ holds since the subsystem is critical.

(9k) Since Mi contains only states in the subsystem, this inequality is satisfied.

(9l) For target states, which are the states in the accepting BSCCs, the reachability probability is one.

(9m) States not in the subsystem have probability zero. For states inside the subsystem, the inequality is
trivially satisfied.

(9o) For states in an accepting BSCC this constraint is fulfilled trivially, since the right-hand side evaluates
at least to one. The reachability probabilities for the remaining states which can reach the accepting
BSCCs satisfy the equality

p(s,q) = ∑
(s′ ,q′)∈succM′⊗A(s,q)

P′((s, q), (s′, q′)) · p(s,q)

and therefore also this constraint. For the remaining states ν(p(s,q)) = 0 holds, also satisfying the
constraint.

(9p)–(9r) : These are backward reachability constraints with the accepting BSCCs as the target states. We
distinguish different cases:

• s 6∈ S′: Set ν(tM
(s,q),(s′ ,q′)) = 0 for all q ∈ Q and all (s′, q′) ∈ succM′⊗A(s, q) and ν(rM

(s,q)) = 0. Then
all three constraints are fulfilled.

• s ∈ S′, but from (s, q) no accepting BSCC can be reached. Choose ν(tM
(s,q),(s′ ,q′)) = 0 and ν(rM

(s,q)) =

0 as in the previous case. Since ν(σ(s,q),α) = 0 for all α ∈ Act, the three constraints are satisfied.

• s ∈ S′ and from (s, q) a BSCC can be reached. According to Lemma 9 we can find a satisfying
assignment for these backward reachability constraints.

We have shown that the constructed assignment ν satisfies all constraints of the MILP. �

Lemma 15 LetM be an MDP and P≤λ(L) a violated ω-regular property. Let furthermore A = (Q, qinit, 2AP, δ, f)
be a DRA with F = {(Ri, Ai) | i = 1, . . . , n}. Assume that ν is a satisfying assignment of the MILP (9b)–(9r). Then
the subsystem (S′, A) with S′ = {s ∈ S | ν(xs) = 1} and A(s) = {α ∈ Act | ∃q ∈ Q : ν(σ(s,q),α) = 1} forms a
critical subsystem ofM.

PROOF. We define the following subsystem M′ = (S′, sinit, Act, P′, L′) with S′ = {s ∈ S | ν(xs) = 1},
A(s) = {α ∈ Act | ∃q ∈ Q : ν(σ(s,q),α) = 1},

P′(s, α, s′) =

{
P(s, α, s′) if α ∈ A(s),
0 otherwise

and L′(s) = L(s) for all s, s′ ∈ S′.
Consider the product automatonM′ ⊗A. We define a memoryless deterministic scheduler onM′ ⊗A

by σ(s, q) = α iff ν(σ(s,q),α) = 1. States (s, q), for which σ is not defined that way, are removed fromM⊗A.
For all states (s, q) which are not contained in the so constructed system, ν(p(s,q)) = 0 holds: Either s 6∈ S′,
then (9m) ensures ν(p(s,q)) = 0, otherwise, if (s, q) was removed because ν(σ(s,q),α) = 0 for all α ∈ Act,
this is ensured by constraint (9c). Note that removing states and transition cannot increase reachability
probabilities. The scheduler is well-defined, since we requested in (9b) that ν(σ(s,q),α) = 1 for at most one
action α ∈ Act.

For i = 1, . . . , n set Mi = {(s, q) ∈ S×Q | ν(mi
(s,q)) = 1}. We have that Mi ⊆ S′ ×Q since (9k) forces all

states to be included in the subsystem if they are in Mi for some i.

36

Mi contains only states for which

∑
(s′ ,q′)∈succM⊗A((s,q),σ(s,q))

P′((s, q), σ(s, q), (s′, q′)) = 1

holds due to (9d). Mi is closed under successors w. r. t. the actions selected by σ because of (9e). Furthermore,
Mi does not contain an Ri-state according to (9f). Given the assignment of σ(s,q),α, constraints (9g)–(9i)
are backward reachability constraints with the Ai-states as the target states. According to Lemma 8, an
assignment ν is satisfying these constraints iff from all states (s, q) with ν(mi

(s,q)) = 1 a target state is

reachable. Therefore all prerequisites of Lemma 1 are fulfilled. It follows that Pr(s,q)
M′⊗A(♦ accept) = 1 for all

states (s, q) ∈ ⋃n
i=1 Mi, which coincides with ν(p(s,q)) because of (9k).

We set M =
⋃n

i=1 Mi. Now consider the linear equation system describing the probabilities of reaching
an M-state:

p(s,q) =

1 if (s, q) ∈ M,
0 if M is unreachable from (s, q),

∑
(s′ ,q′)∈succM′⊗A((s,q),σ(s,q))

P′((s, q), σ(s, q), (s′, q′)) · p(s′ ,q′) otherwise.

For states (s, q) ∈ M, ν(p(s,q)) coincides with the solution of this equation system because of (9g). For states
(s, q) from which M is unreachable, the backward reachability constraints (9p)–(9r) are only satisfiable iff
ν(σ(s,q),α) = 0 for all α ∈ Act. Then ν(p(s,q)) = 0 (constraint (9c)). For the remaining states (s, q) and the
action α = σ(s, q) the following constraint (9m) is satisfied:

p(s,q) ≤ ∑
(s′ ,q′)∈succM′⊗A((s,q),α)

P((s, q), α, (s′, q′)) · p(s′ ,q′) .

According to Lemma 3, the solution of the equation system is not smaller than the solution ν(p(s,q)init
) of the

inequality, which satisfies ν(p(s,q)init
) > λ. Therefore the subsystem is critical. �

37

