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Symbolic Model Checking of DTMCs with Exact
and Inexact Arithmetic?

Ralf Wimmer, Alexander Kortus, Marc Herbstritt, and Bernd Becker

Albert-Ludwigs-University, Freiburg im Breisgau, Germany
{wimmer | kortus | herbstri | becker}@informatik.uni-freiburg.de

Abstract. In formal verification, reliable results are of utmost importance.
In model checking of digital systems, mainly incorrect implementations
due to logical errors are the source of wrong results. In probabilistic model
checking, numerical instabilities are an additional source for inconsistent
results.
In this report, we experimentally analyze the impact of inexact floating-
point arithmetic on the correctness of the result in the context of proba-
bilistic model checking of discrete-time Markov chains. Inexact arithmetic
performs implicitly rounding of values that are generated during the model
checking process.
To enable a direct comparison to the state of the art, which relies on inexact
floating-point arithmetic, we have implemented a prototypical probabilis-
tic model checker that provides standard floating-point arithmetic as well
as exact arithmetic.
During our experimental evaluation, we found practical examples where
the use of inexact arithmetic produces unacceptable results. Two reasons
for these problems are: (1) Rounding can change the structure of the sys-
tem, and (2) rounding can change the truth-value of sub-formulae. Both
issues can result in probabilities that are far away from the correct ones.
As a summary, this work reveals the demand for investigating reliable
numerical methods within probabilistic model checking.

1 Introduction

While for traditional decision problems arising in computer science a binary
true/false answer is intuitively understandable, in the domain of probabilistic
systems the interpretation of probability values can be very cumbersome. But
our nature is inherently stochastic and hence we have to cope with stochastic
systems, e.g., discrete-time Markov chains (DTMCs). At the very end of any
method for analyzing stochastic systems, there has to be a representation of
probabilistic values within the computer. Typically, the architecture of today’s
computers provide a floating-point representation for real numbers, most promi-
nently established by the IEEE 754 standard specification.

? This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.



Model checking as a verification method enables the separation of the system
model from the properties that specify the correct behavior of the system. Model
checking has been investigated very deeply in the last 25 years and has become
a mature verification methodology pushing forward the frontiers for both large
industrial systems (e.g., microprocessors) and novel academic models (e.g.,
hybrid systems). In the last 10 years, stochastic model checking has been the
focus of intense research and besides enormous advances w. r. t. probabilistic
models and logics that can be handled algorithmically, it has also reached the
usage within industrial applications.

There are several academic tools available for stochastic model checking. To
the best of our knowledge, none of these tools makes use of exact arithmetic, but
rely on inexact floating-point arithmetic. Also, to the best of our knowledge we
are not aware of publications that discuss the impact of using inexact floating-
point arithmetic on the correctness of the analysis result. Especially in the context
of probabilistic model checking this topic is often euphemized by stating that the
probabilistic values of the model are derived from natural observations which
itself are inherently stochastic. But this argument does not give the permission
to allow inadequate computations after the probabilistic values of the model
were agreed to be the most accurate values available.

The main topic of this report is therefore to discuss the impact of using inexact
and exact, resp., arithmetic while model checking probabilistic models. We will
see that in some cases discrepancies appear that clearly reveal the demand for
reliable numerical methods.

This report consists of the following parts: First, we review the basic definitions
of discrete-time Markov chains (DTMCs), the logic PCTL, and the algorithm
for model checking PCTL formulas on DTMCs. The next section is devoted
to exact arithmetic. We show at which points of conventional model checkers
inaccuracy is introduced and how this can be avoided. Then, we provide an
experimental comparison of exact and floating-point arithmetic. In section 4 we
investigate what can go wrong if we apply controlled rounding to enable a more
compact symbolic representation of the Markov chain. The report closes with a
conclusion and an outlook to future work.

2 Foundations of DTMC Model Checking

In this section we will briefly recall the definitions of discrete-time Markov
chains (DTMCs), the model we will use in this report, and the logic PCTL, which
is used for the specification of properties. We will also sketch the algorithms for
checking if a DTMC exhibits a property specified in PCTL.

2.1 Discrete-time Markov Chains

One of the simplest models in probabilistic model checking are discrete-time
Markov chains. They are essentially transition systems in which the transitions
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are labeled with the probability walk from its source state to the target state. This
probability is independent of the way the state was reached (so-called Markov
property).

Definition 1. Let AP be a fixed set of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S,P,L) such that

– S is a finite, non-empty set of states,
– P : S × S→ [0, 1] is the matrix of transition probabilities, and
– L : S → 2AP a labelling function which assigns each state the set of propositions

that are satisfied in that state.

P has to be a stochastic matrix, i. e. for each state s ∈ S the condition∑
s′∈S P(s, s′) = 1 has to be satisfied.

A path of M is a finite or infinite sequence π = s0s1s2 . . . of states such that
P(si, si+1) > 0 for all i ≥ 0. We denote the i-th state of π by πi (i. e. πi = si) and
the i-th prefix by π↑i= s0, s1, . . . , si. The number of states on a finite path π is |π|.
Paths is the set of infinite paths of M starting in state s.

Let ω be a finite path. The basic cylinder of ω is defined as

∆(ω) = {π ∈ Pathω0 |π↑|ω|= ω}

Following Markov chain theory, we now define a probability space on the
set of paths starting in state s ∈ S:

Definition 2. Given a Markov chain M = (S,P,L) and s ∈ S, we define a probability
space

Ψ s = (∆(s), ∆s,Prs)

such that

– ∆s is the σ-algebra generated by the empty set and the basic cylinders over s that
are subsets of ∆(s).

– Prs is the uniquely induced probability measure which satisfies the following con-
straint: Prs(∆(s)) = 1 and for all basic cylinders ∆(s, s1, . . . , sn) over S:

Prs(∆(s, s1, . . . , sn)) = P(s, s1) · P(s1, s2) · · · · · P(sn−1, sn).

We now illustrate the main concepts in the following example:

Example 1. In figure 1, you can see a DTMC modelling a very simple commu-
nication protocol. First, an initialization is performed, then data blocks are sent
and the process waits for an acknowledgment. This normal operation can be
interrupted by an error which occurs with probability 0.1 (when sending) and
0.05 (when waiting for an acknowledgment). After an error, the initialization
has to be repeated.

Let us consider the finite path π = s0s1s2s1s2 which is taken if two data
packets are transmitted without being interrupted by an error. It’s probability
is Prs0 (π) = 1.0 · 0.9 · 0.95 · 0.9 · 0.95 = 0.731025.
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Fig. 1. A discrete-time Markov chain

2.2 Probabilistic Computation Tree Logic

After the formal introduction of the models, we still need a formal language to
describe the properties which we want to verify. The most common language is
probabilistic computation tree logic (PCTL), which was introduced by Hansson
and Jonsson in [5].

In the following, we will briefly define syntax and semantics of PCTL before
we turn to the model checking algorithms.

Definition 3 (Syntax of PCTL). Let AP be a fixed set of atomic propositions, a ∈ AP,
Z ∈ {<,≤, >,≥}, k ∈N, and p ∈ [0, 1]. PCTL state formulae are then given by

Φ ::= true | a | ¬Φ | (Φ ∧Φ) | PZp(Ψ )

where Ψ is a path formula. PCTL path formulae are created by the following grammar:

Ψ ::= XΦ | ΦUΦ | ΦU≤k Φ.

Definition 4 (Semantics of PCTL). Let M = (S, s0,P,L) be a DTMC, a ∈ AP,
Z ∈ {<,≤, >,≥}, s ∈ S, and φ,φ1, φ2, ψ PCTL (state/path) formulae. We define the
satisfaction relation � recursively as follows:

s � true for all s ∈ S
s � a iff a ∈ L(s)
s � ¬φ iff s 2 φ
s � (φ1 ∧ φ2) iff s � φ1 and s � φ2

s � PZp(ψ) iff Pr({π |π � ψ}) Z p

π � Xφ iff π1 � φ

π � φ1 Uφ2 iff ∃i ≥ 0 : (πi � φ2 ∧ ∀ j < i : π j � φ1)

π � φ1 U≤k φ2 iff ∃0 ≤ i ≤ k : (πi � φ2 ∧ ∀ j < i : π j � φ1).
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We define the usual abbreviations for state formulae φ1, φ2, and φ:

false := ¬true
(φ1 ∨ φ2) := ¬(¬φ1 ∧ ¬φ2)

PZp(F≤kφ) := PZp(true U≤k φ)
PZp(Fφ) := PZp(true Uφ)

PZp(G≤kφ) := ¬PZ(1−p)(F≤k
¬φ)

PZp(Gφ) := ¬PZ(1−p)(F¬φ).

2.3 Model Checking PCTL

Up to now, we have introduced discrete-time Markov chains as our system
models and the logic PCTL for the description of desired properties. In this
section we will show how to compute the states which satisfy a given PCTL
formula. We will concentrate on the main principles which are necessary to
understand where inaccuracies are introduced. For more details on PCTL model
checking see e. g. [6, 7].

Like model checking for CTL, model checking for PCTL is based on recur-
sively traversing the syntax tree of the formula bottom-up and computing the
set Sat(φ) for each state sub-formula φ. This can be done for state formulae as
follows (a denotes an atomic proposition; φ, φ1, and φ2, PCTL state formulae;
ψ, a PCTL path formula; and p ∈ [0, 1], a real number):

Sat(true) = S
Sat(a) = {s ∈ S | a ∈ L(s)}

Sat(¬φ) = S \ Sat(φ)
Sat((φ1 ∧ φ2)) = Sat(φ1) ∩ Sat(φ2)

Sat(PZp(ψ)) = {s ∈ S | Pr(s, ψ) Z p}

Hereby, Pr(s, ψ) denotes the probability Pr({π ∈ Paths |π � ψ}). The remaining
task is consequently the computation of Pr(s, ψ). Depending on the path quan-
tifier (X, U≤k, U), we distinguish three cases. For each we will point out that the
main operation which has to be implemented is matrix-vector multiplication.

Next Quantifier (X) Given the set Sat(φ), the probability Pr(s,Xφ) can be com-
puted as follows:

Pr(s,Xφ) =
∑

s′∈Sat(φ)

P(s, s′)

Let χφ be a vector with

χφ(s) =

1 if s ∈ Sat(φ)
0 otherwise

5



and pψ the vector with pψ(s) = Pr(s, ψ). Then we can write:

pXφ = P · χψ.

Hence, model checking for the X quantifier requires one matrix-vector multi-
plication.

Bounded Until Quantifier (U≤k) We can characterize the bounded until oper-
ator with the following recursive equation system:

Pr(s, φ1U≤kφ2) =


1 if s ∈ Sat(φ2)
0 if s < Sat(φ1) and s < Sat(φ2)
0 if k = 0 and s < Sat(φ2)∑
s′∈S

P(s, s′) · Pr(s′, φ1U≤(k−1)φ2) otherwise.

The intuition behind it is the following: if s satisfies φ2, all paths starting in
s fulfill ψ := φ1 U≤k φ2; hence, the probability is 1. If s satisfies neither φ1 nor φ2,
ψ cannot be satisfied on any path starting in s; accordingly, the probability is set
to 0. The same holds if s does not satisfy φ2 and k = 0, such that no further steps
may be taken. Otherwise, we may walk one step and fulfill the formula in one
step less.

For the computation of the probabilities, we set pφ1U≤0φ2 = χφ2 and modify
the matrix of transition probabilities as follows:

P′(s, s′) =


1 if s ∈ Sat(φ2)
0 if s < Sat(φ1) and s < Sat(φ2)
P(s, s′) otherwise.

.

With these modifications we can write

pφ1U≤iφ2
= P′ · pφ1U≤i−1φ2

.

The probabilities we are looking for are then given by

Pr(s, φ1U≤kφ2) = pφ1U≤kφ2
.

We can conclude that we need k matrix-vector multiplication for the bounded
until operator.

Unbounded Until Quantifier (U) The unbounded until operator can be char-
acterized in a similar way as the bounded operator. But in this case the charac-
terization leads to a linear equation system:

We partition the state space into three sets S0, S1, and S? such that Pr(s, φ1Uφ2) =
1, if s ∈ S1, and 0, if s ∈ S0. S0 contains all those states from which no path leads
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to a φ2 state while passing only φ1-states. Conversely, S1 is the set of φ1-states
which do not have a path to a state in S0. S? contains all states not in S0 or S1.

These sets can be computed as follows [6]:

S f = {s ∈ S | s < Sat(φ1) ∧ s < Sat(φ2)}
Si = {s ∈ S | s ∈ Sat(φ1) ∧ s < Sat(φ2)}

S0 = S f ∪ {s ∈ Si | there exists no path in Si from s to any s′ ∈ Sat(φ2)}

S1 = Ss ∪ {s ∈ Si | there exists no path in Si from s to any s′ ∈ S0
}

S? = S \ (S0
∪ S1)

The probability that in state s, a path π is taken with π � φ1Uφ2 is then given
by the unique solution of the following system of linear equations:

Pr(s, φ1Uφ2) =


1 if s ∈ S1

0 if s ∈ S0∑
s′∈S

P(s, s′) · Pr(s′, φ1Uφ2) if s ∈ S?.

The intuition behind this equation system is the same as in the case of bounded
until. The difference is that we do not have to take a bound on the number of
steps into account.

Such linear equation systems are usually solved using iterative methods like
Jacobi, Gauß-Seidel or over-relaxation methods. The reason for using iterative
methods instead of e. g. Gaussian elimination is the following: explicit model
checkers use representations for the probability matrix which are optimized for
sparse matrices. The use of direct solution methods destroys the sparseness of
the probability matrix. Symbolic model checkers use iterative methods because
they can exploit the compact symbolic representation better than direct methods
which have to modify single elements of the matrix.

Since the Jacobi method can be implemented symbolically in a efficient
way [7], we put our focus on this method.

The Jacobi Method Assume we have to solve a linear equation system of the form
Ax = b:

|S|−1∑
i=0

Ai jx j = bi for i = 0, . . . , |S| − 1

with Aii , 0 for all i. This equation can be rearranged as follows:

xi = bi −
1

Aii

∑
j,i

Ai jx j

The Jacobi method is based on using the values from the (k − 1)-th iteration on
the right-hand side to compute the new approximation:

x(k)
i = bi −

1
Aii

∑
j,i

Ai jx
(k−1)
j
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We split the matrix A into its diagonal D and a matrix B = D−A, i. e., D contains
all diagonal elements of A and B all the negated non-diagonal elements. Then
we can write

x(k) = D−1
· (B · x(k−1) + b).

Also in this case, the main operation to perform a single iteration is matrix-
vector multiplication. This step is repeated until ‖x(k)

− x(k−1)
‖L < ε for a given

ε > 0 and a norm L on R|S|.

2.4 Symbolic Methods for PCTL Model Checking

Algorithms which rely on an explicit representation of the system are naturally
restricted to quite a small number of states. A method to overcome this problem
is the usage of symbolic data structures. Their advantage is that their size does
not directly depend on the size of the represented state space. For many practical
examples, the size of the symbolic representation is much smaller than the
explicit representation such that larger systems can be handled.

One of the most prominent symbolic data structure are binary decision
diagrams (BDDs) [2]. We assume some familiarity of the reader with BDDs. For
further information see e. g. Wegener’s monograph on decision diagrams [1].

Since the details of how the model checking algorithms can be modified to
exploit the symbolic representation efficiently are only of little importance for
the understanding of the effects of inexact arithmetic, we refer the reader to
Parker’s PhD thesis [7] about probabilistic model checking.

3 Model Checking with Exact Arithmetic

We now turn our attention to the comparison of probabilistic model checking
with exact and with floating-point arithmetic. We will first point out where in-
accuracy is introduced during the model checking process and how it can be
avoided. The effects of the floating-point arithmetic on some practical bench-
marks are then evaluated.

3.1 Sources of Inaccuracy

To identify at which points inaccuracy is introduced during the model checking
process, we had a close look at the model checker PRISM [3]. We have identified
three major sources of inaccuracy. These are not restricted to a specific tool, but
they are inherent to all state-of-the-art model checkers.

1. The floating-point arithmetic, which is used by all state-of-the-art model
checkers for PCTL.

2. The termination criterion for solving the linear equation systems for the
unbounded-until quantifier. E. g. for the Jacobi method, PRISM uses two
termination criteria: The iteration terminates either if ‖x(k)

− x(k−1)
‖∞ < ε for
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a given constant ε > 0 or if ‖x
(k)
−x(k−1)

‖∞

‖x(k)‖∞
< ε. PRISM uses the second criterion

and ε = 10−6 as default.
The floating-point arithmetic is based on IEEE standard 754 [9] for 64 bit
numbers. While the additions and multiplications are carried out with
higher precision internally, the result of each arithmetic operation is rounded
to fit into the 64-bit representation. About 15 decimal digits (51 binary dig-
its) can be represented correctly. If the result is not representable as floating-
point number with that precision the nearest representable number is chosen
if it is unique. If the result lies exactly in the middle of two floating-point
numbers, the one whose representation ends with “0” is chosen (round-to-
nearest-even). We refer the reader to e.g. [8] for details on how the rounding
for floating-point number works.

3. Another reason for inaccuracy is located in the BDD package. In most pack-
ages like Cudd [15], which is used by PRISM, there is a constant δ such that
a new leaf with value v is only generated if there is no leaf with value v′ and
|v− v′| ≤ δ for a constant δ > 0. The value of δ is chosen to be in the order of
the error by the floating-point arithmetic. Cudd uses δ = 10−12 as default.

3.2 Exact Arithmetic

By using exact arithmetic, we can eliminate the first and the third source of inac-
curacy. The second source could only be eliminated by using a direct method like
Gaussian elimination for solving linear equation systems. These direct meth-
ods, however, are very badly suited for a symbolic data representation because
single entries in the matrix have to be manipulated. Thereby the compact repre-
sentation cannot be exploited and—making it still worse—the structure of the
matrix gets lost such that the size of the MTBDD explodes.

For these reasons we decided to eliminate only the rounding problems com-
pletely by using exact arithmetic for the computations. We only lessen the inac-
curacy introduced by the termination criterion of the Jacobi method by choosing
an extremely small constant ε, e. g. ε = 2−100 in our experiments below.

3.3 Experimental Evaluation

We implemented a PCTL model checker for PCTL using C++ as programming
language. We allow for switching from floating-point arithmetic to exact arith-
metic and choosing the constants ε and δ by the user. This enables a direct
comparison of exact arithmetic with floating-point arithmetic.

We use the GNU multiple precision arithmetic library (gmp) [10] for the
exact arithmetic which supports rational numbers of arbitrary length. Their
numerators and denominators are represented by a sequence of 64 bit numbers
(called “limbs”). The library provides efficient implementations of all necessary
operations.

PRISM uses internally the Cudd [15] library for OBDDs and MTBDDs. Since
it is only able to deal with floating-point numbers which are stored in the leaves
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of the DDs, we had to modify the MTBDDs such that the gmp rationals are
used as labels of the leaves and had to change most algorithms such that the
corresponding gmp operations are used.

Furthermore, for exact arithmetic, we changed the constant δ which is used
by Cudd internally to avoid the creation of leaves whose values differ only by
less than the error induced by the floating-point arithmetic, to 0.

We used a selection of models that come with the PRISM distribution, namely
a bounded retransmission protocol (brp<N>_<MAX>) [12] and a randomized self-
stabilizing protocol (herman<N>) [11].

– brp<N>_<MAX>: This protocol tries to send a file in a number of chunks, but
allows only a bounded number of retransmissions of each chunk in case
of an error. The value N ∈ {16, 32, 64} denotes the number of chunks and
MAX ∈ {2, 3, 4, 5, 6} the maximum allowed number of retransmissions of
each chunk. The property [13] we checked is

“Eventually the sender does not report a successful transmission.”
or more formally:

Pr(s0, true U¬success),

where s0 is the initial state of the system.
– herman<N>: A self-stabilizing protocol for a network of processes is a protocol

which, when started from an arbitrary initial state, returns to a stable state
without any outside intervention within some finite number of steps. We
calculate the probability to reach a stable state within k = 100 steps, i. e.,

Pr(s0, true U≤kstable).

Table 1 contains the number of states and transitions for each model, table 2
the experimental results thereof.

Table 1. Size of the models in terms of number of states and number of transitions.

Model # States # Transitions Model # States # Transitions
brp 16 2 677 832 brp 16 3 886 1119
brp 16 4 1095 1406 brp 16 5 1304 1693
brp 16 6 1513 1980 brp 32 2 1349 1664
brp 32 3 1766 2239 brp 32 4 2183 2814
brp 32 5 2600 3389 brp 32 6 3017 3964
brp 64 2 2693 3328 brp 64 3 3526 4479
brp 64 4 4359 5630 brp 64 5 5192 6781
brp 64 6 6025 7932
herman03 8 28 herman05 32 244
herman07 128 2188 herman09 512 19684
herman11 2048 1771485 herman13 8192 1594324
herman15 32768 14348908 herman17 131072 129140164
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Table 2. Results for comparing inexact vs. exact arithmetic.

Model # Leaves Time Memory Result

brp 16 2 98 2.21 10725 0.00042333344377341790
98 1.22 9407 0.00042333345332507531

brp 16 3 130 3.96 11831 0.00001261776603623259
130 1.56 10384 0.00001261777701679546

brp 16 4 189 6.13 13007 0.00000037601158556078
162 1.95 10873 0.00000037602213653487

brp 16 5 249 8.29 14128 0.00000001120514716583
194 2.31 10697 0.00000001121397044814

brp 16 6 310 10.48 15606 0.00000000033391338724
225 9.89 12632 0.00000000034014825664

brp 32 2 215 7.94 13915 0.00084648767634221873
194 3.04 10500 0.00084648770344783594

brp 32 3 329 13.01 16145 0.00002523537286444544
258 4.07 11543 0.00002523539639424109

brp 32 4 450 18.99 18652 0.00000075202302973685
322 5.24 12105 0.00000075204403616045

brp 32 5 575 23.96 22179 0.00000002241029420610
386 5.88 15125 0.00000002243232895423

brp 32 6 702 30.59 28049 0.00000000066782677437
n. a. n. a. n. a. n. a.

brp 64 2 496 26.04 23136 0.00169225881129823822
386 9.94 14700 0.00169225884667877470

brp 64 3 738 41.14 29594 0.00005047010890484727
514 12.39 14869 0.00005047015148748653

brp 64 4 986 58.45 33447 0.00000150404549393506
642 15.49 18451 0.00000150409070913174

brp 64 5 1238 75.95 45097 0.00000004482058790997
770 28.72 18807 0.00000004484327987946

brp 64 6 1492 92.6 46901 0.00000000133565354830
n. a. n. a. n. a. n. a.

herman03 2 0 5739 1.00000000000000000000
1 0 5716 1.00000000000000000000

herman05 4 0.06 5894 0.99999999999999999961
4 0.01 5851 0.99999999997269473084

herman07 9 0.43 6036 0.99999999912510300776
25 0.22 5932 0.99999999911152470666

herman09 23 2.87 6172 0.99999604484699721382
21 1.39 6047 0.99999604484699733398

herman11 63 20.47 8295 0.99974392938338150787
63 8.59 7044 0.99974392938337242054

herman13 190 146.12 16795 0.99725437499022528290
195 56.94 12080 0.99725437498551250393

herman15 612 958.78 54535 0.98795298924500753115
1847 391.88 43981 0.98795298924165586563

herman17 2056 6677.12 221506 0.96776426181745151251
10117 2078.00 93572 0.96776426190205311340
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In table 2, the first line of each model contains the data for the exact model
checker, the second one the data of the symbolic floating-point engine. The
columns have the following meaning:

Model Name of the model.
# States The number of states the model consists of.
# Transitions The number of transitions with non-zero probability.
# Leaves The number of different leaves needed to represent the vector of the

probabilities that the path formula holds in a state.
Time The runtime of the model checking algorithm in seconds.
Memory The amount of memory used in kilobytes.
Result The probability computed by the model checking algorithm. It is the

probability that a path, starting in the initial states of the system, is taken
that satisfies the given PCTL path formula. The figures in which the exact
and the inexact model checker differ are marked bold.

It can be observed that (1) exact arithmetic often creates more different values
resulting in a higher number of leaves in the representation of the probability
vector. There are a number of exceptions (see e. g. herman17 where inexact
arithmetic creates almost 5 times as many leaves as exact arithmetic). The reason
for this artefact can be understood by the following example: Assume we are
using the number system with two decimal digits and want compute 1

3 ·3 = 1 and
2
3 ·

3
2 = 1, respectively. By using this inexact arithmetic, we obtain 0.33·3.00 = 0.99

and 0.67 ·1.50 = 1.01. Although the result should be the same, inexact arithmetic
would create two different leaves in the MTBDD.

(2) Exact arithmetic needs more time due to expensive arithmetic operations,
and (3) it consumes more memory because of the larger MTBDDs and the much
bigger size of the rational numbers. (4) In spite of the inaccuracy introduced in
every arithmetic operation, the result of the floating-point version is accurate
within an error of 10−10.

But there are two exceptions from these observations:brp_32_6andbrp_64_6.
When using ε = 10−12 the algorithm turned out to be unstable so that the Ja-
cobi algorithm did not terminate within 4 hours! Changing the value to 10−11

or 10−13, however, produced results which followed the trend from the other
benchmarks.

4 Inexact Arithmetic

After the evaluation of exact arithmetic we now turn our focus onto inexact
arithmetic, i. e. the controlled rounding of values.

4.1 Idea

Since the results of the comparison of the exact model checker with the un-
modified version of PRISM showed that the inaccuracies introduced by the
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floating-point arithmetic are relatively small, we tried to exploit the following
idea:

The problem which restricts the success of symbolic methods in probabilistic
model checking is the vector of probabilities Pr(·, ψ) which has to be computed
for each path formula. In the beginning it is sparse and contains only few dif-
ferent values. But in opposite to the probability matrix the vector is changed by
every matrix-vector multiplication. This has the effect that the vector contains
many different values already after few multiplications. Its MTBDD represen-
tation often grows so massively that it cannot be handled anymore.

The idea is to apply rounding to the vector entries, thereby reducing the
number of distinct values. The hope is that this also reduces the MTBDD size
significantly without losing so much precision that we cannot give any sensible
result.

4.2 Implementation

We changed the model checking algorithm we have used for the comparison of
exact and floating-point arithmetic in the last section such that each time a new
leaf has to be created its value is rounded to the specified precision. Since the
constant δ used to identify values which differ only very little has to become
irrelevant, we set it to 0.

Furthermore, the constant ε of the termination criterion is adapted such that
it is not smaller than the precision of the rounding mechanism (otherwise it
would not terminate).

In the following, we denote the precision to which the numbers are rounded
by σ.

4.3 Experimental Evaluation

We applied the model checking tool to the examples, which we already used
in the previous section, and increased the precision σ from 10−1 to 10−15 by
an increment of 10−1. Figures 2 and 3 show the results of the comparison to
the version with exact arithmetic for two of the benchmarks (brp_64_4 and
herman17, respectively).

The precision grows exponentially along the x-axis; the value i means that
the precision is 10−i, i. e. that we round all values to i digits after the period.
Part (a) of the figures depicts the probability for which the given path formula
holds in the initial state. In part (b) the memory consumption in kilobytes is
shown. The runtime of the model checking algorithm is displayed in part (c)
and finally the number of distinct leaves required for the representation of the
final probability vector is shown in part (d).

The following observations can be made: If the precision is very low (10−1 to
10−7 for brp_64_4 and 10−1 to 10−5 for herman17, resp.) the number of different
leaves is small, the same holds for the memory consumption and the runtime.
The error introduced by the rounding is considerable: for brp_64_4 the result is
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Fig. 2. Results for brp 64 4 depending on the chosen precision

0 instead of ∼ 1.5 · 10−6. It is much worse for herman17: the correct probability
would be in the area of 0.96, but the result when using rounding is 0. The reason
for this effect can be seen in the following example:

Example 2. Figure 4 shows a Markov chain with two states s0 and s1. In its initial state
s0 the property a U b holds with probability 1 as long as γ > 0.

Assume now that we are working with a precision σ and 0 < γ < 1
2σ. Then γ is

rounded to 0 and 1 − γ to 1. The result is a Markov chain with two disconnected states
such that it is not possible anymore to go from s0 to s1. This means, the property a U b
does not hold. The inexact model checker returns probability 0.

This problem does not only appear when transition probabilities become
0 due to rounding. The same phenomenon can also arise depending on the
formula to be checked. This is illustrated in the next example:

Example 3. Assume, we want to compute the probability with which states of the DTMC
in figure 5 satisfy the formula

c UP>0.5(a U b).

Since Pr(s1, a U b) = 0.5 + 0.25 · γ > 0.5, the property is satisfied in state s0 with
probability 1.
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Fig. 3. Results for herman17 depending on the chosen precision

Now consider the case that we are working with a precision σ and that σ ≤ γ < 2σ.
Then the structure of the DTMC is not affected by rounding the probabilities, but
the probability 0.5 + 0.25 · γ that the formula a U b is satisfied in state s1 is rounded
downwards to 0.5. This means thatP>0.5(a U b) is not satisfied in state s1 and hence the
probability that s0 satisfies c UP>0.5(a U b) becomes 0.

The picture changes if the precision is chosen high enough: The probability of the
initial state converges quickly to the exact precision. The memory consumption
and the runtime also grow, but always stays below the values of the version
with exact arithmetic. The number of leaves is ambiguous: Sometimes it is less
than the number of leaves in the exact version, sometimes it is much larger (see
e. g. herman17with precision σ = 10−6). But for both benchmarks the number of
leaves is convergent with increasing precision.

5 Conclusion

In this report we have experimentally analyzed the effect of exact and inexact
arithmetic in the context of PCTL model checking for discrete-time Markov
chains.
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We have first compared the results of a model checker with exact arithmetic
with those of a model checker which uses the standard IEEE floating-point
arithmetic. The evaluation mostly met our expectations: the deviation of the
floating-point results were in the order of magnitude of the rounding errors
and the error introduced by the termination criterion. The exception is that the
numerical instabilities prevented the termination of the algorithm in two cases.

The next step was to investigate the effects of controlled rounding to a given
precision. We have seen practical examples where inexact arithmetic produced
completely wrong results: probability 0 instead of 0.96. We have tried to find
reasons for these discrepancies: one is that the structure of the system under
consideration can be changed due to rounding of probabilities. Another source
of problems comes from the formula that is to be checked: If the probability
with which some sub-formulae hold is near the given bound, rounding can
have great impacts on the probability of the complete formula.

It is therefore of utmost importance to obtain reliable certificates for the cor-
rectness of the results since due to rounding errors completely wrong answers
can be given by the model checker. Such certificates can for example be coun-
terexamples [17] in the case that the formula is not satisfied. Another option is
to use exact or interval arithmetic [16] to compute safe approximations of the
probabilities.
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