
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Towards Symbolic Stochastic Aggregation

by
Ralf Wimmer Holger Hermanns Marc Herbstritt

Bernd Becker

AVACS Technical Report No. 16
August 2007

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© August 2007 by the author(s)
Author(s) contact: Ralf Wimmer (wimmer@informatik.uni-freiburg.de).

Towards Symbolic Stochastic Aggregation?

Ralf Wimmer1, Holger Hermanns2, Marc Herbstritt1, and Bernd Becker1

1 Albert-Ludwigs-University, Freiburg im Breisgau, Germany
{wimmer|herbstri|becker}@informatik.uni-freiburg.de

2 Saarland University, Saarbrücken, Germany
hermanns@cs.uni-sb.de

Abstract. Bisimulations are one of the classical means to fight the state
explosion problem. Especially in combination with symbolic methods,
like BDD-based data representation and algorithms that exploit the com-
pact BDD representation, they enable the minimization of very large state
spaces without losing relevant properties.
In this report, we show how a symbolic algorithm, that was originally
developed for non-stochastic systems, can be extended to compute strong
and branching bisimulations on interactive Markov chains (IMCs). An
IMC is a very general model that combines the stochastic behavior of
traditional Markov chains with action-labeled transition systems. To the
best of our knowledge, our suggested algorithm is the first symbolic al-
gorithm for both stochastic strong bisimulation and stochastic branching
bisimulation on IMCs.

1 Introduction

Two well-known modelling formalisms in system analysis are labeled tran-
sition systems (LTSs) and continuous-time Markov chains (CTMCs). The for-
mer represents the interaction of a system with its environment, the latter its
stochastic behavior. A natural combination of the two are interactive Markov
chains (IMCs), introduced by Hermanns in [1]. They are also a generalization
of continuous-time Markov decision processes (CTMDPs) in the sense that an
IMC is a CTMDP when interactive transitions and Markov transitions can only
be taken alternately. A large class of systems can therefore be modelled with
IMCs.

As it is the case for all state-based models, state space explosion is also
an issue of IMCs. Realistic systems often consist of billions of states and are
therefore hardly manageable by explicit state algorithms. One method to reduce
the state space without losing relevant properties is bisimulation minimization.
This is a well-known method for LTSs and Markov chains—in the latter case
also known as lumping [2, 3].

? This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

While bisimulations on Markov chains are naturally restricted to strong
bisimulation [1], there is a great number of different variants for labeled transi-
tion systems with so-called unobservable actions (marked with the special label
“τ”). They represent internal behavior of the system that is not observable from
the outside. The different notions of bisimulation then differ in what is meant by
“unobservable”: Is the execution of τ-steps observable, but the corresponding
number of steps is unknown? Can the user only indirectly see τ-steps when a
transition is taken to an inequivalent state? Or is it completely impossible to
observe τ-steps?

Because IMCs may also exhibit unobservable transitions one can define dif-
ferent kinds of bisimulations on IMCs. Hermanns introduced stochastic strong
and stochastic weak bisimulation for IMCs in [1]. Another important variant,
namely stochastic branching bisimulation, first appeared in [4].

For labeled transition systems symbolic algorithms (i.e., in our case algo-
rithms using BDDs for the representation of the systems and the computation
of the bisimulations) are very successful in handling huge state spaces. But to
the best of our knowledge there exists no symbolic algorithm that computes
bisimulations on IMCs.

In this report we will present such a symbolic algorithm for the computation
of stochastic strong and branching bisimulation, we will prove its correctness,
and we will describe in detail concepts for its symbolic implementation.

1.1 Related Work

Bisimulations on labeled transition systems have quite a long history. Strong
bisimulation goes back to the early 1980s. It was introduced independently by
Milner in 1980 [5] and by Park in 1981 [6]. Branching bisimulation was defined
a few years later by van Glabbeek and Weijland [7].

For both types of bisimulation there are explicit as well as symbolic algo-
rithms available: for strong bisimulation, Paige and Tarjan developed an explicit
algorithm with optimal complexity [8], symbolic algorithms for non-stochastic
strong bisimulation are presented for example in [9–11].

An explicit algorithm for branching bisimulation was developed by Groote
and Vandrager [12]. The symbolic algorithm by Bouali and de Simone [9] can be
extended to branching and weak bisimulation easily. Signature-based compu-
tation was first used by Blom and Orzan [13–15] in a distributed environment to
compute strong and branching bisimulation, thereby representing all the data
explicitly. In [16] we have shown how this algorithm can be modified to use a
symbolic representation of the data such that it can handle much larger systems.
It was generalized in [17] such that the signature-based algorithm is able to com-
pute not only strong and branching bisimulation but eight of the most relevant
types of bisimulation within a uniform framework that itself is easily extendible
to further types. Further optimizations of the algorithm are presented in [18].

For Markov chains there is also a number of publications about bisimulation
computation (or lumping): Markov chain lumping first appeared in [19]. Explicit

2

lumping algorithms are for example described in [3, 20, 21]. The first symbolic
algorithm for Markov chain lumping was developed by Derisavi in [22]. A
variant of this algorithm, that is highly influenced by our work on signature-
based bisimulation computation for LTSs [17], will appear in [23].

Stochastic strong and weak bisimulation for IMCs were proposed by Hermanns
in [1], along with explicit algorithms for their computation. They are imple-
mented in the minimization tool BM [24] that is part of the C tool
box [25, 26]. Stochastic branching bisimulation was first used in [4]. It is also
implemented in BM using an extension of the explicit algorithm of Groote
and Vaandrager [12]. We are not aware of any symbolic algorithm that computes
stochastic strong and branching bisimulations on IMCs.

This report is structured as follows: First, in Section 2 we introduce definitions
and notations that will be used throughout the report. In Section 3, we will
present our novel signature-based algorithm for stochastic strong and branch-
ing bisimulation on IMCs. Section 3 also contains the correctness proof of the
algorithm. In the following section, we describe in detail concepts for a sym-
bolic implementation that exploits the compact BDD representation of the IMC.
We conclude the report in Section 5 and additionally point out tasks for future
work.

2 Background

Interactive Markov chains (IMCs), for which we will compute bisimulation
relations in the following, are a generalization of labeled transition systems
(LTSs) and continuous-time Markov chains (CTMCs). They unite interactive
and stochastic transitions. In contrast to Markov decision processes, the inter-
active and stochastic transitions do not need to be taken alternately, but may be
executed in any order.

Definition 1. An Interactive Markov Chain (IMC) M is a quadruple M = (S,A,T,R),
where

– S is a nonempty set of states,
– A is a finite set of actions, including the so-called unobservable action τ, i.e.τ ∈,
– T ⊆ S × A × S is a set of interactive transitions, and
– R : S × S→ R≥0 is a matrix of Markov transition rates.

An IMC M = (S,A,T,R) is isomorphic to a CTMC if T = ∅ and to an LTS
if R(s, s′) = 0 for all s, s′ ∈ S. Analogously to LTSs, IMCs can exhibit so-called
unobservable (or internal) transitions. As usual we assume that these transitions
are labeled with τ.

We define a (nonnegative) real-valued function γM : S × 2S
→ R≥0, that

calculates the cumulative rate to reach a set of states C from a single state s:

γM(s,C) =
∑
s′∈C

R(s, s′).

3

Like in continuous-time Markov chains, the Markov transitions are gov-
erned by an exponential distribution: The probability that a Markov transition
is enabled within t time units is given by 1 − e−R(s,s′)·t. If a state has several
out-going Markov transitions, a race condition exists. The first transition that is
enabled is taken. The overall probability to take the Markov transition from s to
s′ within t time units is then

R(s, s′)
γM(s,S)

·

(
1 − e−γM(s,S)·t

)
if no interactive transition is taken.

For the sake of simplicity of notation we introduce some abbreviations for
an IMC M = (S,A,T,R) and states s, t, x ∈ S:

– s a
−→ t for (s, a, t) ∈ T,

– s τ9 for @s′ ∈ S : s τ−→ s′

– s a∗
−→ t for the reflexive transitive closure of T(·, a, ·), i. e., the smallest set Ta∗

with (s, a, s) ∈ Ta∗ , T(·, a, ·) ⊆ Ta∗ and (s, a, x) ∈ Ta∗
∧ (x, a, t) ∈ Ta∗

⇒ (s, a, t) ∈
Ta∗ .

– s a+
−→ t for the non-reflexive transitive closure of T(·, a, ·), i. e. s a+

−→ t iff s′ ∈ S
exists with s a

−→ s′ a∗
−→ t.

On the one hand, the probability that a Markovian transition is enabled instan-
taneously is 1− e−λ·0 = 0. On the other hand, an internal transition (labeled with
τ) may happen instantaneously because nothing may prevent or delay it. This
observation justifies to assume that an IMC that may perform an internal action
is not allowed to let time pass. This assumption is normally called the maximal
progress assumption. For more details on maximal progress the reader is referred
to [1].

Definition 2. A state s ∈ S is said to be maximal-progress-cut if s τ
→ implies

γM(s,S) = 0. An IMC M = (S,A,T,R) is maximal-progress-cut, if each state s ∈ S is
maximal-progress-cut.

A consequence of the maximal progress assumption is that we may remove
the Markovian transitions from those states that have an out-going τ-transition.
For an IMC M, we denote by cut(M) the IMC obtained by cutting Markov transi-
tions from all states s satisfying s τ−→. cut(M) is obviously maximal-progress-cut.

In the same way as on labeled transition systems and Markov chains, one
can define equivalence relations on the state space of an IMC. Since IMCs can
contain transitions labeled with τ, there are also different kinds of bisimulation
for IMCs. Among the most important ones are stochastic strong bisimulation
and stochastic branching bisimulation.

Later, we will represent the equivalence relations using partitions. Hence,
we now define the notion of a partition more formally:

4

Definition 3. Let S be a set. A partition P of S is a subset P ⊆ 2S such that⋃
C∈P

C = S and ∀C,C′ ∈ P : (C = C′ ∨ C ∩ C′ = ∅).

The elements of P are called classes or blocks. A partition P is coarser than a partition
Q (denoted P v Q) if ∀C ∈ P∃C′ ∈ Q : C ⊆ C′.

For an IMC M = (S,A,T,R) and a partition P of S, we will use following
notations:

– s ≡P t if there is a block C ∈ P such that s ∈ C and t ∈ C. Obviously ≡P is an
equivalence relation.

– s a
−→
P

t if s a
−→ t and s ≡P t,

– s a∗
−→
P

t if s a∗
−→ t and s ≡P t. Such a transition sequence whose first and last

state are contained in the same block is called inert.
– P(s) := {t ∈ S | s ≡P t} denotes the block of P that contains s.

2.1 Stochastic Strong Bisimulation

Definition 4. An equivalence relation B ⊆ S×S is a stochastic strong bisimulation
iff s ≡B t implies for all a ∈ A and all equivalence classes C of B

1. s a
−→ s′ implies t a

−→ t′ for a t′ ∈ S with s′ ≡B t′.
2. s τ9 implies γM(s,C) = γM(t,C).

Two states s and t are strongly bisimilar (s ≡s t) if they are contained in some
stochastic strong bisimulation. Obviously, M ≡s cut(M).3

If R(s, s′) = 0 for all s, s′ ∈ T, stochastic strong bisimulation coincides with
non-stochastic strong bisimulation, and if T = ∅ it coincides with lumping on
Markov chains.

Lemma 1. For a maximal-progress-cut IMC M = (S,A,T,R), B ⊆ S×S is a stochastic
strong bisimulation iff s ≡B t implies for all a ∈ A and all equivalence classes C of B

1. s a
−→ s′ implies t a

−→ t′ for some t′ ∈ S with s′ ≡B t′.
2. γM(s,C) = γM(t,C).

Proof. This lemma follows immediately from the definitions of stochastic strong
bisimulation and maximal-progress-cut. ut

This characterization of stochastic strong bisimulation will be used later for
the computation.

3 This should be understood in the following way: Construct the disjoint union of the
two IMCs resulting in a new IMC M′. M and cut(M) are then strongly bisimilar if there
is a stochastic strong bisimulation on M′ which relates all corresponding state pairs of
M and cut(M).

5

2.2 Stochastic Branching Bisimulation

Definition 5. An equivalence relation B ⊆ S × S is a stochastic branching bisimu-
lation iff s ≡B t implies for all a ∈ A and all equivalence classes C of B

1. s a
−→ s′ implies

(a) a = τ and s ≡B s′, or
(b) there exist t′, t′′ ∈ S with t τ

∗

−→
B

t′ a
−→ t′′ and s′ ≡B t′′.

2. s τ9 implies
(c) ∃t′ ∈ S : t τ

∗

−→
B

t′ τ9 ∧γM(s,C) = γM(t′,C).

Two states s, t ∈ S are stochastic branching bisimilar (s ≡b t) if they are
equivalent w. r. t. some stochastic branching bisimulation. It is easy to see that
every stochastic strong bisimulation is also a stochastic branching bisimulation.
This implies that M and cut(M) are stochastic branching bisimilar.

We will now give more insight into stochastic branching bisimulation and
prove two lemmas which give a more appropriate characterization for com-
puting the bisimulation relation. They go back to an unpublished note [27] by
Holger Hermanns.

Lemma 2. For a maximal-progress-cut IMC M = (S,A,T,R), B ⊆ S×S is a stochastic
branching bisimulation iff s ≡B t implies for all a ∈ A and all equivalence classes C of B

1. s a
−→ s′ implies

(a) a = τ and s ≡B s′, or
(b) there are t′, t′′ ∈ S with t τ

∗

−→
B

t′ a
−→ t′′ and s′ ≡B t′′.

2. γM(s,C) > 0 implies
(c) γM(s,C) = γM(t′,C) for some t′ ∈ S such that t τ

∗

−→
B

t′ τ9.

3. s τ9 implies that there is a t′ ∈ S such that t τ
∗

−→ t′ τ9

Proof. Let B be a stochastic branching bisimulation according to definition 5. To
see that it also satisfies the requirements of lemma 2, we briefly discuss why the
second condition of lemma 2 is satisfied. The first and third clause are obvious
implications of the definition of stochastic branching bisimulation.

For s ≡B t let γM(s,C) > 0. Since the IMC is maximal-progress-cut, this
implies s τ9; hence we can use the second clause of definition 5 to conclude the
proof of this case.

Now let B be an equivalence relation satisfying lemma 2, and assume s ≡B t.
The requirements of the first condition of definition 5 are obviously fulfilled.
For the second condition, assume s τ9. In this situation, we distinguish the cases
γM(s,C) > 0 and γM(s,C) = 0. In the former case, the second clause of lemma 2
provides us with a state t′ that satisfies all the requirements of definition 5. In
particular, γM(t′,C) > 0, hence we get t′ τ9 since the IMC is maximal-progress-
cut. In case γM(s,C) = 0 we cannot use the second clause of lemma 2. The third

6

clause however provides us with a state t′. We now consider the case s ≡B t′, the
converse is treated afterwards. If γM(t′,C) = 0 the proof of this case is complete.
If instead γM(t′,C) > 0, we have by symmetry of B, that t′ ≡B s. Recalling t′ τ9
and s τ

9, the second clause of lemma 2 implies γM(t′,C) = γM(s,C), because

s τ∗
−→ s is the only option. This yields a contradiction, completing the proof for

the case s ≡B t′. It remains the case that s ≡B t′ does not hold. In this case, we
know for sure that t τ

∗

−→ t′ has at least length 1. We use induction on the length
of this sequence. We only consider the base of the induction here, that is t τ−→ t′.
Now, using symmetry of B, we apply clause 1(b) of lemma 2 to t ≡B s. Since

t τ−→ t′, also s τ
+

−→ s′ must hold for some s′, contradicting the assumption s τ9. ut

In the setting of IMCs, divergence corresponds to cycles of τ-transitions (they
may induce time-locks). The third clause of the lemma above makes it evident
that stochastic branching bisimulation is divergence sensitive, in the sense that
two states are only equivalent if

– either of them can escape divergence by means of a τ-step, or
– neither of them can escape divergence by means of a τ-step.

This fact can be made explicit by strengthening the third clause as follows:

Lemma 3. For a maximal-progress-cut IMC M = (S,A,T,R), B is a stochastic branch-
ing bisimulation iff s ≡B t implies for all a ∈ A and all equivalence classes C of B

1. s a
−→ s′ implies

(a) a = τ and s ≡B s′, or
(b) there are t′, t′′ ∈ S with t τ

∗

−→
B

t′ a
−→ t′′ and s′ ≡B t′′.

2. γM(s,C) > 0 implies
(c) γM(s,C) = γM(t′,C) for some t′ such that t τ

∗

−→
B

t′

3. ∃s′ : s τ
∗

−→ s′ τ9 iff ∃t′ : t τ
∗

−→ t′ τ9.

Proof. The implication from lemma 3 to lemma 2 is obvious. For the converse,
let B be an equivalence relation satisfying lemma 2, and assume s ≡B t. Due

to the symmetry of B we only consider the implication from ∃s′ : s τ∗
−→ s′ τ9 to

∃t′ : t τ
∗

−→ t′ τ9. To show the latter assuming the earlier, we proceed by induction

on the length of the sequence s τ
∗

−→ t′ τ9. If this length is 0, we can use the third

clause of lemma 2 to conclude t τ
∗

−→ t′ τ9. Assume we know this for length n, i. e.

s′′ ≡B t′′ and s′′ τ−→ · · · τ−→︸ ︷︷ ︸
n

s′ τ9 imply t′′ τ−→ · · · τ−→ t′ τ9

We need to derive from the above induction hypothesis that

s ≡B t and s τ−→ s′′ τ−→ · · · τ−→︸ ︷︷ ︸
n

s′ τ9 imply t τ−→ · · · τ−→ t′ τ9

7

holds. If s ≡B s′′ we use symmetry and transitivity of B to derive s′′ ≡B t and
conclude the proof via the induction hypothesis. Otherwise we apply clause

1(b) of lemma 2 to conclude that t τ
+

−→ t′′ and s′′ ≡B t′′. The latter allows us to

use the induction hypothesis to eventually arrive at t τ
+

−→ t′′ τ
∗

−→ t′ τ9, completing
the proof. ut

In the following we will use the characterization of stochastic branching
bisimulation given in lemma 3.

One of the most important applications of stochastic strong and branching
bisimulation (or bisimulations in general) is—besides equivalence checking
w. r. t. observable behavior—the minimization of systems. The so-called quo-
tient system is constructed by collapsing the equivalence classes into new states
and adapting the transitions:

Definition 6. Let M = (S,A,T,R) be a maximal-progress-cut IMC and P a stochastic
strong or branching bisimulation. The quotient M/P is an IMC M′ = (S′,A′,T′,R′)
with

– S′ = {P(s) | s ∈ S}, the set of equivalence classes,
– A′ = A,

– (C, a,C′) ∈ T′ iff



∃s ∈ C, s′ ∈ C′ : (s, a, s′) ∈ T for strong bisim.

∃s ∈ C, s′ ∈ C′ : (s, a, s′) ∈ T ∧
¬

(
a = τ ∧ C = C′∧

(∃t ∈ C∃t′ ∈ S : t τ
∗

−→ t′ τ9)
) for branching bisim.

– R(C,C′) = max
s∈C
γM(s,C′).

The transition relations for both sorts of bisimulation are well-defined: all
strongly bisimilar states have interactive transitions with the same label to
equivalent states. In case of branching bisimulation, all states can execute the
same observable transitions leading to the same equivalence classes, possibly
after some inert τ-steps. For stochastic branching bisimulation, if the states of an
equivalence class can escape divergence, the inert τ-self-loops are not needed
in the quotient and therefore removed.

The reason for taking the maximum of the rates for constructing the quotient
is only branching bisimulation: some of the equivalent states may have out-
going τ-transitions and thus rate 0. But if there are states in the same class
without τ-transitions, their rate r ≥ 0 has to be used for the quotient. This rate
however is the same for all equivalent states without τ-steps. For the rate matrix
of the quotient w. r. t. stochastic strong bisimulation, the rates of an arbitrary state
contained in the equivalence class could be used instead of the maximum.

3 Bisimulation Computation

We will now show how the following problem can be solved:

8

Given an initial partition P(0), compute the coarsest stochastic strong /
branching bisimulation that is a refinement of P(0).

The standard approach is to start with the initial partition and refine it iteratively
until a bisimulation is obtained. We will also follow this approach.

The rough idea of our algorithm is the following: compute the signatures
of all states—a signature characterizes a state regarding the actions that can be
executed in this state—and group the states according to their signatures. This
yields a refined partition. Iterate this refinement step until a fixpoint is reached.
The result is the coarsest stochastic strong / branching bisimulation.

Details about the signatures and the refinement are given in the following.

3.1 Stochastic Strong Bisimulation

As shown in [23], we cannot compute the signatures of all states first and then
refine the whole partition in one step if we want to be able to take an arbitrary
initial partition P(0) into account. Instead, we will group the blocks of the current
partition according to P(0). This will be called a hyper-partition.

Definition 7. Let P(0) and P be partitions with P v P(0). Then the hyper-partition of
P induced by P(0) is given by

P̂ :=
{
{C ∈ P |C ⊆ C(0)

}

∣∣∣C(0)
∈ P(0)

}
.

The elements of P̂ are called hyper-blocks.

In the following we will always assume that a fixed initial partition P(0) is
given. For a partition P v P(0) we will denote the corresponding hyper-partition
by P̂. Obviously the following facts hold for partitions P,Q v P(0):

P = ∪P̂ :=
⋃
M∈P̂

M (1)

P = Q ⇔ P̂ = Q̂ (2)

We will now define two signatures and a refinement operator, which are
used for the computation of stochastic strong bisimulations. While in the non-
stochastic setting, one signature suffices to compute strong bisimulation [17], we
have to use two for IMCs: the non-stochastic signature sigs

ns is the same as used
for labeled transition systems; it describes the interactive transitions executable
in a state s. The stochastic signature sigs

s was used e. g. in [23] for the lumping
relation; it assigns the cumulative transition rates into the blocks of the current
partition to the states. They are formally defined as follows.

Definition 8. Let P be a partition. Then, the non-stochastic signature sigs
ns and the

stochastic signature sigs
s for stochastic strong bisimulation are defined as

sigs
ns(P, s) = {(a,C) ∈ A × P | ∃s′ ∈ C : s a

−→ s′} (3)

sigs
s(P, s) = {(r,C) ∈ R≥0

× P | r = γM(s,C)} (4)

9

Given a hyper-partition P̂, the refinement operator sigrefs groups the states
of the hyper-blocks according to their signatures such that afterwards states
with different signatures are placed in different blocks. Thereby no state may
leave its hyper-block.

Definition 9. Let P̂ be a hyper-partition. Then, the refinement operator sigrefs is
defined as

sigrefs(P̂,M) =
{
{t ∈ ∪M | sigs

ns(∪P̂, s) = sigs
ns(∪P̂, t) (5)

∧ sigs
s(∪P̂, s) = sigs

s(∪P̂, t)}
∣∣∣s ∈ ∪M

}
sigrefs(P̂) = {sigrefs(P̂,M) |M ∈ P̂} (6)

This operator is applied iteratively until the hyper-partition does not change
anymore. The resulting algorithm works as follows:

Algorithm 1: computeStochasticStrongBisimulation(P(0))
B

P̂(0)
←

{
{C}
∣∣∣C ∈ P(0)

}
(1)

i← 0 (2)
R (3)

P̂(i+1)
← sigrefs(P̂(i)) (4)

i← i + 1 (5)
U P̂(i) = P̂(i−1) (6)
R ∪P̂(i) (7)

E

We will now prove the correctness of the algorithm in three steps: first we
show that it terminates after a finite number of iterations. Then we prove that
the result is a stochastic strong bisimulation, before we strengthen this result by
proving that the partition returned by the algorithm is the coarsest stochastic
strong bisimulation which refines the given initial partition.

Lemma 4. Algorithm 1 terminates after a finite number of iterations.

Proof. To keep the notation simple, we will write P for ∪P̂.
We will prove that P(i)

v P(i−1) holds for all i > 0. Since there is only a finite
number of partitions of a finite set and the sequence is monotonically decreasing,
this implies that the sequence of partitions converges after n iterations for some
n ≥ 0, i. e. P(n) = P(n−1). According to equation (2) we then have P̂(n) = P̂(n−1), and
the algorithm terminates.

We will prove the claim by induction on i. The induction base (P(1)
v P(0)) is

trivial because every hyper-partition that is compatible with P(0) is a refinement
of P̂(0). Let us assume that i > 1 and that the claim is true for all j < i and s ≡P(i) t.
We have to show that this implies s ≡P(i−1) t.

The states s and t are contained in the same hyper-block of P̂(i). Since states
always stay in the same hyper-block, s and t are also contained in the same

10

hyper-block of P̂(i−1). We make the assumption that s .P(i−1) t. This means that
sigs

ns(P
(i−2), s) , sigs

ns(P
(i−2), t) or sigs

s(P
(i−2), s) , sigs

s(P
(i−2), t)

We first consider the former case. W. l. o. g. there is (a,C) ∈ sigs
ns(P

(i−2), s)
such that (a,C) < sigs

ns(P
(i−2), t). Hence, there is s′ ∈ C with s a

−→ s′ and for all
t′ ∈ C there is no transition t a

−→ t′. This again implies (a,P(i−1)(s′)) ∈ sigs
ns(P

(i−1), s)
and (a,P(i−1)(t′)) < sigs

ns(P
(i−1), t) for all t′ ∈ C. It follows that sigs

ns(P
(i−1), s) ,

sigs
ns(P

(i−1), t) and therefore s .P(i) t. This contradicts our assumption and con-
cludes the proof for the first case.

In the latter case, assume (r,C) ∈ sigs
s(P

(i−2), s) and (r,C) < sigs
s(P

(i−2), t), i. e.
γM(s,C) , γM(t,C). Since P(i−1) is a refinement of P(i−2) by induction hypothesis,
C is the union of pairwise disjoint blocks C1, . . . ,Ck of P(i−1), i. e., γM(u,C) =∑k

j=1 γM(u,C j) for all states u ∈ S. So there must be a block C j with γM(s,C j) ,
γM(t,C j). Then (γM(s,C j),C j) ∈ sigs

s(P
(i−1), s) and (γM(s,C j),C j) < sigs

s(P
(i−1), t).

This implies s .P(i) t, again contradicting our assumption. ut

Lemma 5. If P̂ is a hyper-partition with P̂ = sigrefs(P̂), then ∪P̂ is a stochastic strong
bisimulation.

Proof. For simplicity of notation we again use P as an abbreviation for ∪P̂.
Assume P̂ is a fixpoint of sigrefs. Furthermore, let s ≡P t. If the transition s a

−→ s′

exists, (a,P(s′)) ∈ sigs
ns(P, s). Because P̂ is a fixpoint, all equivalent states have the

same signature, i. e., (a,P(s′)) ∈ sigs
ns(P, t). Then there is a transition t a

−→ t′ with
s′ ≡P t′.

Let C be a block of P and r = γM(s,C). If s τ
→ there is nothing to show.

Otherwise (r,C) ∈ sigs
s(P, s). Because s and t have the same signatures, (r,C) ∈

sigs
s(P, t). This means r = γM(t,C). We can conclude that P is a stochastic strong

bisimulation. ut

Lemma 6. Let M = (S,A,T,R) be a maximal-progress-cut IMC,Bs a stochastic strong
bisimulation on M, and P̂ a hyper-partition with Bs

v ∪P̂. Then Bs
v ∪ sigrefs(P̂)

holds.

Proof. As usual, we write P for ∪P̂. Let s ≡Bs t and hence s ≡P t. We have to
show that this implies sigs

ns(P, s) = sigs
ns(P, t) and sigs

s(P, s) = sigs
s(P, t).

Let (a,C) ∈ sigs
ns(P, s). By definition of the non-stochastic signature, this

means that there is s′ ∈ C such that s a
−→ s′. Since s ≡Bs t and Bs is a stochastic

strong bisimulation, we can conclude that there is t′ ∈ S with t a
−→ t′ and s′ ≡Bs t′.

Because of Bs
v P, we have t′ ∈ C and (a,C) ∈ sigs

ns(P, t). We can conclude that
sigs

ns(P, s) ⊆ sigs
ns(P, t). The equality of the non-stochastic signatures follows then

for symmetry reasons.
Let (r,C) ∈ sigs

s(P, s). Then r = γM(s,C). Because Bs
v P holds, C is the

union of pairwise disjoint blocks C1, . . . ,Ck of Bs. Since M is a stochastic strong
bisimulation and M maximal-progress-cut (otherwise the following would only
hold if s τ9), the condition γM(s,C j) = γM(t,C j) is satisfied for 1 ≤ j ≤ k and

11

hence

r = γM(s,C) =
k∑

j=1

γM(s,C j) =
k∑

j=1

γM(t,C j) = γM(t,C).

Therefore we have (r,C) ∈ sigs
s(P, t). Since there is exactly one entry in sigs

s(P, t)
per block, the equality of the stochastic signatures follows. ut

These three lemmas together prove the following theorem:

Theorem 1. For any maximal-progress-cut IMC M = (S,A,T,R) and any initial
partition P(0) of S, algorithm 1 computes the coarsest stochastic strong bisimulation
that refines P(0).

3.2 Stochastic Branching Bisimulation

The idea for the computation of the coarsest stochastic branching bisimulation
is the same as for stochastic strong bisimulation: We characterize the interactive
and the stochastic behavior by two signatures. They differ from the signatures
of stochastic strong bisimulation in the way they take τ-transitions into account:
Before executing the observable transition and before taking a Markov transition
to a certain equivalence class, an inert sequence of τ-steps of arbitrary length
may be executed.

Definition 10. Let P be a partition. Then, the non-stochastic signature sigb
ns and the

stochastic signature sigb
s for stochastic branching bisimulation are defined as

sigb
ns(P, s) =

{
(a,C) ∈ A × P

∣∣∣∃s′ ∈ S, s′′ ∈ C : s τ
∗

−→
P

s′ a
−→ s′′

∧ (a , τ ∨ (s, s′′) < P)
}

(7)

sigb
s (P, s) =

{
(r,C) ∈ P ×R≥0

∣∣∣C ∈ P ∧ r = max{γM(s′,C) | s τ
∗

−→
P

s′ τ9}
}

(8)

For efficiency considerations we use a slightly different refinement operator
for stochastic branching bisimulation: Since the signatures depend on the pairs
of states that are connected by an inert τ-sequence it would be necessary to
compute the pairs (s, t) of states with s ≡P t. For reasons which will become clear
in section 4 about the symbolic implementation, the computation of this relation
is extremely inefficient using our partition representation. It can be avoided by
refining the current partition block by block:

Definition 11. Let P be a partition. Then, the refinement operator sigrefb is defined as

sigrefb(P,C) =
{
{t ∈ C | sigb

ns(P, s) = sigb
ns(P, t) ∧ sigb

s (P, s) = sigb
s (P, t)}

∣∣∣ s ∈ C
}

(9)

sigrefb(P) =
⋃
C∈P

sigref(P,C) (10)

12

Another difference to stochastic strong bisimulation is given by the diver-
gence sensitivity of stochastic branching bisimulation (see clause 3 of lemma 3).
Divergence can be taken into account by using an appropriate initial partition:
we split the blocks of the given initial partition P(0) into the states that can escape
divergence and those that cannot. This leads to a refined initial partition, which
is defined as follows:

P̃(0) =
{
{s ∈ B | ∃s′ ∈ S : s τ

∗

−→ s′ τ9}
∣∣∣B ∈ P(0)

}
∪

{
{s ∈ B |@s′ ∈ S : s τ

∗

−→ s′ τ9}
∣∣∣B ∈ P(0)

} (11)

The result is the following algorithm:

Algorithm 2: computeStochasticBranchingBisimulation(P(0))
B

Compute P̃(0) as given in formula (11) (1)
i← 0 (2)
R (3)

P̃(i+1)
← sigrefb

(
P̃(i)
)

(4)
i← i + 1 (5)

U P̃(i) = P̃(i−1) (6)
R P̃(i) (7)

E

The correctness of the algorithm can be shown in a similar way as for the
algorithm for stochastic strong bisimulation:

Lemma 7. Let P(0),P(1),P(2), . . . be a sequence of partitions with P(i+1) = sigrefb(P(i)).
Then there exists n ≥ 0 with P(n+1) = P(n).

Proof. The sequence of partitions is bounded below by {{s} | s ∈ S}. Furthermore
it is monotonic decreasing and hence convergent. Because there are only finitely
many partitions of a finite set, the limit is reached after finitely many refinement
steps. ut

Lemma 8. Let

Pdiv =
{
{s ∈ S | ∃s′ ∈ S : s τ

∗

−→ s′ τ9}, {s ∈ S |@s′ ∈ S : s τ
∗

−→ s′ τ9}
}
.

If P is a partition with P v Pdiv and sigrefb(P) = P, then P is a stochastic branching
bisimulation.

Proof. Let P be a partition satisfying the prerequisites of lemma 8. Because of
P v Pdiv, the third clause of lemma 3 is satisfied.

Let us assume, that s ≡P t and that the transition s a
−→ s′ exists. If a = τ and

s ≡P s′ there is nothing to show. Otherwise (a,P(s′)) ∈ sigb
ns(P, s). Because P is a

fixpoint, sigb
ns(P, s) = sigb

ns(P, t). This implies (a,P(s′)) ∈ sigb
ns(P, t). By definition

13

of the signature there exist t′, t′′ ∈ S with t τ
∗

−→
P

t′ a
−→ t′′ and t′′ ≡P s′. This shows

the first clause of lemma 3.
Now, let (r,C) ∈ sigb

s (P, s) and s ≡P t. If s has an out-going τ-transition there
is nothing to show. So we can assume that s has no out-going τ-transitions.

Then the set {γM(s′,C) | s τ
∗

−→
P

s′ τ9} contains exactly one element, namely γM(s,C),

i. e., r = γM(s,C). Because the signatures of s and t are identical (otherwise P

would not be a fixpoint), we have that r = max{γM(t′,C) | t τ∗
−→
P

t′ τ9} and in

particular that there is t′ ∈ S with t τ
∗

−→
P

t′ τ9 and r = γM(t,C). Now, it follows that

also the second clause of lemma 3 is fulfilled and P is a stochastic branching
bisimulation. ut

Lemma 9. Let M = (S,A,T,R) be a maximal-progress-cut IMC, Bb a stochastic
branching bisimulation on M, and P a partition with Bb

v P. Then Bb
v sigrefb(P)

holds.

Proof. Let s0 ≡Bb t0. We have to show that the signatures of s0 and t0 are identical.
The proof for the non-stochastic signature is exactly the same as in [13]. So we
only give the proof for the stochastic signature here.

Let (r,C) ∈ sigb(P, s0), i. e., r = max{γM(s′,C) | s0
τ∗
−→
P

s′ τ9}. We have to prove,

that r = max{γM(t′,C) | t0
τ∗
−→
P

t′ τ9}. Due to symmetry reasons it suffices to show

that r ≤ max{γM(t′,C) | t0
τ∗
−→
P

t′ τ9}.

Let us assume first that r > 0. Then there exist s1, . . . , sn ∈ S with si
τ
−→ si+1 for

0 ≤ i < n and s0 ≡P sn as well as r = γM(sn,C). We now distinguish two cases:

– s0 ≡Bb sn. SinceBb is an equivalence relation (sn, t0) ∈ Bb holds. It is further-
more a stochastic branching bisimulation on the maximal-progress-cut IMC
M. This means, according to lemma 3, since r > 0, that there is t′ ∈ S with

t0
τ∗
−−→
Bb

t′ τ9 and γM(t′,C) = r. We have hereby implicitly used the fact that C

is the pairwise disjoint union of blocks of Bb.
– s0 .Bb sn. We will construct a path starting in t0 inductively. Let us assume

that ti is already defined for i < n such that si ≡Bb ti. If si ≡Bb si+1 holds, set
ti+1 := ti. Otherwise, there are (since Bb is a stochastic branching bisimula-

tion) t′i and ti+1 with ti
τ∗
−−→
Bb

t′i
τ
−→ ti+1 and si+1 ≡Bb ti+1. Taken this together, we

have t0
τ∗
−→ tn and sn ≡Bb tn. By definition of stochastic branching bisimula-

tion there is t′n with tn
τ∗
−−→
Bb

t′n
τ
9 and γM(t′n,C) = r. BecauseBb is a refinement

of P it holds that t0
τ∗
−→
P

t′n and hence also r ∈ {γM(t′,C) | t τ∗
−→
P

t′ τ9}, i. e.,

r ≤ max{γM(t′,C) | t τ
∗

−→
P

t′ τ9}

14

We still have to show that r = 0 implies max{γM(t′,C) | t0
τ∗
−→
P

t′ τ9} = 0. We

prove this by contradiction. Therefore, we make the assumption that there is t′

with t0
τ∗
−→
P

t′ τ9 and γM(t′,C) > 0. If t0 ≡Bb t′, Bb being a stochastic branching

bisimulation implies that there is s′with s0
τ∗
−−→
Bb

s′ τ9 and γM(s′,C) = γM(t′,C) > 0.

This is a contradiction to r = 0. Otherwise, if t0 .Bb t′ we can construct a path

s0
τ∗
−→ s′ as above with s′ ≡Bb t′. BecauseBb is a stochastic branching bisimulation

we can conclude the existence of s′′with s τ∗
−−→
Bb

s′′ τ9 andγM(s′′,C) = γM(t′,C) > 0,

which is a contradiction to r = 0. ut

These three lemmas together proof the following theorem:

Theorem 2. For maximal-progress-cut IMCs, algorithm 2 computes the coarsest stoch-
astic branching bisimulation that refines the given initial partition.

What we described above is not the only possibility for computing the
bisimulation relations. We discuss some alternatives in the following.

Remark 1. We could use the following stochastic signature for branching bisim-
ulation instead:

ŝig
b
s (P,S) =

{
(C, {r | r = γM(s′,C) ∧ s τ

∗

−→
P

s′ τ9}) |C ∈ P
}

If we would use this signature for the refinement instead of sigb
s , the result

would also be the coarsest stochastic branching bisimulation that refines the
initial partition. The reason not to do so is due to implementation: The use
of the modified signature would require to store sets of numbers in the leafs
of MTBDDs which is not possible in any state-of-the-art implementation of
MTBDDs, e.g. [28].

Remark 2. Using the signatures for branching bisimulation together with algo-
rithm 1 and the divergence-sensitive initial partition would also yield the same
result as algorithm 2.

Also the other variant would work: using the signatures of stochastic strong
bisimulation together with algorithm 2 (without the refinement of the initial
partition to take divergence into account) would yield the coarsest stochastic
strong bisimulation that refines the initial partition.

As already said, the reason for using two different algorithms is efficiency. We
will explain in the next section why it is very important to avoid the computation
of the relation s ≡P t symbolically when using our BDD-based representation.
For strong bisimulation, this relation is not needed. So we use the more efficient
algorithm 1 in that case. The signatures of branching bisimulation depend on
inert τ-transitions. To avoid the expensive computation of the equivalence rela-
tion above we compute the signature only of one block at a time as indicated in
algorithm 2.

15

4 Concepts for Symbolic Implementation

In this section we will present concepts for the symbolic implementation of the
algorithms introduced in the previous section. We will go into details regarding
the symbolic representation of IMCs, partitions and the signatures. After that we
will first show how to refine the given initial partition such that the divergence of
stochastic branching bisimulation is taken into account. Then we explain how
the stochastic and non-stochastic signatures of strong and branching bisimu-
lation can be computed symbolically. Afterwards we show how to refine the
partition using the signatures and how to compute the quotient system once
the bisimulation has been computed. Finally, we show how to carry over some
optimizations that were proved useful in the non-stochastic domain [18].

4.1 Symbolic Representation using OBDDs and MTBDDs

Binary decision diagrams (BDDs) will play a central role in our implementa-
tion of the bisimulation algorithm. They can be used to represent boolean and
pseudo-boolean functions f : {0, 1}n → {0, 1} (OBDDs) and f : {0, 1}n → R (MTB-
DDs), respectively, in a compact way. Algorithms that exploit the structure of
(MT)BDDs can often handle much larger problems than explicit algorithms.

In the following we will assume that the reader is familiar with BDDs.
Detailed information about them can be found for example in [29].

Representation of an IMC To represent the set S ⊆ {0, 1}n of states, one can use the
OBDD of its characteristic function, i. e. an OBDD S with S(s) = 1 iff s ∈ S. The
same kind of representation can be used for the interactive transitions: we use
an OBDD T (s, a, t) such that T (s, a, t) = 1 iff s a

−→ t.
For the representation of the Markov transition relation we make use of an

MTBDD R whose leaves are labeled with the distinct rates contained in the
matrix. The path given by a state pair (s, t) ends in the leaf labeled with R(s, t).

Partition Representation To represent partitions symbolically there are several
possibilities:

The simplest one is to use one OBDD per block that describe the states
contained in the corresponding block. This has the drawback that a large number
of OBDDs has to be maintained if the number of blocks becomes large.

A more memory-efficient representation was suggested by Derisavi [22]:
Derisavi does not store one OBDD per block, but uses a kind of logarithmic
encoding, thereby needing only a logarithmic number of OBDDs. Accessing
the blocks then needs an amortized constant number of OBDD-operations if
the order in which the blocks are accessed is chosen carefully. Nevertheless, the
access to the blocks needs a significant amount of time.

A third possibility, which is used by Bouali and de Simone in [9], is to
represent the corresponding equivalence relation, i. e., to use an OBDD E(s, t)
with E(s, t) = 1 iff s ≡P t. This representation has the disadvantage that it is

16

often quite memory-consuming and that the extraction of the quotient system
is inefficient.

We assume that the initial partition is given using the first representation
with one OBDD per block. Since the initial partition normally consists only of
few blocks, this does not cause any memory problems. For the actual execution
of the refinement algorithm we will use a fourth possibility: we assign a unique
number to each block, encoding this number using a new vector k of binary
variables. Then, a partition P = {C0, . . . ,Cm−1} is represented by an OBDDP(s, k)
such that P(s, k) = 1 iff s ∈ Ck. The advantages of this representation are (1) that
the signatures and the refinement can be computed very efficiently as we will
see in the following and (2) that the extraction of the quotient system can be
done easily. As long as the number of blocks does not grow too much, it is also
memory-efficient.

Signature Representation We use the concept of the block numbers also for the
representation of the signatures: The non-stochastic signatures are represented
by an OBDD σs/b

ns (s, a, k) such that

σs/b
ns (s, a, k) = 1 iff (a,Ck) ∈ sigs/b

ns (P, s)

For the stochastic-signatures we cannot use OBDDs since they are restricted
to the values in {0, 1}, but we have to represent arbitrary real numbers. The
obvious generalization are MTBDDs whose leaves may be labeled with arbitrary
numbers. Hence, an MTBDD σs/b

s (s, k) is used with

σs/b
s (s, k) = r iff (r,Ck) ∈ sigs/b

s (P, s).

4.2 Computation of the Initial Partition for Stochastic Branching
Bisimulation

As we have seen in section 3.2, we have to compute a refined initial parti-
tion for stochastic branching bisimulation which takes divergence into account.
This means that we have to split all blocks of the given initial partition into
those states that can escape divergence and those that cannot (see line 11 of
algorithm 2).

The set of all states which can escape divergence is computed with the
following algorithm:

Algorithm 3: DivergenceEscapingStates(IMC M)
B
Tτ(s, t)← Cofactor(T (s, a, t), a = τ) (1)
D(s)← S(s) ∧ ¬∃t : Tτ(s, t) (2)
I(s, t)← Closure(Tτ(s, t)) (3)
R ∃t : I(s, t) ∧D(t) (4)

E

17

It proceeds as follows: First, the pairs of states that are connected by a
τ-transition are extracted (line 1). Then we can determine all states without out-
going τ-step in line 2. Now we have to compute all states that can reach such a
dead-end state by an arbitrarily long τ-sequence. For this we need the reflexive
transitive closure of the τ-transitions (line 3). The states from which τ-sequences
lead to a state without out-going τ-transition give the result (line 4).

If Sesc is the result of algorithm 3, i. e., the set of divergence escaping states,
we get the divergence-sensitive initial partition as

P̃(0)
←

(
{B ∧ Sesc | B ∈ P(0)

} ∪ {B ∧ ¬Sesc | B ∈ P(0)
}

)
\ {∅}.

We will then convert this refined initial partition to our block number-based
representation to perform the actual bisimulation computation.

4.3 Computation of the Signatures

The symbolic computation of the non-stochastic signatures can be performed
as described in [17]. So we will only give a brief explanation and concentrate on
the stochastic signatures.

Non-stochastic Signature For the computation of the non-stochastic signa-
ture we provide several basic BDD operations which make the computation a
straightforward task:

– Extraction of the τ-transitions from T :
Cofactor(T (s, a, k), a = τ)

– Pairs of states (s, t) that are in the same block:
∃k : P(s, k) ∧ P(t, k)

It turns out that the computation of this expression is extremely expensive.
The main reason is the variable order we have to use for the refinement
operator (see below): the s- and t-variables are placed at the top of the BDD
and the k-variables at the bottom. While traversing the BDD recursively
the algorithm has to store all combinations of assignments of the s- and
t-variables until it reaches the bottom of the BDD where it is able to decide
whether they are contained in the same block. Furthermore the resulting
BDD can be significantly larger than the original one.
The solution is—as already applied in the previous section in algorithm 2—
to carry out the refinement block by block. If B(s) describes the states of the
block for which the signatures have to be computed, the pairs of inert states
can be computed using the expression
B(s) ∧ B(t).

– Computation of the reflexive transitive closure (RTC) of a relation R(s, t):
There are several symbolic algorithms for the computation of the RTC
(e. g. [30, 31]). We apply the iterative squaring method of [30].

– Computation of the non-τ or non-inert transitions:
T (s, a, t) ∧ ¬

(
B(s) ∧ B(t) ∧ a = τ

)
18

– Concatenation of two relations, given by OBDDs R1(s, t) and R2(s, t):
∃x : R1(s, x) ∧ R2(x, t)

– Substitution of t in R(s, t) by its block number:
∃t : R(s, t) ∧ P(t, k)

Algorithm 4 shows how these basic operations can be combined to compute
the non-stochastic signature of branching bisimulation. The signature of strong
bisimulation can be computed in a similar way.

Algorithm 4: ComputeSignatureb
ns(IMC M, partition P, block B)

B
Tτ(s, t)← Cofactor(T (s, a, t), a = τ) (1)
Iτ(s, t)← Closure(Tτ(s, t)) ∧ B(s) ∧ B(t) (2)
pre(s, a, t)← ∃x :

(
Iτ(s, x) ∧ T (x, a, t)

)
∧ ¬

(
a = τ ∧ B(s) ∧ B(t)

)
(3)

R ∃t : pre(s, a, t) ∧ P(t, k) (4)
E

At first, all pairs of states that are connected by a τ-transition and their RTC,
such that source and target state are contained in the same block, are computed.
In line 3 the closure of the τ-transitions and the observable transitions are
concatenated. Finally, in line 4 the target state of the transition sequence is
replaced by its block number.

Stochastic Signatures The next step is the computation of the stochastic strong
and branching signature. Since we have to cope with real numbers we need
extensions of the existential and universal quantification operators from the
boolean domain:

Definition 12. Let ◦ be a commutative and associative binary operator on MTBDDs.
Then the quantification of an MTBDD F w. r. t. variable x and operation ◦ is defined as

Q◦x.F := Fx=0 ◦ Fx=1.

On OBDDs, existential and universal quantification are special cases of the
quantification operator defined above:

∃x.F ≡ Q∨.F
∀x.F ≡ Q∧.F

The quantification operator can be implemented on MTBDDs in a similar way
as the traditional quantifiers on OBDDs [30].

Stochastic Strong Bisimulation Given an MTBDDR(s, t) for the transition rates, an
(MT)BDDP(s, k) for the current partition, and an (MT)BDDB(s) for the block for
which the stochastic signature shall be computed, we can proceed for stochastic
strong bisimulation as described in algorithm 5:

19

Algorithm 5: ComputeSignatures
s(IMC M, partition P, state set S′)

B
Γ(s, t, k)← S′(s) · R(s, t) · P(t, k) (1)
σs

s(s, k)← Q+t.Γ(s, t, k) (2)
R σs

s(s, k) (3)
E

The first step is to create an MTBDD Γ(s, t, k) which describes the rates
associated with the transition from s to t which is in the block with number k.
Then we quantify t, thereby summing up all cofactors w. r. t. t. This yields the
stochastic signature of strong bisimulation.

Stochastic Branching Bisimulation The stochastic signature of branching bisimu-
lation can be computed in a similar way as the signature of strong bisimulation:

Algorithm 6: ComputeSignatureb
s (IMC M, partition P, block B)

B
Tτ(s, t)← Co f actor(T (s, a, t), a = τ) (1)
Iτ∗ (s, t)← Closure(Tτ(s, t)) ∧ B(s) ∧ B(t) (2)

I
τ
9
τ∗ (s, t)← Iτ(s, t) ∧ ¬∃x : Tτ(t, x) (3)

σb
s (s, k)← Qmaxt.

(
Q+x.

(
I
τ
9
τ∗ (s, t) · R(t, x) · P(x, k)

))
(4)

R σb
s (s, k) (5)

E

We first extract the τ-transitions (line 1), compute its closure and restrict it to
inert τ-sequences (line 2). In line 3 we restrict these sequences to those which end
in a state with no out-going τ-transition. The actual signature computation is
done in line 4: The expressionI

τ
9
τ∗ (s, t) ·R(t, x) ·P(x, k) yields an MTBDD Γ(s, t, x, k)

such that Γ(s, t, x, k) = R(t, x) with s τ∗
−→
P

t τ9 and x ∈ Ck. We first quantify the x

variables summing over the cofactors; the result is an MTBDD that describes
γM(t,Ck). Then we quantify the t variables, computing the maximum of the
cofactors. This yields the stochastic signature of branching bisimulation.

4.4 Stochastic Refinement

The missing operation for the computation of the coarsest stochastic strong or
branching bisimulation is the refinement operation. For this we assume we have
computed the two signatures as described above.

If we restrict the allowed variable orders such that the state variables s are
placed at the top and the label and block number variables a and k, respectively,
at the bottom we can exploit the following observation:

Let s be the encoding of a state. If we follow the paths given by s in the
signature-BDDs, we reach a pair of node vns, vs. The sub-BDD at node vns repre-
sents the non-stochastic signature of s, while the sub-BDD at node vs represents
the stochastic signature. Furthermore, all states with the same signatures as s

20

lead to the same pair of nodes. The idea is then to traverse both signature DDs
simultaneously. If in both DDs a node representing a signature is reached that
has never been visited before, the result is a new block number. On top of the
block numbers the paths which led to the signatures are reconstructed. This is
illustrated in Algorithm 7.

Algorithm 7: StochasticRefine(Signature OBDD σns, Signature MTBDD σs)
B

I (σns, σs) ∈ ComputedTable T (1)
R ComputedTable[(σns, σs)] (2)

E I (3)
x← topVar(σns, σs) (4)
I x is a state variable T (5)

low← StochasticRefine
(
σns |x=0, σs |x=0

)
(6)

high← StochasticRefine
(
σns |x=1, σs |x=1

)
(7)

result← newOBDDnode(x, low,high) (8)
E (9)

result← newBlockNumberOBDD() (10)
I σns = 0  σs = 0 T leaf0number← result (11)

E I (12)
ComputedTable[(σns, σs)]← result (13)
R result (14)

E

The algorithm proceeds in the following way: first, it checks whether the
same pair of nodes was reached before. If this is the case the result is already
contained in the ComputedTable and can be returned immediately (lines 1–3).

Otherwise, the top-most variable x of σns and σs is determined (line 4).
We check if x is a state variable. If this is the case we have not reached a
signature node in both DDs yet. Therefore we have to traverse the DDs further
by computing the cofactors w. r. t. x and calling the algorithm recursively. The
result is then constructed by creating a new BDD node with the results of the
recursive calls as children (lines 5–8).

If x is not a state variable the algorithm has reached two nodes which rep-
resent the non-stochastic and the stochastic signature, respectively, of the state
corresponding to the path the algorithm has traversed in the BDDs. Further-
more, due to the usage of the ComputedTable we assure that this combination of
non-stochastic and stochastic signature has not be seen before by the algorithm.
Hence, the result is a new block number that is stored in the ComputedTable
(line 13) before returning the result.

There is only one pitfall caused by state encodings that do not correspond to
a real state of the system. These invalid state encodings come from the symbolic
representation of the state space: the number of representable states is always
2#state bits, so there are invalid states if the original state space is not a power of 2
or a redundant encoding is used. The signatures of all invalid states are empty,
i. e. the corresponding paths in the DDs lead to the leaf 0. But there can also be

21

valid states with empty signatures—hence invalid states and states with empty
signatures cannot be distinguished easily by the algorithm. We remember the
number of the blocks that was assigned to the state encodings with empty
signature instead (line 11). We can check after the refinement step if this block
contains valid states. If not, then we delete this block from the refined partition.

4.5 Quotient Extraction

When we have reached the fixpoint of the bisimulation computation, the final
step is the computation of the quotient system, which will be described now. It
is based on using the block numbers as new state encodings.

Algorithm 8: QuotientExtraction(IMC M, Bisimulation P)
B
Snew(s)← [k→ s](∃s : P(s, k)) (1)
Tnew(s, a, t)← [k→ t](∃t : T (s, a, t) ∧ P(t, k)) (2)
Tnew(s, a, t)← [k→ s](∃s : Tnew(s, a, t) ∧ P(s, k)) (3)
I P is a branching bisimulation T (4)
Cesc(s)← [k→ s](∃s : P(s, k) ∧ Sesc(s)) (5)
Tnew(s, a, t)← Tnew(s, a, t) ∧ ¬(a = τ ∧ s = t ∧ Cesc(s)) (6)

E I (7)
Rnew(s, t)← [t→ k]

(
Q+t.R(s, t) · P(t, k)

)
(8)

Rnew(s, t)← [s→ k]
(
(Qmaxs.Rnew(s, t) · P(s, k)

)
(9)

R (Snew,A,Tnew,Rnew) (10)
E

The notation [k→ s](P) denotes the renaming of the k-variables to s-variables
in the BDD P. The remaining part of the algorithm strictly follows definition 6
of the bisimulation quotient.

4.6 Optimizations

We have developed three optimizations [18] for the non-stochastic case which
can be applied if the blocks are refined one by one. This is the case for stochastic
branching bisimulation. For this reason we will now show how the optimiza-
tions can be transfered to the stochastic context.

Block Forwarding After we have refined a block we replace it in the current
partition by the result of the refinement. The refinement of the subsequent
blocks is then based on a finer partition. This reduces the number of iterations
and the number of blocks that have to be refined.

Split-driven Refinement Observations in the non-stochastic context have shown
that—except for the first few iterations—only a very small fraction of the blocks
is actually split. The vast majority remains unchanged. We suppose that this
will also be the case in the stochastic setting.

22

The idea is the following: if a block C is split this influences only the stability
of blocks that are connected with C by an observable transition and—depending
on the type of the bisimulation—by a sequence of τ-steps. This is formalized in
the backward signature:

Definition 13. Let M = (S,A,T,R) be a maximal-progress-cut IMC, s ∈ S, P a
partition of S, and C a block of P. The strong/branching backward signature is given
by

bwsigs/b
s (P,C) = {C′ ∈ P | ∃s ∈ C∃s′ ∈ C : (∃a ∈ A : (a,C) ∈ sigs/b

ns (P, s)

∨∃r > 0 : (r,C) ∈ sigs/b
s (P, s))}.

The backward signature of a block contains exactly those blocks that are
contained in one of the signatures. These blocks can become unstable if C is
split. This implies that we have to refine only those blocks which are contained
in the backward signature of a block that has been split in the previous iteration.

If we want to compute the backward signature we encounter the same
problem as for the normal signatures: We need to compute the inert τ-sequences.
We cannot avoid the computation by refining only one block at a time because we
walk backwards. But instead we can use an over-approximation of the backward
signature. This will not influence the correctness of the algorithm but only cause
the (unnecessary) refinement of some stable blocks. We will use the following
over-approximation for stochastic branching bisimulation:

bwsig∗,bs (P,C) ={C′ ∈ P | ∃s ∈ C∃s′ ∈ C∃a ∈ A : s′ a
−→ s}

∪{C′ ∈ P | ∃s′ ∈ C′ ∃s ∈ C : R(s′, s) > 0}.

Algorithm 9 summarizes the changes to the algorithm for stochastic branch-
ing bisimulation. Hereby contains P the current partition and U the set of po-
tentially unstable blocks.

Algorithm 9: StochasticBranchingBisimulation opt(IMC M, partition P(0))
B

Compute the divergence sensitive initial partition P̃(0) (1)
P← P̃(0) (2)
U← P (3)
Unew ← ∅ (4)
W U , ∅ D (5)

F E block C ∈ U D (6)
P←

(
P \ {C}

)
∪ sigrefb

s (P,C) (7)
Unew ← Unew \ {C} (8)
I C was split T (9)

Unew ← Unew ∪ bwsig∗,bs (C) (10)
E I (11)

E F (12)

23

U← Unew (13)
EW (14)
R P (15)

E

Heuristics for the Block Order Experiments in the non-stochastic context have
shown that the effectiveness of the block forwarding technique strongly depends
on the order in which the potentially unstable blocks are refined in line 6 of
algorithm 9. The idea is to provide a block order such that blocks having a great
impact on the stability of others are split first. Then, more blocks may be split
in one iteration. Before the actual refinement, we therefore sort the potentially
unstable blocks w. r. t. one of the following block ordering heuristics:

– SortByBWSig: in decreasing order w. r. t.
∣∣∣⋃ bwsig∗,b(P,C)

∣∣∣
– SortByBlockSize: in decreasing order w. r. t. |C|.

Please note that both heuristics can be computed efficiently using the BDD-
function satisfy count [32] that is linear in the size of the BDD.

5 Conclusion and Future Work

In this technical report we have described—to the best of our knowledge—the
first fully symbolic algorithms for the computation of the coarsest stochas-
tic strong bisimulation and stochastic branching bisimulation on an IMC that
refines a given initial partition. The algorithms rely on a signature-based re-
finement of the initial partition until a fixpoint is reached. We have proven the
correctness of the algorithms.

Furthermore, we have presented concepts for an efficient implementation of
the algorithms using (MT)BDDs and we have shown how optimizations from
the non-stochastic domain can be transferred to bisimulations on IMCs.

The next step will be the implementation of the algorithms and an experi-
mental evaluation on practical benchmarks. We will also extend the signature
refinement algorithm to stochastic weak bisimulation, whereby we expect that
providing an appropriate signature will solve most of the problem.

References

1. Hermanns, H.: Interactive Markov Chains – The Quest for Quantified Quality. Vol.
2428 of Lecture Notes in Computer Science. Springer-Verlag (2002)

2. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31 (1994) 59–74

3. Buchholz, P.: Efficient computation of equivalent and reduced representations for
stochastic automata. International Journal of Computer System Science & Engineer-
ing 15(2) (2000) 93–103

24

4. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R., Wim-
mer, R., Becker, B.: Compositional perfomability evaluation for statemate. In: 3rd

International Conference on Quantitative Evaluation of Systems (QEST), Riverside,
CA, USA, IEEE Computer Society Press (2006)

5. Milner, R.: A Calculus of Communicating Systems. Vol. 92 of Lecture Notes in
Computer Science. Springer-Verlag (1980)

6. Park, D.: Concurrency and automata on infinite sequences. In: GI Conference
on Theoretical Computer Science. Vol. 104 of Lecture Notes in Computer Science.,
Springer-Verlag (1981)

7. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3) (1996) 555–600

8. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6) (1987) 973–989

9. Bouali, A., de Simone, R.: Symbolic bisimulation minimisation. In von Bochmann,
G., Probst, D.K., eds.: Proceedings of the 4th International Conference on Computer
Aided Verification (CAV). Vol. 663 of Lecture Notes in Computer Science., Montreal,
Canada, Springer Verlag (1992) 96–108

10. Klarlund, N.: An n log n algorithm for online BDD refinement. In Grumberg, O.,
ed.: 9th International Conference on Computer Aided Verification (CAV). Vol. 1254
of Lecture Notes in Computer Science., Haifa, Israel, Springer-Verlag (1997) 107–118

11. Dovier, A., Gentilini, R., Piazza, C., Policriti, A.: Rank-based symbolic bisimulation
(and model checking). In Guerra, R.J., de Queiroz, B., eds.: Proceedings of the 9th

Workshop on Logic, Language, Information, and Computation (WoLLIC). Vol. 67 of
Electronic Notes in Theoretical Computer Science., Elsevier Science Publishers B. V.
(2002)

12. Groote, J.F., Vaandrager, F.W.: An efficient algorithm for branching bisimulation and
stuttering equivalence. In Paterson, M.S., ed.: Proceedings of the 17th International
Colloquium on Automata, Languages and Programming (ICALP). Vol. 443 of Lecture
Notes in Computer Science., Warwick, England, Springer-Verlag (1990) 626–638

13. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces. In:
2nd International Workshop on Parallel and Distributed Model Checking (PDMC).
Vol. 89(1) of Electronic Notes in Theoretical Computer Science., Elsevier (2003)

14. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of
state spaces. International Journal on Software Tools for Technology Transfer (STTT)
7(1) (2005) 74–86

15. Blom, S., Orzan, S.: Distributed state space minimization. International Journal on
Software Tools for Technology Transfer (STTT) 7(3) (2005) 280–291

16. Wimmer, R., Herbstritt, M., Becker, B.: Minimization of large state spaces using sym-
bolic branching bisimulation. In Reorda, M.S., Novák, O., Staube, B., Kubátová, H.,
Kotásek, Z., Kubalı́k, P., Ubar, R., Bucek, J., eds.: Proceedings of the 9th IEEE Work-
shop on Design & Diagnostics of Electronic Circuits & Systems (DDECS), Prague,
Czech Republic, IEEE Computer Society Press (2006) 9–14

17. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – a symbolic
bisimulation tool box. In Graf, S., Zhang, W., eds.: Proceedings of the 4th International
Symposium on Automated Technology for Verification and Analysis (ATVA). Vol.
4218 of Lecture Notes in Computer Science., Beijing, China, Springer-Verlag (2006)
477–492

18. Wimmer, R., Herbstritt, M., Becker, B.: Optimization techniques for BDD-based
bisimulation minimization. In Zhou, H., Macii, E., eds.: Proceedings of the 17th

ACM Great Lakes Symposium on VLSI, Stresa, Italy, ACM Press (2007) 405–410

25

19. Kemeney, J.G., Snell, J.L.: Finite Markov Chains. D. Van Nostrand Company, Inc.
(1960)

20. Derisavi, S.: Solution of Large Markov Models using Lumping Techniques and
Symbolic Data Structures. PhD thesis, University of Illinois, Urbana-Champaign
(2005)

21. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov
chains. Information Processing Letters 87(6) (2003) 309–315

22. Derisavi, S.: A symbolic algorithm for optimal Markov chain lumping. In Grumberg,
O., Huth, M., eds.: 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science,
Braga, Portugal, Springer-Verlag (2007)

23. Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lumping.
In: Proceedings of the 4th International Conference on Quantitative Evaluation of
Systems (QEST), IEEE Computer Society Press (2007) (to appear).

24. Garavel, H., Hermanns, H.: On combining functional verification and performance
evaluation using C. In Eriksson, L.H., Lindsay, P.A., eds.: Proceedings of the
International Symposium of Formal Methods in Europe (FME). Vol. 2391 of Lecture
Notes in Computer Science., Copenhagen, Denmark, Springer-Verlag (2002)

25. Fernandez, J.C., Garavel, H., Kerbrat, A., Matescu, R., Mounier, L., Sighireanu, M.:
C: A protocol verification toolbox. In Alur, R., Henzinger, T.A., eds.: Proceedings
of the 8th International Conference on Computer Aided Verification (CAV). Number
1102 in Lecture Notes in Computer Science, New Brunswick, NJ, USA, Springer-
Verlag (1996) 437–440

26. Garavel, H., Land, F., Matescu, R.: An overview of C 2001. European Association
for Software Science and Technology (EASST) Newsletter 4 (2002) 13–24

27. Hermanns, H.: Some notes on the stochastic equivalences implemented in bcg min
(2005) (unpublished note).

28. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.1, University of
Colorado at Boulder. (2006)

29. Wegener, I.: Branching Programs and Binary Decision Diagrams – Theory and
Applications. SIAM Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA (2000)

30. Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L.: Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 13(4) (1994) 401–424

31. Matsunaga, Y., McGeer, P.C., Brayton, R.K.: On computing the transitive closure of a
state transition relation. In: Proceedings of the 30th Design Automation Conference,
Dallas, Texas, USA, ACM Press (1993) 260–265

32. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers 35(8) (1986) 677–691

26

