
AVACS – Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Abstraction-based Computation of Reward

Measures for Markov Automata

by

Bettina Braitling Luis Maŕıa Ferrer Fioriti
Hassan Hatefi

Ralf Wimmer
Bernd Becker

Holger Hermanns

AVACS Technical Report No. 106
October 2014

ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Fränzle, Ernst-Rüdiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright c© October 2014 by the author(s)

Author(s) contact: Bettina Braitling (braitlin@informatik.uni-freiburg.de).

Abstraction-based Computation of Reward
Measures for Markov Automata?

Bettina Braitling1, Luis Maŕıa Ferrer Fioriti2, Hassan Hatefi2,
Ralf Wimmer1, Bernd Becker1, and Holger Hermanns2

1 Albert-Ludwigs-Universität Freiburg, Germany
{braitlin | wimmer | becker}@informatik.uni-freiburg.de

2 Saarland University, Saarbrücken, Germany
{ferrer | hhatefi | hermanns}@cs.uni-saarland.de

Abstract. Markov automata allow us to model a wide range of complex
real-life systems by combining continuous stochastic timing with prob-
abilistic transitions and nondeterministic choices. By adding a reward
function it is possible to model costs like the energy consumption of a
system as well.

However, models of real-life systems tend to be large, and the analysis
methods for such powerful models like Markov (reward) automata do not
scale well, which limits their applicability. To solve this problem we present
an abstraction technique for Markov reward automata, based on stochastic
games, together with automatic refinement methods for the computation
of time-bounded accumulated reward properties. Experiments show a
significant speed-up and reduction in system size compared to direct
analysis methods.

1 Introduction

During the last few years Markov automata (MA) [1] have become a popular
formalism for modelling stochastic systems. Markov automata are compositional,
allowing us to model large systems component-wise and to obtain a model for
the whole system by combining the models of the components according to fixed
composition rules. Markov automata combine nondeterminism with probabilistic
behaviour and continuous stochastic timing. Thus they are a generalisation
of discrete-time Markov chains (DTMCs), Markov decision processes (MDPs),
probabilistic automata (PA), continuous-time Markov chains (CTMCs), and
interactive Markov chains (IMCs [2]). Markov automata form the semantic
foundation of generalised stochastic Petri nets (GSPNs) [3] and stochastic activity
networks (SANs) [4]. For modelling systems as MA, the Markov automata process

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center AVACS (SFB/TR 14), by the
EU 7th Framework Programme under grant agreement no. 295261 (MEALS) and
318490 (SENSATION), and by the CAS/SAFEA International Partnership Program
for Creative Research Teams.

algebra (MAPA) [5] has been devised. It is accompanied with tool support:
SCOOP [5] transforms descriptions in MAPA into the underlying MA and is able
to apply reduction techniques to reduce the MA’s size.

Such a powerful modelling formalism is, however, only useful in practice
if it is accompanied by efficient analysis algorithms. Model checking of MA
against continuous stochastic logic (CSL) has been discussed in [6]. Algorithms
for a wide range of properties for MA have been developed: long-run average,
expected reachability time, and time-bounded reachability probabilities have
been considered in [7, 8]. Markov reward automata (MRA), which is the extension
of MA by rewards, have recently been studied in [9]. The analysis algorithms for
MA and MRA are implemented in the tool IMCA1.

Model checking algorithms for many kinds of properties like time-unbounded
reachability, expected reachability costs, and long-run averages can be transferred
to MA from simpler models like PA and are similarly efficient. In contrast,
checking time-bounded properties is much more expensive. The reason is that the
methods based on uniformisation, which make checking time-bounded properties
on CTMCs efficient, cannot be applied to MA due to the nondeterminism present
there. Instead (like for IMCs [10]) one has to resort to discretisation [7–9]: the
time until the time bound is split into small intervals such that one can assume
that with high probability either none or exactly one step occurs within one
interval. For each of these intervals, an unbounded reachability analysis for PA
has to be performed. Therefore the analysis of such properties scales badly to
large state spaces and is limited to a few thousand states, depending on the
structure of the state space and the time bound.

Contributions. To tackle this problem for MRA we present an abstraction and
refinement framework, the first of its kind. We target time-bounded accumulated
rewards like “What is the maximal expected cost the system causes within 10
hours of operation?” The MRA at hand is abstracted into a two-player stochastic
reward game, which keeps the nondeterminism present in the concrete system
separate from the nondeterminism introduced by abstraction. This allows us
to compute safe upper and lower bounds on the minimal and maximal reward
value of the original system. These bounds are an in-built quality measure for
the abstraction, allowing us to refine it. To compute the bounds, we give a
fixed point characterisation of time-bounded accumulated rewards on stochastic
games, show how to discretise it, and give an estimation of the error caused by
the discretisation. Experimental results confirm that our abstraction method
yields substantial reductions in system size and reduces the computation times
compared to competing tools which work on the concrete state space.

Related Work. This paper continues a series of successful works on abstraction
frameworks for simpler probabilistic models, foremost rooted in game-based
abstraction for PA [11]. In a preliminary paper [12] we have presented an ab-
straction framework for time-bounded reachability probabilities for MA, which

1 The official homepage available at http://www-i2.informatik.rwth-aachen.de/

imca.

was the first attempt to apply abstraction to MA. Other abstraction methods
are restricted to unbounded and step-bounded reachability probabilities in PA:
PA-based abstraction [13] abstracts a PA again into a PA whose behaviour is an
over-approximation of the behaviour of the original model. It therefore only allows
to compute lower bounds on minimal probabilities and upper bounds on maximal
probabilities. This is improved by game-based abstraction [11], which yields a
probabilistic game. Its advantage is that it yields both upper and lower bounds
for minimal and maximal reachability probabilities. Wachter and Zhang [14, 15]
have proposed menu-based abstraction for PA, which has the same advantage as
game-based abstraction, but yields in many practical cases significantly smaller
abstractions.

Structure of the paper. In the next section we briefly review the foundations of
MA and stochastic games. In Sec. 3 we present our abstraction and refinement
method for MA and show how to compute reward measures for stochastic games.
The experimental evaluation follows in Sec. 4. We finally summarise the paper
with an outlook to future work in Sec. 5. The proofs of the main propositions
are contained in the appendix of this paper.

2 Preliminaries

We first introduce the necessary foundations on stochastic games (SGs), extended
by reward functions, which form the basic formalism used in our abstraction
framework. We define the properties we consider and give a fixed point charac-
terisation of them for SGs. Finally we define MA as a special case of SGs with a
single player.

We denote the set of real numbers by R, the non-negative real numbers
by R≥0, and by R≥0

∞ the set R≥0 ∪̇ {∞}. For a finite or countable set S let
Distr(S) denote the set of probability distributions on S, i. e. of all functions
µ : S → [0, 1] with

∑
s∈S µ(s) = 1. The support of a distribution µ is given by

Supp(µ) = {s ∈ S |µ(s) > 0}; µ is called Dirac if there is s ∈ S with µ(s) = 1. It
is denoted by ξs. Given a set S′ ⊆ S we write µ(S′) for

∑
s∈S′ µ(s).

2.1 Stochastic reward games

Stochastic games are a behavioural model that combines stochastic timing,
nondeterminism and probabilistic choices. An SG consists of one or more players
who can choose between one or more transitions to change the current state. Each
choice may influence the behaviour of the other players. A transition consists
of a real-valued or infinite rate λ ∈ R≥0

∞ and a probability distribution over the
successor states. For our work we need the definition of stochastic two-player
games:

Definition 1 (Stochastic game). A stochastic (continuous-time two-player)
game (SG) is a tuple G =

(
V, (V1, V2), vinit,T

)
such that V = V1 ∪̇ V2 is a set of

states, vinit ∈ V is the initial state, and T ⊆ V × R≥0
∞ ×Distr(V) is a transition

relation.

V1 and V2 are the states of player 1 and player 2, respectively; we also denote
them as V1- and V2-states. Transitions (v, λ, µ) ∈ T with rate λ < ∞ are
called Markovian, transitions with infinite rate probabilistic. We denote the set of
Markovian and probabilistic transitions by TM and TP , respectively; it holds that
T = TM ∪̇TP . TM (v) and TP (v) denote the set of Markovian and probabilistic
transitions available at state v, respectively. We use T(v) = TM (v) ∪̇TP (v) as
the set of all transitions available at state v.

The game starts in state vinit. If the current state is v ∈ V1, then it is player 1’s
turn, otherwise player 2’s. The current player chooses a transition (v, λ, µ) ∈ T(v)
for leaving state v. The rate θr ((v, λ, µ)) = λ ∈ R≥0

∞ determines how long we
stay at v, whereas θp ((v, λ, µ)) = µ ∈ Distr(V) gives us the distribution which
leads to the successor states. If λ =∞, the transition is taken instantaneously.
Otherwise, λ is taken as the parameter of an exponential distribution. In this
case, the probability that a transition to state v′ ∈ V happens within t ≥ 0 time
units, is given by µ(v′) · (1− e−λ·t). For conciseness, we write λtr instead of θr(tr)
and µtr instead of θp(tr) for tr ∈ T.

Paths. The dynamics of SGs is specified by paths. An infinite path π ∈ (V ×R≥0×
T)ω is an infinite sequence of states, sojourn times, and transitions. A finite path
is such a sequence which is finite and ending in a state, i. e. π ∈ (V ×R≥0×T)?×V .

We usually write v
t,tr−−→ instead of (v, t, tr) ∈ (V ×R≥0 ×T). We use Paths? and

Pathsω to denote the set of finite and infinite paths, respectively. Given a finite

path π = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · vn, vi is the (i + 1)-th state of π, denoted by
St(π, i), ti is the time of staying at vi, denoted by Ti(π, i), and Tr(π, i) = tri is
the executed transition for i ∈ {0, . . . , n− 1}. Note that vi is left instantaneously,
i. e. Ti(π, i) = 0, if Tr(π, i) has an infinite rate. Moreover, |π| refers to n, the
length of π, and last(π) to vn, its last state.

Strategies. The nondeterminism which may occur at a state is resolved by a
function, which is called a strategy (or policy or scheduler). Each player follows
its own strategy in order to accomplish its goal. A strategy of player i (i = 1, 2) is
a partial function σi : Paths? 7→ Distr(T) such that σi(π) = η only if last(π) ∈ Vi
and Supp(η) ⊆ T

(
last(π)

)
. This strategy class is called generic, since it uses the

complete path history to resolve the nondeterminism.2 We denote the set of all
strategies for player i by Strati.

Probability measure. Given strategies σ1, σ2 for both players and a state v ∈ V ,
a probability space on the set of infinite paths starting in v can be constructed.
The set of measurable events is thereby a σ-algebra that is induced by a standard
cylinder set construction [17] together with a unique probability measure Prv,σ1,σ2

2 This class is also known as the class of early schedulers [16] because the scheduler
makes its choice when entering a state and—in contrast to a late scheduler—may not
change its choice while residing in a state. This is the most general scheduler class
for MA, since they do not exhibit nondeterminism between Markovian transitions
(see Sec. 2.3).

on the events. Prv,σ1,σ2
(Π) is the probability of the set of paths Π, starting

from state v, given that player 1 and player 2 play with strategies σ1 and σ2,
respectively. Both the σ-algebra and the probability measure are constructed by
extending the existing techniques used for MA and IMCs. We omit the details
here; for more information see, e. g. [6, 18, 19].

Zenoness. It may happen that an SG contains an end component consisting
of probabilistic transitions only. Such an end component leads to the existence
of infinite paths π with finite sojourn times, i. e. limn→∞

∑n
i=0 Ti(π, i) < ∞.

This phenomenon is called Zenoness. Since such behaviour has to be considered
unrealistic, we assume that the SGs under consideration are non-Zeno, i. e. that
they do not contain such end components. Formally, an SG is non-Zeno iff ∀v ∈ V :
∀σ1 ∈ Strat1 ∧ ∀σ2 ∈ Strat2 : Prv,σ1,σ2

(
{π | limn→∞

∑n
i=0 Ti(π, i) <∞}

)
= 0.

For more on strategies and on SGs in general we refer to [20, 21].

Now we extend SGs by rewards (or costs). We consider two kinds of rewards:
transient rewards for staying in a certain state and instantaneous rewards for
taking a transition.

Definition 2 (Stochastic reward game). A stochastic reward game (SRG)
is a tuple Grew = (G, ρt, ρi) such that G is an SG, ρt : T → R≥0 the transient
reward function, and ρi : T→ R≥0 the instantaneous reward function.

The transient reward ρt(tr) of a transition tr = (v, λ, µ) is the cost of staying
in v for one time unit before taking transition tr, i. e. residing in state v for ∆
time units yields a transient reward of ∆ · ρt(tr). Since a state is immediately
left if a transition with infinite rate is chosen, we can assume that the transient
reward of such transitions is zero.

The instantaneous reward ρi(tr) is the cost of the state change using transition
tr ∈ T. The accumulated reward along a path π is the sum of the costs for the
transitions and the costs for staying in the states of the path. We are interested
in time-bounded rewards, i. e. the costs accumulated until a time bound T is
reached. It is denoted by RewT .

RewT (π) =

nT−1∑
i=0

(
ρt
(
Tr(π, i)

)
· Ti(π, i) + ρi

(
Tr(π, i)

))
+ ρt

(
Tr(π, nT)

)
·
(
T −

nT−1∑
i=0

Ti(π, i)
)
,

(1)

where nT is the largest number such that
∑nT−1
i=0 Ti(π, i) ≤ T . Each player can

independently of the other try to maximise or minimise the expectation of this
reward by choosing an appropriate scheduler.

Ropt1
opt2

(v, T) = opt1
σ1∈Strat1

opt2
σ2∈Strat2

∫
π∈Pathsω

RewT (π) dPrv,σ1,σ2
(π) (2)

is the opt1-opt2 expected time-bounded reward (ETR) when player i tries to
optimise according to opti ∈ {inf, sup} for i = 1, 2 and the game starts in state
v ∈ V .

2.2 Time-bounded reward as a fixed point

In this section we provide a fixed point characterisation of the ETR for an SG. In
the following we restrict the presentation to the case where player 1 maximises
the expected reward, i. e. setting opt1 to sup in (2). We denote the case by Rsup

opt ,
where player 2 still has the choice to either minimise or maximise the ETR.

Lemma 1 (Fixed point characterisation). Given an SRG Grew = (G, ρt, ρi),
a time bound T ≥ 0, opt ∈ {inf, sup}, optv = sup if v ∈ V1 and optv = opt
otherwise. Rsup

opt(·, T) is the least fixed point of the higher order operator Ωopt :

(V × R≥0 7→ R≥0) 7→ (V × R≥0 7→ R≥0), opt ∈ {inf, sup}, such that

Ωopt(F)(v, T) = optv
tr∈T(v)

(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)F (v′, T − t) dt, if tr ∈ TM (v),

ρi(tr) +
∑
v′∈V

µtr(v
′)F (v′, T), if tr ∈ TP (v).

(3)

This lemma is proven in the appendix. A similar fixed point characterisation can
be attained for the case that player 1 minimises the ETR. Both characterisa-
tions, however, yield Volterra integral equation systems which are not directly
tractable [22]. We demonstrate in Sec. 3.2 how to approximate Rsup

opt by applying
a discretisation technique. Moreover, the characterisation provides a sound theory
for the abstraction of MA subject to time-bounded reward analysis (see Sec. 3).

2.3 Markov automata

For consistency reasons we present MA [1, 23, 24] as a special case of SGs. This
is possible under two conditions: First, we consider only closed MA, i. e. we
assume that the model to be analysed is not subject to further composition
operations. Then the actions with which transitions are labelled do not carry
any information and can be omitted. Second, we make the maximal progress
assumption [24], which is typically made for closed MA before analysis. It says
that probabilistic transitions (which are carried out immediately without progress
of time) have precedence over Markovian transitions, which are delayed by an
exponentially distributed amount of time. Together with the restriction that
there is no nondeterminism between Markovian transitions in MA, we obtain the
following definition:

Definition 3 (Markov (reward) automaton). An SGM =
(
V, (V1, V2), vinit,

T
)

is a Markov automaton (MA) if V2 = ∅ and each state v ∈ V contains either
only probabilistic transitions (v,∞, µ) ∈ T(v) or a single Markovian transition
(v, λ, µ) ∈ T(v) with λ <∞.

A Markov reward automaton (MRA) is an SRG Mrew = (M, ρt, ρi) where
M is an MA.

The fixed point characterisation of the ETR for SRGs is valid for MRA as
well. Since the set V2 is empty for MRA, we can omit the opt subscript from
Ωopt as defined in Eq. (3) and simply write it as Ω in this case.

Like SGs can be seen as a generalisation of MA, MA can be seen as the
generalisation of some other common models: A (closed) probabilistic automaton
(PA) is an MA where all transitions are probabilistic. A PA with

∣∣{µ | (v,∞, µ) ∈
T(v)}

∣∣ = 1 for all v ∈ V is a discrete-time Markov chain (DTMC). An interactive
Markov chain (IMC) is an MA where all distributions occurring in probabilistic
transitions are Dirac. A continuous-time Markov chain (CTMC) is an MA with
only Markovian transitions.

We partition the state space V of an MA based on the rate of outgoing
transitions of the states. A state is called probabilistic (Markovian) if its outgoing
transitions are all probabilistic (Markovian). We assume that there are no deadlock
states, which have no outgoing transitions. They can be turned into Markovian
states by adding a Markovian transition (v, λ, ξv) with arbitrary rate λ < ∞.
Then we have V = MS ∪̇ PS with MS being the Markovian states and PS the
probabilistic states.

3 Abstraction and refinement of MRA

In this section we first describe our abstraction of an MA, then how safe bounds
on the maximal (minimal) ETR can be computed on SGs (and therefore also on
our abstraction). Finally we will show how an abstraction can be refined in case
that it is too coarse, i. e. if it yields bounds that are too far apart.

3.1 Abstraction

The abstraction of an MA M = (V, (V, ∅), vinit,T) is based on a partition of V ,
which is a set P ⊆ 2V \ {∅} with

⋃
B∈P B = V and B ∩B′ = ∅ for all B,B′ ∈ P

with B 6= B′. For v ∈ V we denote the unique block B of P with v ∈ B by [v]P .

Definition 4 (Lifted distribution). Let µ ∈ Distr(V) be a probability distri-
bution over V and P a partition of V . The lifted distribution µ ∈ Distr(P) is
given by µ(B) =

∑
v∈B µ(v) for B ∈ P.

Definition 5 (Labelling function). Let Lab be a finite set of labels and M
an MA. A labelling function is a function lab : T → Lab which is injective at
each state, i. e. for all v ∈ V and all tr, tr′ ∈ T(v) we have either tr = tr′ or
lab(tr) 6= lab(tr′). Additionally we require lab(tr) = ⊥ iff tr is Markovian.

For a set B ⊆ V of states, we define Lab(B) = {lab(tr) | ∃v ∈ B : tr ∈ T(v)}
as the set of actions which are enabled in B. We also write Lab(v) instead of
Lab

(
{v}
)
.

A simple, basic way to abstract an MAM is to use the blocks of a partition P
as abstract states and create the abstract transitions by lifting the distributions
as in Def. 4. If two transitions coincide after lifting, they are combined into one
abstract transition.

Such an abstraction introduces additional nondeterminism into the system:
There is now a nondeterministic choice between transitions which belong to
different concrete states, but to the same state in the abstraction. In a basic
abstraction, this new, abstract nondeterminism cannot be distinguished from the
original, concrete nondeterminism. This makes it impossible to obtain both lower
and upper bounds on the actual reward value.

To avoid this effect, we introduced a game abstraction for MA in [12], which
we now extend to MRA.

Definition 6 (Game abstraction of MA). Given an MAM = (V, (V, ∅), vinit,
T), a labelling function lab : T → Lab, and a partition P = {B1, . . . Bn} of V
such that for all B ∈ P either B ⊆ MS or B ⊆ PS. We construct the game

abstraction MP,lab = (V , (V1, V2), vinit,T) with:

– V = V1 ∪̇ V2,
– V1 = P,
– V2 =

{
(B,α) ∈ P × Lab

∣∣α ∈ Lab(B)} ∪̇ {∗},
– vinit = [vinit]P , and
– T = TP ∪̇TM with

TP =
{(

[v]P ,∞, ξ([v]P ,α)

) ∣∣ v ∈ V ∧ α ∈ Lab([v]P)
}

∪̇
{(

([v]P , α),∞, µ
) ∣∣ v ∈ PS ∧ α ∈ Lab(v) ∧ (v,∞, µ) ∈ TP

}
∪̇
{(

([v]P , α),∞, ξ∗
) ∣∣ v ∈ PS ∧ α ∈ Lab([v]P) \ Lab(v)

}
,

TM =
{(

([v]P ,⊥), λ, µ
) ∣∣ v ∈ MS ∧ (v, λ, µ) ∈ TM}

∪̇
{

(∗, 1, ξ∗)
}
.

We call V2-states of the form (B,⊥) with B ⊆ MS Markovian and V2-states of
the form (B,α) with α 6= ⊥ and B ⊆ PS probabilistic. The V1- and V2-states
strictly alternate.

Player 1 resolves the nondeterminism already present in the concrete MA
when it selects at state B a label α present in one of the concrete states of B.
Player 2 resolves the nondeterminism introduced by the abstraction by selecting
at abstract state (B,α) a concrete state v ∈ B and firing the lifted transition of
state v that has the label α. In case there is no transition with label α in state v,
the abstraction goes to a special state ∗ that represents the worst outcome for
the property under consideration. This is similar to the menu-based abstraction
in [14, 15].

In order to abstract an MRA Mrew = (M, ρt, ρi) we have to add abstract
reward functions to the abstraction. For this we need an additional function

ν : T → 2T, which maps the abstract transitions back to the corresponding
concrete transitions in Mrew . For a transition tr = (v, λ, µ) ∈ T we get:

ν(tr) =

{(v′,∞, µ) ∈ T | v′ ∈ B}, if v = (B,α) ∧ α 6= ⊥ ∧B ⊆ PS,

{(v′, λ, µ) ∈ T | v′ ∈ B}, if v = (B,⊥) ∧B ⊆ MS,

∅, otherwise.

The choice of the reward function depends on whether we want to compute a
lower or an upper bound on the (minimal or maximal) ETR. In case of a lower
bound, player 2 chooses the smallest possible reward among all transitions which
were mapped onto the same abstract transition. The case of an upper bound is
analogous.

We give the definition of the reward structures for the case that player 1
maximises the ETR. If player 1 minimises the ETR, the only change is that
ρt
(
(∗, 1, ξ∗)

)
is set to ∞ instead of 0.

Definition 7 (opt-Abstraction-induced SRG). Given an MRA Mrew =
(M, ρt, ρi), a partition P of the state space, a labelling function lab for the
transitions, and opt ∈ {inf, sup}. Then the opt-Abstraction-induced SRG (or

for short opt-AISRG) with respect to P and lab is a tuple opt-MP,labrew =

(MP,lab , ρtopt, ρi
opt), where MP,lab is the game abstraction of M obtained from

Def. 6 and ρt
opt and ρi

opt are abstract transient and instantaneous reward
functions defined as:

ρt
opt(tr) =

 opt
tr∈ν(tr)

ρt(tr), if ν(tr) 6= ∅,

0, otherwise.

and

ρi
opt(tr) =

 opt
tr∈ν(tr)

ρi(tr), if ν(tr) 6= ∅,

0, otherwise.

respectively, where tr ∈ T is an abstract transition.

We illustrate the abstraction of an MRA in Example 1.

Example 1. Figure 1(a) shows an MRA Mrew together with a partition P =
{B0, B1}. We assume that all probabilistic transitions are labelled with lab(tr) =
α and all Markovian transitions with lab(tr) = ⊥. It holds PS = {v0, v1, v2} = B0

and MS = {v3, v4, v5} = B1. For each transition tr the rewards are given in the
form “(ρi(tr)|ρt(tr))” next to the transition in red colour.

Figure 1(b) shows the resulting game abstraction. The blocks B0 and B1

have become V1-states, whereas all other states are V2-states. We show both
reward structures: the values in red colour next to each abstract transition are
the minimal rewards in the form “(ρi

inf(tr)|ρtinf(tr))”; the blue figures below are
the maximal rewards, shown as “(ρi

sup(tr)|ρtsup(tr))”.

B0 B1

v0

v1

v2

v3

v4

v5

∞
1|0

1− p

p

∞
2|0 1− q

q

∞
4|0

1− q

q

3λ

0|1

1/3

1/3

1/3

λ

0|2
1.0

λ

0|4
1.0

(a) Original MRA Mrew

B0

B0, α B1

B1,⊥

∞ 0|0
0|0

1.0

∞
1|0
1|0

∞
2|0
4|0

1.0

1.0

∞ 0|0
0|0

1.0

λ
0|2
0|4

1.0 3λ
0|1
0|1

2/3

1/3

(b) Abstraction MP,labrew

Fig. 1. An example for the game abstraction of an MRA Mrew .

The soundness of our framework follows from the fact that the least fixed
points of the abstract semantics are over- and underapproaximations of the least
fixed point in the concrete semantics. To prove it (see Appendix B) we use the
Galois connection framework of abstract interpretation [25, 26], using abstract
domains similar to the ones in the work of Wachter [15].

Theorem 1 (Soundness). Let Mrew = (M, ρt, ρi) be an MRA, its high-order

operator for the maximal ETR Ω, and opt-MP,labrew = (MP,lab , ρtopt, ρi
opt), opt ∈

{inf, sup}, be a game abstraction with rewards, its high-order operators Ωinf , Ωsup.
Then:

lfp(Ωinf)([v]P , T) ≤ lfp(Ω)(v, T) ≤ lfp(Ωsup)([v]P , T)

for all v ∈ V , and T ∈ R≥0.

This theorem is proven in the appendix.

3.2 Reward computation

In this section we describe how to compute optimal ETRs for the general class
of SRGs. For this purpose a discretisation technique is employed, which is then
applied to the fixed point characterisation given in Lemma 1. The technique
yields a discretised fixed point characterisation accompanied by a stable numerical
algorithm with strict error bound for computing the optimal ETRs in SRGs.

Discretisation. As stated before, it is not generally feasible to directly solve the
fixed point characterisation in Lemma 1 due to the complex integrals occurring
in Eq. (3). Instead the SRG subject to analysis needs to be discretised. For this,
the interval [0, T] is first split into k time steps of size δ = T

k . The discretisation
then simplifies the computation of Rsup

opt by assuming that with high probability

at most one Markovian transition fires within each time step. Finally, we provide
lower and upper bounds for the error created by the discretisation.

We aim to simplify the reward computation proposed by Eq. (3). For that,
we first express Rsup

opt(v, T) in terms of its behaviour in the first discretisation
step [0, δ) with opt ∈ {inf, sup}. As time passes only if a Markovian transition
is taken, we assume w. l. o. g. that v only contains Markovian transitions, i. e.
∅ 6= T(v) ⊆ TM . To see why the assumption does not restrict the generality of
the discretisation, note that the simplification only applies to the part of Eq. (3)
that contains the integral equation, so the case corresponding to the probabilistic
transitions remains untouched. We partition the paths from v that take transition
tr ∈ TM (v) into the set Πδ,0

v,tr of paths that make no Markovian jump in [0, δ) and

the set Πδ,>0
v,tr of paths that do at least one jump in that interval. We therefore

write Rsup
opt(v, T) as the sum of

1. The optimal expected reward attained in [0, δ) by paths from Πδ,>0
v,tr

2. The optimal expected reward attained in [δ, T] by paths from Πδ,>0
v,tr

3. The optimal expected reward attained in [0, δ) by paths from Πδ,0
v,tr

4. The optimal expected reward attained in [δ, T] by paths from Πδ,0
v,tr

It is not hard to express the last item in terms of Rsup
opt(v, T − δ). We further

combine the first three items, denoted by Acctr(v, T), and finally have:

Rsup
opt(v, T) = optv

tr∈T(v)

(
Acctr(v, T) + e−λtr·δRsup

opt(v, T − δ)
)

(4)

We can show (see Appendix C) that Acctr(v, T) is obtained by:

Acctr(v, T) =
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtr·δ

)
+

δ∫
0

λtre
−λtr·t

∑
v′∈V

µtr(v
′)Rsup

opt(v′, T − t) dt
(5)

As for the fixed point characterisation in Lemma 1, the exact computation of
Acctr(v, T), opt ∈ {inf, sup} is in general intractable. However, if the discretisation
constant δ is very small, then, with high probability, at most one Markovian jump
happens in each discretisation step. Hence the reward gained by paths carrying
multiple Markovian jumps within at least one such interval is negligible and can
be omitted from the computation. In other words, the reward gained after the first
Markovian jump in each discretisation constant is ignored by this approximation.
It naturally induces some error and thereby approximates Acctr(v, T), denoted

by Ãccδ,tr(v, k) and Rsup
opt(v, T), denoted by R̃sup

δ,opt(v, k). As a result we have:

R̃sup
δ,opt(v, k) = optv

tr∈T(v)

(
Ãccδ,tr(v, k) + e−λtr·δR̃sup

δ,opt(v, k − 1)
)

(6)

Ãccδ,tr and R̃sup
δ,opt both count the number of discretisation steps instead of

real time. This makes their computation tractable.

Ãccδ,opt(v, k) =
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtr·δ

)
+

δ∫
0

λtre
−λtr·t

∑
v′∈V

µtr(v
′)R̃sup

opt(v′, k − 1) dt

=
(
ρi(tr) + ρt(tr)

λtr
+
∑
v′∈V

µtr(v
′)R̃sup

opt(v′, k − 1)
)(

1− e−λtr·δ
) (7)

By using Eq. (6) instead of the Markovian part in Eq. (3) of the fixed point
characterisation in Lemma 1, we get a discretised fixed point characterisation
which is directly computable.

Definition 8 (Discretised maximum time-bounded reward). Given an
SRG (G, ρt, ρi), a time bound T ≥ 0, and a step size δ > 0 such that T = k · δ
for k ∈ N. Let opt ∈ {inf, sup}, optv = sup if v ∈ V1 and optv = opt otherwise.
Rsup

opt(·, T) is the least fixed point of the higher order operator Ωδopt : (V × N 7→
R≥0) 7→ (V × N 7→ R≥0) such that

Ωδopt(F)(v, k) = optv
tr∈T(v)

(
ρi(tr) + ρt(tr)

λtr
+
∑
v′∈V

µtr(v
′)F (v′, k − 1)

)
·
(
1− e−λtrδ

)
+ e−λtrδF (v, k − 1), if v ∈ TM (v),

ρi(tr) +
∑
v′∈V

µtr(v
′)F (v′, k), if v ∈ TP (v).

(8)

Discretisation error. This section evaluates the precision of the discretisation
technique described above. The discretisation technique can be applied to any
kind of SRG respecting Def. 2. Its precision can be accordingly assessed for the
general class of SRGs. However, opt-AISRGs obtained from MA abstraction
have a special structure, namely all their Markovian transitions are controlled
by player 2. For this specific structure it is usually possible to find a tighter
error bound for time-bounded analysis (see for example [27]). Hence we restrict
ourselves to a subclass of SRGs whose Markovian transitions (if there are any)
are controlled by one player. In other words, the discretisation of models in this
subclass in general introduces a smaller error compared to the general class of
SRGs. The subclass is formally defined as:

Definition 9 (Single Markovian Controller SRG). Grew = (G, ρt, ρi) is
called a single Markovian controller SRG (1MC-SRG) iff either ∀tr ∈ TM :
tr ∈ TM (v)⇒ v ∈ V1 or ∀tr ∈ TM : tr ∈ TM (v)⇒ v ∈ V2.

The accuracy of R̃sup
opt depends on some parameters including the step size

δ. The smaller δ is, the better is the quality of the discretisation. In order to
assess the accuracy of the discretisation we first need to define some parameters
of SRGs.

Definition 10. Given an SRG Grew = (G, ρt, ρi), we define the maximum (fi-
nite) exit rate existing in G as ē = maxtr∈TM

λtr, and the maximum transient
reward existing in ρt as r̄t = maxtr∈T ρt(tr). Moreover, let r̄i be the maximum
instantaneous reward that can be earned between two consecutive Markovian
jumps. This value can be efficiently computed via the Bellman equation given
in [9, Theorem 1] after assigning zero value to all transient rewards.

The following theorem quantifies the quality of the discretisation.

Theorem 2. Given an 1MC-SRG Grew = (G, ρt, ρi), time bound T > 0 and
discretisation step δ > 0 such that T = kδ for some k ∈ N. Then for all v ∈ V
we have:

R̃sup
δ,opt(v, k) ≤ Rsup

opt(v, T) ≤ R̃sup
δ,opt(v, k) + ēT

2 (̄rt + ē̄ri)(1 + ēT
2)δ

Using Theorem 2 it is possible to find a step size that respects a given
predefined accuracy level. The proposed error bound is a linear approximation of
the original bound (see Eq. (11) in Appendix D), which is a more complicated
function with the same set of parameters. Since the original bound is tighter,
in practice it is used for finding an appropriate step size by applying Newton’s
method.

3.3 Initial abstraction and labelling function

An important part of the abstraction and later the refinement process is starting
with a suitable initial partition P and labelling function lab. On the one hand, if
P is too coarse the resulting game abstraction requires many refinement steps
until the desired accuracy is reached. On the other hand, if P is unnecessarily
fine the resulting abstraction will not be able to reduce the size of the state space
sufficiently.

A simple way to obtain a partition [12] is by exploiting the actions of the
probabilistic transitions in an MA. They are used for synchronisation of different
MA. The partition contains one block with all Markovian states and groups
the probabilistic states according to the action labels available in a state. The
labelling function is given by the action labels of the transitions.

However, experiments have shown that in such a partition transitions in the
same block that are labelled with the same action may exhibit very different
behaviour. Therefore they trigger refinement steps which can be avoided by
a labelling function that takes the similarities of transitions into account. To
achieve this, we first define a new initial partition: The Markovian states form
one block of P; the probabilistic states are grouped according to the number of
outgoing transitions:

P =
{
MS
}
∪̇
{
{v ∈ PS | |T(v)| = |T(v′)|}

∣∣ v′ ∈ PS} .
Based on this partition we compute the labelling function lab, using a greedy

strategy as follows: All Markovian transitions are labelled with ⊥ as required by

Def. 4. For the transitions of a probabilistic block B ⊆ PS we proceed as follows:
We take an arbitrary state v ∈ B (actually the first one in our list of states)
and assign each transition tr ∈ T(v) a unique label lab(tr) := αtr. Running
over the transitions tr ∈ T(v), we choose from each state v′ ∈ B with v′ 6= v
a transition tr′ ∈ T(v′) which is not labelled yet and minimises mP(µtr, µtr′)
defined as follows:

mP : Distr(V)×Distr(V)→ [0, 2] with mP(µ, µ′) =
∑
B′∈P

∣∣µ(B′)− µ′(B′)
∣∣ .

The function mP is a pseudo-metric3 that measures the similarity of probability
distributions with respect to a partition P . Formally we take for each state v′ ∈ B
with v′ 6= v an arbitrary

tr′ ∈ arg min
tr′′∈T(v′)

lab(tr′′) is undefined

mP(µtr, µtr′′)

and set lab(tr′) := αtr.
By labelling the transitions in this way we ensure that more similar prob-

abilistic transitions belong to the same probabilistic V2-state, which prevents
unnecessary splitting operations during refinement. Since all states within one
probabilistic block B get the same set of labels with this labelling function, we
do not need to introduce the ∗-state.

3.4 Refinement

We approximate the maximal ETR Rsup of an MRAMrew by computing a lower

and an upper bound R̃sup
δ,inf and R̃sup

δ,sup with a game abstraction MP,lab and the

abstract reward functions ρt
opt and ρi

opt. If these bounds are too far apart, i. e.
R̃sup
δ,sup − R̃

sup
δ,inf > ε, with ε being a precision threshold, our abstraction is too

coarse and needs to be refined. The result of the refinement is a new partition,
which in turn leads to a new game abstraction. This refinement-loop is repeated
until the intended precision threshold ε is reached.

The reason behind the difference of the bounds can be two different situations:
(1) The difference occurs due to different choices in the player 2 strategies σinf

2

and σsup
2 . (2) The difference is a result of the different reward structures. In

case (1) we can use a strategy-based refinement strategy like in [12]. In case (2)
we have to use a refinement strategy based on the reward values.

For this value-based refinement strategy we first have to search for a V2-state v
where the values for R̃sup

δ,inf and R̃sup
δ,sup differ and the reward functions give different

values. More precisely, this means that we have to search for an abstract transition

tr ∈ T which was chosen by σinf
2 and σsup

2 and where
[
ρi

opt(tr) + ρt
opt(tr)
λtr

]
= ropt,

opt ∈ {inf, sup}, and rinf 6= rsup.

3 The function mP has the following properties: mP(µ, µ′) = mP(µ′, µ), mP(µ, µ′′) ≤
mP(µ, µ′) +mP(µ′, µ′′), and mP(µ, µ) = 0 for all distributions µ, µ′, µ′′. However, it
is not a metric because mP(µ, µ′) = 0 does not imply that µ = µ′ holds.

If we have found such an abstract transition tr, we split the preceding block
B. For this we compute two sets of concrete states, one (Brinf) containing the
states with reward rinf , the other (Brsup) containing the states with reward

rsup: Bropt
=
{
v | v ∈ B ∧ (v, λ, µ) = tr ∈ ν(tr) ∧

[
ρi(tr) + ρt(tr)

λtr

]
= ropt

}
with

opt ∈ {inf, sup}.
In case of an abstract Markovian transition tr it may occur that Bropt = ∅

since it is possible that no concrete transition tr ∈ ν(tr) matches the constraints.
Should this happen for both Bropt we use the concrete transitions tr which

optimise
[
ρi(tr) + ρt(tr)

λtr

]
instead.

After we have generated the concrete state sets for the minimal and maximal
reward, we replace B with Brinf , Brsup and B \

(
Brinf ∪̇Brsup

)
.

Block B is replaced by at least two and at most three new blocks, which leads
to a new, strictly finer partition and thus to a new game abstraction of Mrew ,
which in turn can be analysed and refined. This refinement-loop is repeated until
the precision threshold ε is reached.

Similar to [12] we apply a “precision trick”, i. e. we start with a coarse,
temporary precision threshold ε̂ for the refinement-loop. If precision ε̂ is reached,
we switch to a higher precision, i. e. we lower ε̂ and continue the refinement-loop.
This process is repeated until the final precision ε is reached.

Zenoness. Although we assume the considered MRA Mrew is non-Zeno, i. e. it
does not contain probabilistic end components, it may happen that Zenoness

is introduced into the abstraction MP,labrew . This occurs, e. g. if a non-cyclic
sequence of probabilistic states is partitioned into the same block B ∈ P. If the
instantaneous reward function ρi is non-zero within the end component, the value
iteration will not terminate since the accumulated reward does not converge.

We avoid this effect with the following method: Before applying value iteration
to solve the discretised fixed point characterisation, we employ a standard graph

algorithm [28] to search for end components in MP,labrew . If a probabilistic end
component is found, we refine the corresponding blocks B into smaller blocks and
recompute the abstraction. This process is repeated until all probabilistic end
components have been removed. Since there are no probabilistic end components
present in Mrew , our method will always terminate.

4 Experimental results

We implemented the described abstraction and refinement framework in C++
in a prototype tool called MeGARA. As mentioned earlier, we are currently
concentrating on the maximal ETR only, using discretisation (see Sec. 3.2). We
compare our experimental results with those of IMCA [10, 7, 9], an analyser for
MA and IMCs. For our experiments we used the following case studies:

The Polling System (PoS) [7, 29] consists of two stations and one server.
Incoming requests are stored within two queues until they are delivered by the

Table 1. Results for the polling system and the queueing system.

Name IMCA MeGARA
#states r time #states rlb rub #iter. time

PoS-3-2 1,547 0.830 0:04 657 0.828 0.830 17 0:02
PoS-3-3 14,322 0.922 1:06 5,011 0.920 0.921 19 1:16
PoS-3-4 79,307 0.985 10:59 11,527 0.982 0.985 20 7:02
PoS-4-2 6,667 0.832 0:20 1,513 0.829 0.831 18 0:12
PoS-4-3 131,529 0.924 13:46 31,992 0.922 0.923 22 8:55
PoS-5-2 27,659 0.833 1:47 2,006 0.830 0.832 18 0:23
QS-2 103 1.768 0:04 76 1.768 1.768 9 0:01
QS-3 163 2.307 0:10 118 2.306 2.306 10 0:02
QS-4 237 2.679 0:19 167 2.678 2.680 13 0:07
QS-8 673 3.351 1:47 455 3.351 3.351 17 0:33
QS-16 2,217 3.530 12:07 1,039 3.530 3.530 24 2:33
QS-32 7,993 TO 3,286 3.532 3.532 40 57:43

server to their station. With a probability of p = 0.1 a request erroneously stays
in the queue after if it was delivered to a station. In our experiments we varied
the queue size Q and the number of different request types J . The rewards in this
case study represent costs for processing requests and consuming server memory.
The model instances are denoted as “PoS-Q-J”.

The Queueing System (QS) [6] stores requests within two queues of size
K, each belonging to a server. Server S1 handles requests and eliminates them
from its queue. Requests processed by server S2 are either nondeterministically
submitted to the queue of S1, or with probability q = 0.3 re-submitted to the
queue of S2, or with probability (1 − q) eliminated from the queue. With the
help of rewards we explore the average number of jobs in the queues. For our
experiments we varied the queue size K. The model instances are denoted as
“QS-K”.

We created the model files with SCOOP [5], a modelling tool for MA. All
experiments were done on a Dual Core AMD Opteron processor with 2.4 GHz per
core and 64 GB of memory. Computations which took longer than one hour were
aborted and are marked with “TO”. Each computation needed less than 4 GB
memory, we therefore do not present measurements of the memory consumption.

For all experiments we used time bound T = 1 and precision ε = 0.01 in order
to compute the maximal ETR.

Table 1 shows the experimental results. The first column contains the name
of the respective benchmark instance, the blocks titled “IMCA” and “MeGARA”
present the results from IMCA and our abstraction refinement tool, respectively.
The columns headed with “#states” give the number of states of the concrete
system (in case of IMCA) and the final abstraction (in case of MeGARA). The
benchmarks instances are relatively small since the solving of discretised systems
is rather expensive [30].

Column “r” contains the maximal ETR computed by IMCA, whereas the
columns “rlb” and “rub” denote the lower and the upper bounds for the ab-
straction. The columns titled “time” present the total computation time (in
format min:s) needed by IMCA and MeGARA, respectively. For our abstrac-
tion refinement tool we do not give more detailed time measurements since the

better part of the computation time is needed for the repeated analysis of the
abstraction, whereas the time needed for the refinement and re-computation of
the abstraction is often negligible. For example, for QS-32 we need 57 min and
43 s, of which 57 min and 41 s are spent on the analysis, whereas the time spent
on re-computing and refining the abstraction is less than 2 s.

For the instances of PoS our tool needs about the same amount of time as
IMCA or is even faster, for the instances of QS we are always faster. As can be
seen from the columns “rlb” and “rub” the quality of our abstraction is always
very good. In some cases the value “r” computed by IMCA is slightly higher
than rub , however this deviation is always well within our precision threshold of
ε = 0.01. We always achieve a notable compaction of the state space, even for
the smallest instances with only a few hundred states. For the bigger instances
we can report on compaction rates up to 92 %, e. g. for PoS-5-J we can reduce
the system from 27,659 to 2,006 states.

5 Conclusion

We have presented a new abstraction technique for MRA, based on SRGs. We are
able to analyse our abstraction regarding ETR properties. Should the quality of
the abstraction be too low, we can apply scheduler- and value-based refinement
methods. Our experiments show a significant compaction of the state space and
a reduction of computation times.

In the future we plan to explore the possibilities of different initial partitions,
labelling functions, and refinement techniques. We also plan to work on additional
types of properties, e. g. bounded rewards or long-run average.

References

1. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proc. of LICS, IEEE CS (2010) 342–351

2. Hermanns, H.: Interactive Markov Chains – The Quest for Quantified Quality. Vol.
2428 of LNCS. Springer (2002)

3. Eisentraut, C., Hermanns, H., Katoen, J.P., Zhang, L.: A semantics for every GSPN.
In: Proc. of Petri Nets. Number 7927 in LNCS, Springer (2013) 90–109

4. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: Structure,
behavior, and application. In: Proc. of PNPM, IEEE CS (1985) 106–115

5. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Efficient modelling and
generation of Markov automata. In: Proc. of CONCUR. Vol. 7454 of LNCS, Springer
(2012) 364–379

6. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE-
ASST 53 (2012)

7. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Modelling, reduction
and analysis of Markov automata. In: Proc. of QEST. Vol. 8054 of LNCS, Springer
(2013) 55–71

8. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed and
long-run objectives for markov automata. Logical Methods in Computer Science
10(3) (2014)

9. Guck, D., Timmer, M., Ruijters, E., Hatefi, H., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Proc. of ATVA. Vol. 8837 of LNCS,
Springer (2014)

10. Guck, D., Han, T., Katoen, J.P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Proc. of NFM. Vol. 7226 of LNCS, Springer (2012)
8–23

11. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3) (2010) 246–280

12. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns,
H.: MeGARA: Menu-based game abstraction and abstraction refinement of Markov
automata. In: Proc. of QAPL. Vol. 154 of EPTCS (2014) 48–63

13. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reduction and refinement
strategies for probabilistic analysis. In: Proc. of PAPM-PROBMIV. (2002) 57–76

14. Wachter, B., Zhang, L.: Best probabilistic transformers. In: Proc. of VMCAI. Vol.
5944 of LNCS, Springer (2010) 362–379

15. Wachter, B.: Refined probabilistic abstraction. PhD thesis, Saarland University
(2011)

16. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in continuous-
time Markov decision processes. In: Proc. of QEST, IEEE CS (2010) 209–218

17. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory. 2nd edn. Academic
Press (1999)

18. Neuhäußer, M.R.: Model checking nondeterministic and randomly timed systems.
PhD thesis, RWTH Aachen University and University of Twente (2010)

19. Johr, S.: Model checking compositional Markov systems. PhD thesis, Saarland
University, Germany (2008)

20. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences
of the United States of America 39(10) (1953) 1095

21. Brázdil, T., Forejt, V., Krcál, J., Kret́ınský, J., Kucera, A.: Continuous-time
stochastic games with time-bounded reachability. Information and Computation
224 (2013) 46–70

22. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Trans. Software Eng. 29(6) (2003) 524–541

23. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Proc. of CONCUR. Vol. 6269 of LNCS, Springer (2010) 21–39

24. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Information and
Computation 222 (2013) 139–168

25. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL, ACM (1977) 238–252

26. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4)
(1992) 511–547

27. Fearnley, J., Rabe, M.N., Schewe, S., Zhang, L.: Efficient approximation of optimal
control for continuous-time markov games. In: Proc. of FSTTCS. Vol. 13 of LIPIcs,
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2011) 399–410

28. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Proc. of SODA, SIAM (2011) 1318–1336

29. Timmer, M., van de Pol, J., Stoelinga, M.: Confluence reduction for Markov
automata. In: Proc. of FORMATS. Vol. 8053 of LNCS, Springer (2013) 243–257

30. Zhang, L., Neuhäußer, M.R.: Model checking interactive Markov chains. In: Proc.
of TACAS. (2010) 53–68

31. Guck, D., Timmer, M., Ruijters, E., Hatefi, H., Stoelinga, M.: Modelling and
analysis of Markov reward automata (extended version). Technical Report TR-
CTIT-14-06, Centre for Telematics and Information Technology, University of
Twente, Enschede (2014)

A Proof of Lemma 1

Lemma 1 (Fixed point characterisation). Given an SRG Grew = (G, ρt, ρi),
a time bound T ≥ 0, opt ∈ {inf, sup}, optv = sup if v ∈ V1 and optv = opt
otherwise. Rsup

opt(·, T) is the least fixed point of the higher order operator Ωopt :

(V × R≥0 7→ R≥0) 7→ (V × R≥0 7→ R≥0), opt ∈ {inf, sup}, such that

Ωopt(F)(v, T) = optv
tr∈T(v)

(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)F (v′, T − t) dt, if tr ∈ TM (v),

ρi(tr) +
∑
v′∈V

µtr(v
′)F (v′, T), if tr ∈ TP (v).

Proof. We first apply a reward preserving transformation to Grew . For each
Markovian transition tr ∈ TM (v) we introduce an auxiliary state vtr that takes
exactly the same transition as tr with the same transient and instantaneous
reward values, i. e. we add vtr to the set of states and (vtr, λtr, µtr) to the set
of transitions. Furthermore tr is eliminated from T and instead a probabilistic
transition (v,∞, ξvtr), from v to vtr with zero transient and instantaneous reward,
is added to T. Note that vtr must be controlled by the same player as v.

It is not hard to see that the transformation is reward preserving, since the
newly added transitions are instantaneous and have zero reward. Moreover, the
derived SRG is guaranteed to have at most one Markovian transition for each
state by construction, which resembles an MRA (see Sec. 2.3). Consequently,
the fixed point characterisation for case opt = sup can be directly derived from
the one for MRA [31, Lemma 1]. Note that for this case the player roles can be
merged since both of the players cooperate. The other case (opt = inf) can be
proven via a slight adaptation of the proof for [31, Lemma 1]. ut

B Proof of Theorem 1

Theorem 1 (Soundness). Let Mrew = (M, ρt, ρi) be an MRA, its high-order

operator for maximum reward Ω, and opt-MP,labrew = (MP,lab , ρtopt, ρi
opt), opt ∈

{inf, sup}, be a game abstraction with rewards, its high-order operators Ωinf ,
Ωsup. Then:

lfp(Ωinf)([v]P , T) ≤ lfp(Ω)(v, T) ≤ lfp(Ωsup)([v]P , T)

for all v ∈ V , and T ∈ R≥0.

Proof. At first we need the definition of Galois connections:

Definition 11 (Galois connection [26]). A Galois connection

〈D,�〉
γ
↼−−⇁
α
α〈D],�]〉

consists of a concrete domain D and an abstract domain D] with their respective
complete partial orders � and �], an abstract function α : D → D], and a
concretisation function γ : D] → D, such that

α(c) �] a ⇐⇒ c � γ(a)

for all elements a ∈ D and c ∈ D].

Our soundness argument follows from the following lemma:

Lemma 2 (Semantic Approximation [26]). Given a Galois connection

〈D,�〉
γ
↼−−⇁
α
α〈D],�]〉,

a concrete semantic function f : D → D, and an abstract semantic function
f] : D] → D], such that for all a ∈ D]

f(γ(a)) � γ(f](a)).

Then α
(
lfp�(f)

)
�] lfp�](f]) and α

(
gfp�(f)

)
�] gfp�](f]).

As we aim to approximate the fixed point of the high order function Ω, our
concrete and abstract domains are functions. Namely D = S × R≥0 → R≥0

∞ , and
D] = P × R≥0 → R≥0

∞ . We will use the pointwise order of functions:

f v g :⇔ ∀x : f(x) ≤ g(x).

The Galois connection for the upper bound abstraction is 〈D,v〉
γ

↼−−−−⇁
αu
〈D],v〉,

where the abstraction function is αu(F)(B, t) = sups∈B F (s, t), and the concreti-
sation function is γ(F])(s, t) = F]([s]P , t). It is easy to see that it fulfils the
requirements of Def. 11, but the reader can consult [15] for a detailed proof. Simi-

larly, the Galois connection for the lower bound abstraction is 〈D,w〉
γ
↼−−⇁
αl
〈D],w〉,

where the abstract function is αl(F)(B, t) = infs∈B F (s, t).
We will prove that a lower bound is a sound abstraction, where both players

compete against each other. The collaborative case is straightforward, as it is a
probabilistic simulation.

Notice that V1- and V2- states alternate in the underlying game generated by
the abstraction. Also, we are only interested in the values of V1- states as they
are the elements of our abstract domain. Thus, we can rewrite the high order
operator Ωopt in Lemma 1 to only use V1- states. We denote by trv,a the unique
transition in v with label a or the transition (v,∞, ξ∗) in case a 6∈ Lab(v).

For [v]P = B ⊆ PS we get:

Ω(γ(F]))(v, T) = sup
tr∈T(v)

ρi(tr) +
∑
v′∈V

µtr(v
′)γ(F])(v′, T)

= sup
tr∈T(v)

ρi(tr) +
∑
v′∈V

µtr(v
′)F]([v′]P , T)

= sup
tr∈T(v)

ρi(tr) +
∑
B′∈P

∑
v′∈B

µtr(v
′)F](B′, T)

= sup
tr∈T(v)

ρi(tr) +
∑
B′∈P

µtr(B
′)F](B′, T)

≥ sup
tr∈T(v)

ρinfi (tr) +
∑
B′∈P

µtr(B
′)F](B′, T)

= sup
a∈Lab(v)

ρinfi (trv,a) +
∑
B′∈P

µtrv,a
(B′)F](B′, T)

≥ inf
w∈B

sup
a∈Lab(w)

ρinfi (trw,a) +
∑
B′∈P

µtrw,a
(B′)F](B′, T)

≥ inf
w∈B

sup
a∈Lab(B)

ρinfi (trw,a) +
∑

B′∈P∪{∗}

µtrw,a
(B′)F](B′, T)

≥ sup
a∈Lab(B)

inf
w∈B

ρinfi (trw,a) +
∑

B′∈P∪{∗}

µtrw,a
(B′)F](B′, T)

= Ω]inf(B, T)

= γ(Ω]inf)(v, T)

The case [v]P = B ⊆ MS is straightforward:

Ω(γ(F]))(v, T) =
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)γ(F])(v′, T − t) dt

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
B′∈P

µtr(B
′)F](B′, T − t) dt

=
(
ρinfi (trv,⊥) +

ρinft (trv,⊥)

λtrv,⊥

)(
1− e

−λtrv,⊥T
)

+

T∫
0

λtrv,⊥e
−λtrv,⊥ t

∑
B′∈P

µtrv,⊥
(B′)F](B′, T − t) dt

≥ inf
w∈B

(
ρinfi (trw,⊥) +

ρinft (trw,⊥)

λtrw,⊥

)(
1− e

−λtrw,⊥T
)

+

T∫
0

λtrw,⊥e
−λtrw,⊥ t

∑
B′∈P

µtrw,⊥
(B′)F](B′, T − t) dt

= Ω](F])(B, T)

= γ(Ω](F]))(v, T)

ut

C Correctness of Equation (4) and (5)

We first recall the problem; Let Grew = (G, ρt, ρi) be an SRG, T ≥ 0 be a time
bound and 0 ≤ δ ≤ T be a time step. We want to express sup-opt expected
time-bounded reward Rsup

opt (opt = {inf, sup}) in terms of its behaviour after
taking time step δ. As explained before, w. l. o. g. we consider a state v with only
Markovian outgoing transitions, that is ∅ 6= T(v) ⊆ TM . We want to show that
the following equations hold:

Rsup
opt(v, T) = optv

tr∈T(v)

(
Acctr(v, T) + e−λtr·δRsup

opt(v, T − δ)
)

(4)

Acctr(v, T) =
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtr·δ

)
+

δ∫
0

λtre
−λtr·t

∑
v′∈V

µtr(v
′)Rsup

opt(v′, T − t) dt
(5)

Proof. By Lemma 1, Rsup
opt is the least fixed point of operator Ωopt given in

Eq. (3), we therefore have:

Rsup
opt(v, T) = optv

tr∈T(v)

((
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v′, T − t) dt
)

(9)

We use notation Asup
opt to denote the argument of optv in Eq. (9), then it holds

that:

Rsup
opt(v, T) = optv

tr∈T(v)

Asup
opt(v, tr, T) (10)

Now we split the time horizon into two intervals: the one that spans up to time
point δ and the other that spans from time point δ up to time bound T . Then
we have:

Asup
opt(v, tr, T) =

(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

T∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+

T∫
δ

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrT

)
+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+

T−δ∫
0

λtre
−λtr(τ+δ)

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − δ − τ) dτ

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrδ + e−λtrδ − e−λtrT

)
+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+ e−λtrδ

T−δ∫
0

λtre
−λtrτ

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − δ − τ) dτ

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrδ

)
+ e−λtrδ

(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtr(T−δ))

+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+ e−λtrδ

T−δ∫
0

λtre
−λtrτ

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − δ − τ) dτ

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrδ

)
+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+ e−λtrδ
((
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtr(T−δ))

+

T−δ∫
0

λtre
−λtrτ

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − δ − τ) dτ

)

=
(
ρi(tr) + ρt(tr)

λtr

)(
1− e−λtrδ

)
+

δ∫
0

λtre
−λtrt

∑
v′∈V

µtr(v
′)Rsup

opt(v
′, T − t) dt

+ e−λtrδRsup
opt(v, T − δ)

Finally, putting the result into Eq. (10) demonstrates the correctness of Eq. (4)
and (5). ut

D Proof of Theorem 2

Theorem 2. Given an 1MC-SRG Grew = (G, ρt, ρi), time bound T > 0 and
discretisation step δ > 0 such that T = kδ for some k ∈ N. Then for all v ∈ V
we have:

R̃sup
δ,opt(v, k) ≤ Rsup

opt(v, T) ≤ R̃sup
δ,opt(v, k) + ēT

2 (̄rt + ē̄ri)(1 + ēT
2)δ

Proof. Similar to the proof of Lemma 1 we first apply a reward preserving
transformation to Grew . For each Markovian transition tr ∈ TM (v) we introduce
an auxiliary state vtr that takes exactly the same transition as tr with the same
transient and instantaneous reward values, i. e. we add vtr to the set of states and

(vtr, λtr, µtr) to the set of transitions. Furthermore tr is eliminated from T and
instead a probabilistic transition (v,∞, ξvtr), from v to vtr with zero transient
and instantaneous reward, is added to T. Note that vtr must be controlled by
the same player as v.

It is not hard to see that the transformation is reward preserving, since the
newly added transitions are instantaneous and have zero reward. Moreover, the
derived SRG is guaranteed to have at most one Markovian transition for each
state by construction, which resembles an MRA (see Sec. 2.3). Consequently, the
error bound for case opt = sup can be directly derived from the one for MRA [31,
Theorem 3]. Note that for this case the player roles can be merged since both of
the players cooperate.

Here we elaborate more on the error bound. Following from [31, Lemma C2, C5
and C6], for all v ∈ V it holds that

R̃sup
opt(v, k) ≤ Rsup

opt(v, T) ≤ R̃sup
opt(v, k) + Err(δ, T, ē, r̄t, r̄i) (11)

where Err(δ, T, ē, r̄t, r̄i) is the error function given by

Err(δ, T, ē, r̄t, r̄i) = (̄rt + ē̄ri)T − (r̄t
ē + r̄i)(1− e−ēδ)

k−1∑
i=0

e−ēiδ(1 + ēδ)i. (12)

By straightforward mathematics it can be shown that

lim
δ→0

Err(δ, T, ē, r̄t, r̄i) = 0.

Moreover, the bound given in Theorem 2 is a linear approximation and a safe
upper bound of the error function, i. e.

Err(δ, T, ē, r̄t, r̄i) ≤ ēT
2 (̄rt + ē̄ri)(1 + ēT

2)δ.

It remains to show the error bound for the other case (opt = inf). The proof
for this case is fairly similar to the one for the previous case. It can be done via
a slight adaptation of the proof for [31, Theorem 3]. ut

