
Schritte der Analyse: 1. Timing der Register-PALs (Setup – [Hold] – Zeiten) 2. Vermeidung von Bus-Contention 3. PC-Inkrementierung 4. Compute-Befehle O.E.: Compute Memory mit D = PC (Setup + Hold – Zeiten länger als bei Reg.) (auch kritischer als Fetch!) 5. Load, Store O.E.: LOADIN1, STOREIN1 6. JUMP

14.4.1 Timing der Register-PALs P-PALs = PALs, die mit ck getaktet werden N-PALs = PALs, die mit /ck getaktet werden (Illustration siehe folgende Abbildung oder Datenblatt für PALs!)

Schaltzeiten der PALs 20Rxx und 20Lxx

Symbol	Name	min	max
t _p	Prop.Delay von Input oder Feedback nach Output	12.0	15.0
t _{CLK}	Prop.Delay von CK nach Output oder Feedback	8.0	12.0
t _C	Zykluszeit ohne Feedback	22.2	
t _C	Zykluszeit mit Feedback	27.0	
t_{s}	Setup-Zeit von Input oder Feedback bis CK	15.0	
t _H	Hold-Zeit	0.0	
t _w (H)	Clockpulsweite	12.0	
t _w (L)		10.0	

Ausgänge der PALs

Ausgänge von P-PALs gültig zur Zeit

$$t + = (8.0, 12.0)$$

Propagation Delay von ck bis PAL-Ausgänge

Ausgänge von N-PALs gültig zur Zeit

$$t^{-} = \tau/2 + (2.4, 6.0) + (8.0, 12.0) = \tau/2 + (10.4, 18.0)$$

Propagation Delay PAL

Inverter

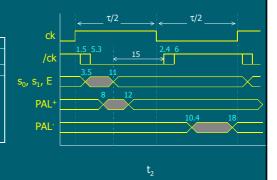
Input-Signale von Register-PALs:

Zählerausgänge s0, s1, E, Registerausgänge von I, Feedbacks bei Haltetermen

Für P-PALs: auch ACC, ZL, ZH (JUMP!)

→ Timing-Bedingungen aus Setup-Zeiten

BB - TI II 14.4/9


■ Zählerausgänge s0, s1, E als PAL-Eingänge:

O.E.: Betrachte N-PALs

(bei P-PALs hat man $\tau/2$ länger Zeit!)

Schaltzeiten der PALs 20Rxx und 20Lxx

Symbol	Name	min	max
t _p	Prop.Delay von Input oder Feedback nach Output	12.0	15.0
t _{CLK}	Prop.Delay von CK nach Output oder Feedback	8.0	12.0
t _c	Zykluszeit ohne Feedback	22.2	
t _c	Zykluszeit mit Feedback	27.0	
t _s	Setup-Zeit von Input oder Feedback bis CK	15.0	
t _H	Hold-Zeit	0.0	
t _w (H)	Clockpulsweite	12.0	
t _w (L)		10.0	

Timing aus Setup-Zeiten

- Zählerausgänge s0, s1, E als PAL-Eingänge:
 - O.E.: Betrachte N-PALs

(bei P-PALs hat man $\tau/2$ länger Zeit!)

 \blacksquare max(3.5, 11.0) + 15.0 $\leq \tau/2$ + min(2.4, 6.0)

Propagation Delay Setup-Zeit von ck bis PAL Zählerausgänge

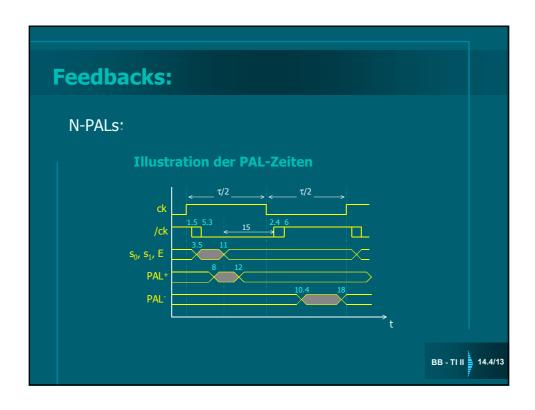
 $\rightarrow \tau \geq 47.2$

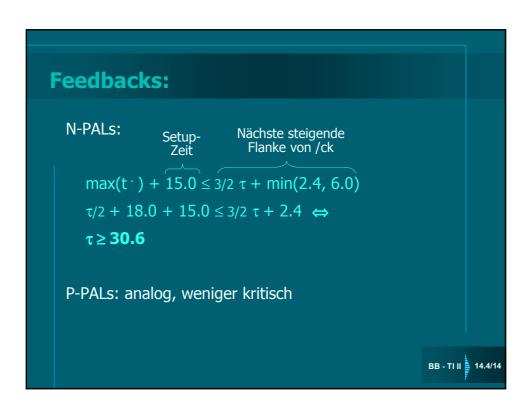
BB - TI II 14.4/11

Timing aus Setup-Zeiten (ff)

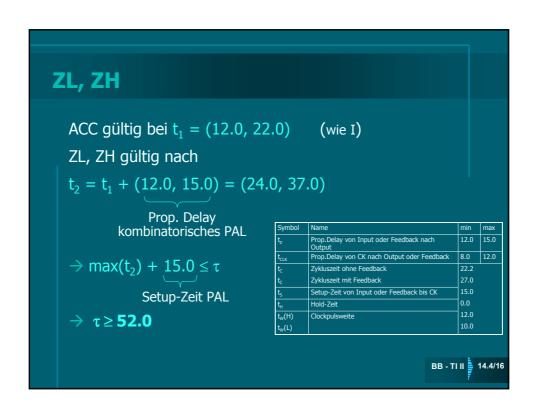
Registerausgänge von I als PAL-Eingänge:

O.E.: N-PALs

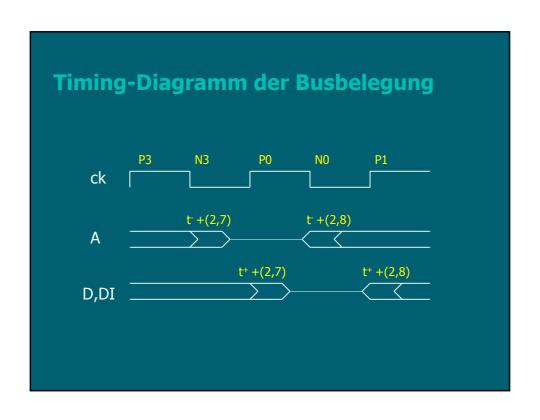

I-Ausgänge gültig bei $t_1 = t^+ + (4.0, 10.0) = (12.0, 22.0)$


Clock Ick Verzögerung 74F374

 $max(12.0, 22.0) +15.0 \le \tau/2 + min(2.4, 6.0)$


Prop. Delay von ck bis I-Ausgänge

 \rightarrow 34.6 \leq τ /2 \Leftrightarrow $\tau \geq$ **69.2**



Analog I, weniger kritisch, da nur Eingang von P-PALs

14.4.2 Vermeidung von Bus Contention BB-TII 14.4/17

Timing der Busbelegung: N-PALs

$$\max(t^- + (2.0,7.0)) \le \tau + \min(t^- + (2.0,8.0))$$

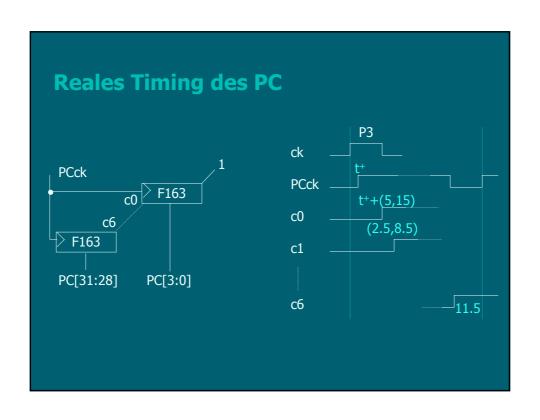
$$\text{disable-Zeit}$$

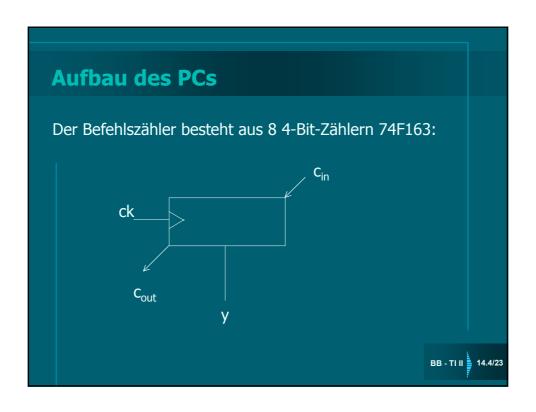
$$\text{enable-Zeit}$$

$$\frac{\tau}{2} + 25.0 \le \tau + \frac{\tau}{2} + 12.4$$

$$\rightarrow \qquad \tau \ge 12.6 \text{ ns}$$


Timing der Busbelegung: P-PALs


$$max(t^{+} + (2.0,7.0)) \leq \tau + min(t^{+} + (2.0,8.0))$$


$$disable-Zeit$$


$$19.0 \leq \tau + 10.0$$

$$\Rightarrow \qquad \tau \geq 9.0 \text{ ns}$$

Symbol	Name	min	max
t _c	Zykluszeit	11.1	
t _{PLH}	Prop. Delay von ck nach y _i	3.5	8.5
t _{PHL}	wenn /L = 1	3.5	11.0
t _{PLH}	Prop. Delay von ck nach y _i	4.0	9.5
t _{PHL}	wenn /L = 0	4.0	9.5
$t_{PLH} = t_{PHL}$	Prop. Delay von ck nach c _{out}	5.0	15.0
$t_{PLH} = t_{PHL}$	Prop. Delay von c _{in} nach c _{out}	2.5	8.5
$t_S(H) = t_S(L)$	Setup-Zeit von x _i nach ck	5.0	
$t_H(H) = t_H(L)$	Hold-Zeit von x _i nach ck	2.0	
t _S (H)	Setup-Zeit von /L oder /C bis	11.5	
t _S (L)	ck	9.5	
t _H (H)	Hold-Zeit von /L oder /C nach	2.0	
t _H (L)	ck	0.0	
t _S (H)	Setup-Zeit von c _{in} bis ck	11.5	
t _S (L)		5.0	
$t_H(H) = t_H(L)$	Hold-Zeit von c _{in} bis ck	0.0	
$t_W(H) = t_W(L)$	Clockpulsweite (Zählen)	5.0	
t _H (H)	Clockpulsweite (Laden)	4.0	
t _H (L)		7.0	

Berechnung der PC-Clock

PCck wird durch P-PAL berechnet mit steigender Flanke bei P3 von Execute:

$$t^+ = (8.0, 12.0)$$

(P3 ist zeitlicher Bezugspunkt!)

→ Für $0 \le i \le 6$ wird c_i gültig bei

$$\xi_i = t^+ + (5,15) + i \cdot (2.5,8.5)$$

Bedingungen:

Folgende Bedingungen müssen eingehalten werden:

1. Hold-Zeit von c_i nach PCck: 0.0 ns

BB - TI II 14.4/27

Bedingungen: (ff)

2. Setup-Zeit von c_i bis PCck = 11.5 ns

$$\max_{0 \leq i \leq 6} \left\{ max(\xi_i) \right\} + 11.5 \leq 8\tau + \min(t^+)$$
 bei nächstem PAL-Delay für PCck

$$\Leftrightarrow \text{max}(\xi_6) + 11.5 \leq 8\tau + 8.0$$

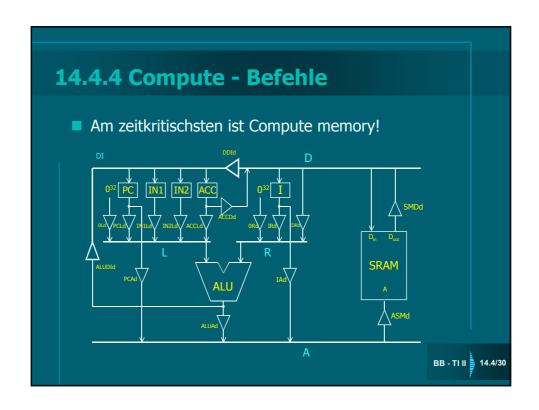
$$\Leftrightarrow 12.0 + 15.0 + 6 \cdot 8.5 + 11.5 \leq 8\tau + 8.0$$

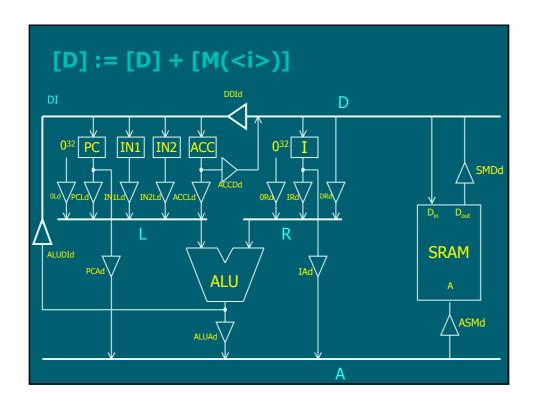
$$\Rightarrow \tau \ge 10.2 \text{ ns}$$

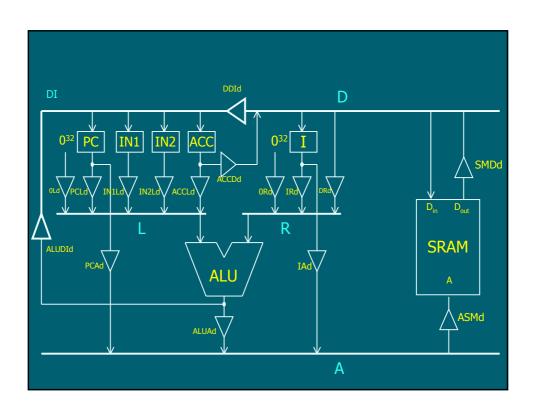
Bedingungen: (ff)

3. Änderung der PC-Ausg. abgeschlossen, wenn PCAd bei N0 von Fetch enabled wird.

$$\max(t^+) + 11.0 \le \frac{3}{2}\tau + \min(t^-)$$


$$\text{Zeit für PCck} \qquad \text{PCAdœ}$$


$$\text{Delay PCck} \qquad \text{Delay PCck} \qquad \text{Dis NO}$$


$$\text{Ausgänge} \qquad \text{Fetch}$$

$$\Rightarrow \tau \ge 8.4 \text{ ns}$$

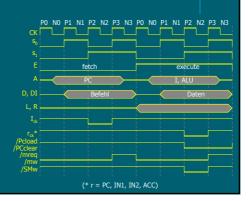
$$\Rightarrow \text{PC - Inkrementieren ist unkritisch!}$$

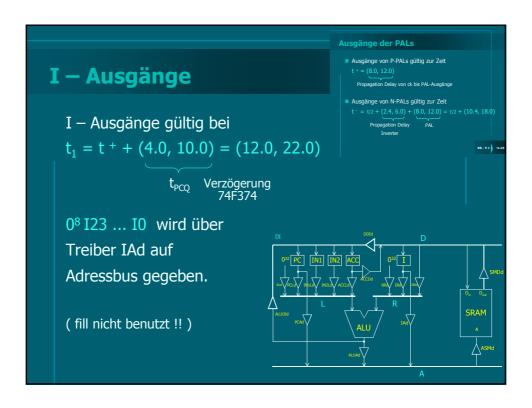
Als Voraussetzung für exaktes Timing von Compute memory

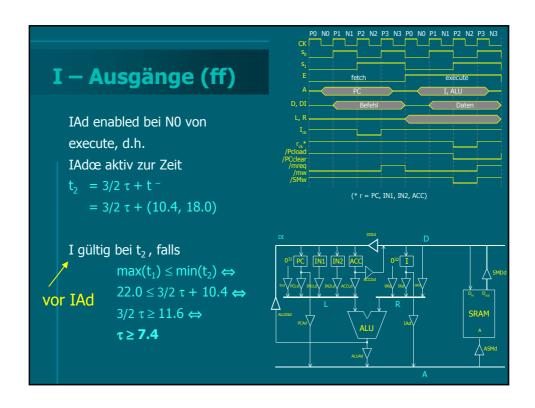
- Analyse unserer kaskadierten ALU unter folgenden Annahmen
 - Operanden und c_{in} sind bei t₀ gültig,
 - Funktionsselect-Signal bei $t_0 7.0$.

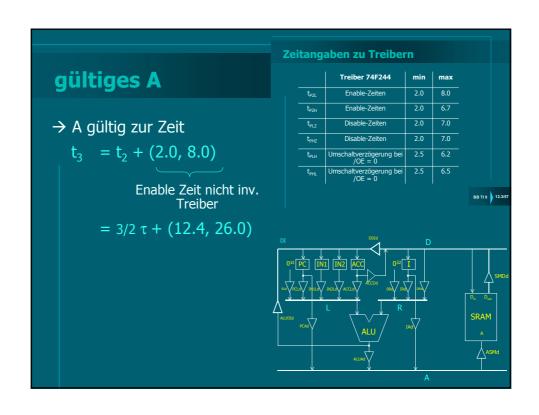
ergibt:

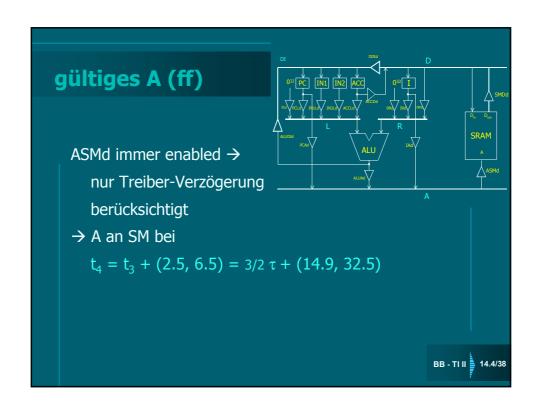
→ (Übung)

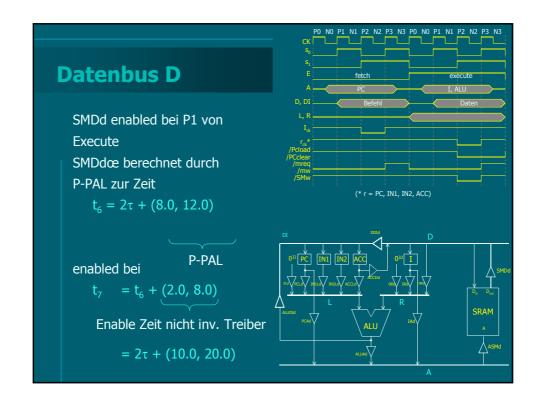

Resultatsausgänge gültig bei

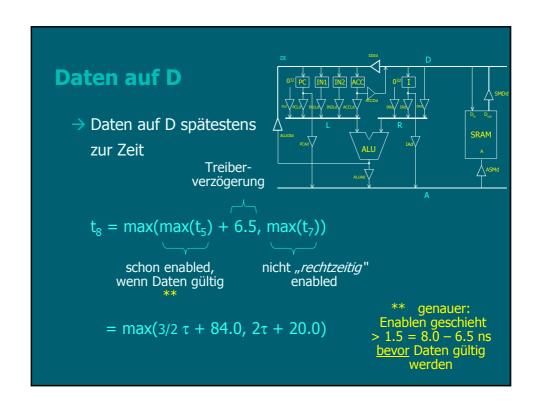

$$t_{ALU} = t_0 + 83.5 \text{ ns}$$

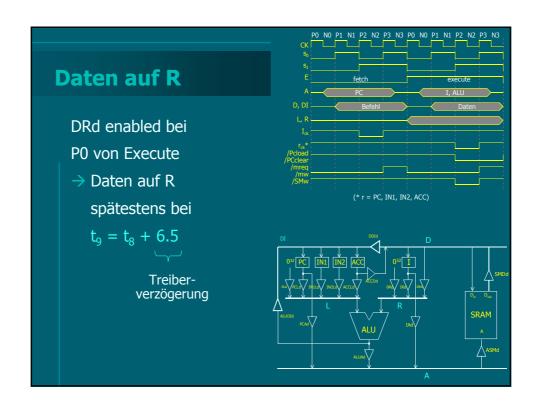

BB - TI II 14.4/33


Analyse allgemein


- Beginn der Analyse bei P3 von fetch als zeitlicher Bezugspunkt
- Ick des Instruktionsregisters hat steigendeFlanke bei P3 von fetch.







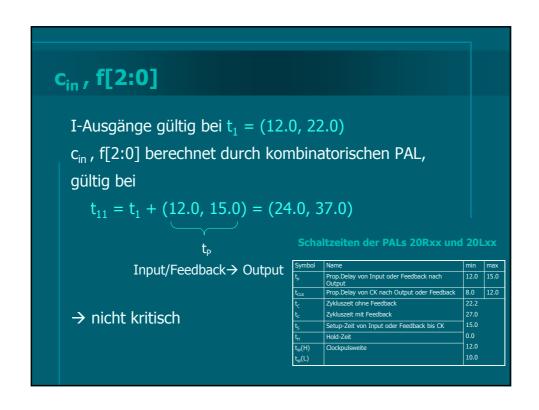
Daten am Speicherausgang Lesezugriffszeit von SM: (3.0, 45.0) (\rightarrow CY7C 191 – 45) AGültige Daten am ASpeicherausgang bei $t_5 = t_4 + (3.0, 45.0)$ $= 3/2 \tau + (17.9, 77.5)$

Datenbus D (ff) Bei langsamem Takten sind Daten schon bereit beim Enablen, bei schnellem Takten noch nicht!

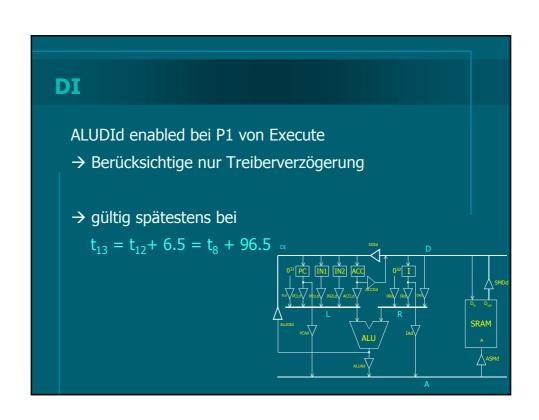

```
Daten auf L (ff)

L gültig zur Zeit

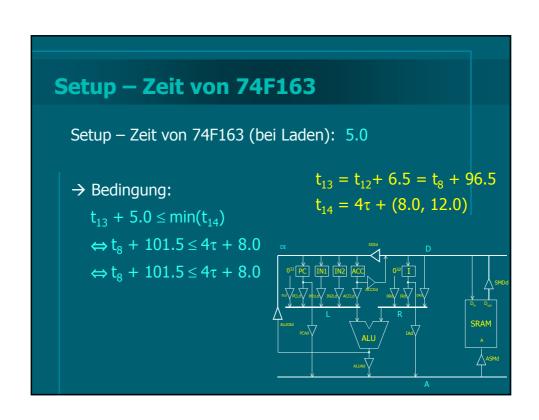
t_{10} = \tau + (8.0, 12.0) + (2.0, 12.5) = \tau + (10.0, 24.5)


Delay P-PAL worst case:
Delay der internen Treiber von IN1, IN2

**


( \Rightarrow nicht kritisch!)

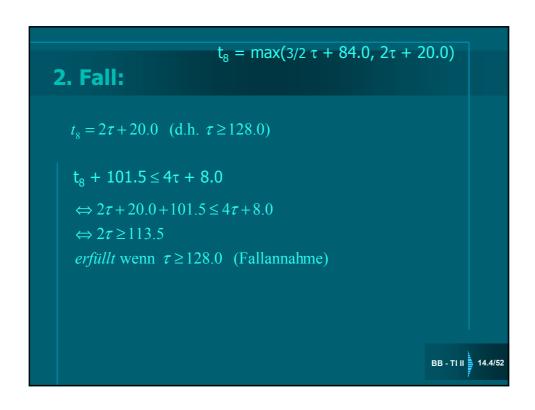
**

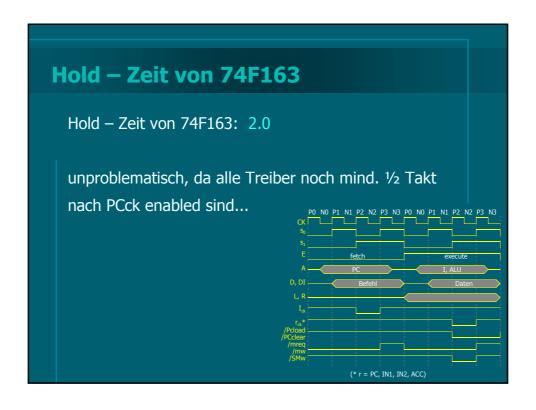

T4F374 interne Treiber; alle anderen externe Treiber ([2,8])
```

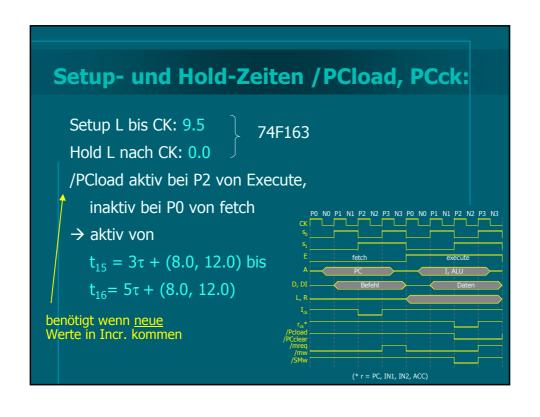

ALU — Ausgänge spätestens gültig bei
$$t_{12} = t_9 + 83.5 = t_8 + 90.0 = \max(3/2 \tau + 84.0, 2\tau + 20.0) + 90$$
 Delay ALU
$$t_{10} \quad t_9 = t_8 + 6.5 \quad t_{11}$$

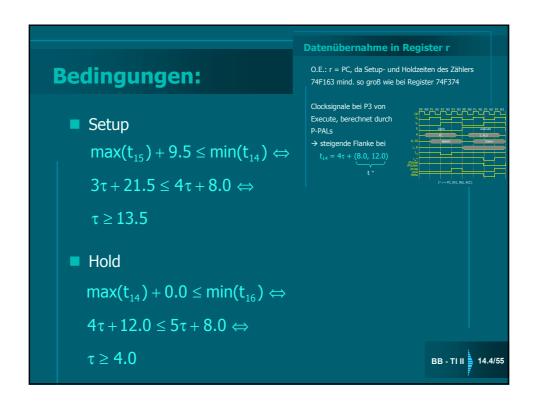
Datenübernahme in Register r O.E.: r = PC, da Setup- und Holdzeiten des Zählers 74F163 mind. so groß wie bei Register 74F374 Clocksignale bei P3 von Execute, berechnet durch P-PALs \Rightarrow steigende Flanke bei $t_{14} = 4\tau + (8.0, 12.0)$

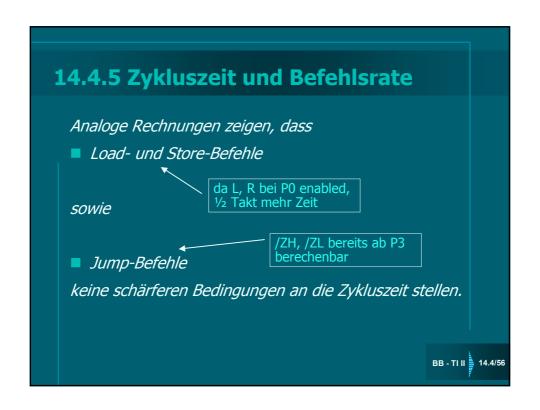
$$t_8 = \max(3/2 \ \tau + 84.0, 2\tau + 20.0)$$
1. Fall:


$$t_8 = \frac{3}{2}\tau + 84.0 \quad (\text{d.h.} \ \frac{3}{2}\tau + 84.0 \ge 2\tau + 20.0 \Leftrightarrow \tau \le 128.0)$$


$$t_8 + 101.5 \le 4\tau + 8.0$$


$$\Leftrightarrow \frac{3}{2}\tau + 185.5 \le 4\tau + 8.0$$


$$\Leftrightarrow \frac{5}{2}\tau \ge 177.5$$


$$\Leftrightarrow \tau \ge 71.0$$


```
Zykluszeit und Befehlsrate (ff)

Zykluszeit:
\tau \ge 71.0 \text{ ns}

Taktfrequenz:
v = \frac{1}{71} \cdot 10^9 \text{ Hz} = 14.1 \text{ MHz}

8 Takte pro Befehl \rightarrow
1.76 Millionen Befehle pro Sekunde,
d.h. Befehlsrate von 1.76 MIPS
( = Million Instructions Per Second )
```