

Ausblick

Bisher wurden nur kombinatorische Schaltkreise

$$SK = (\vec{X}_n, G, typ, in, out, \vec{Y}_m)$$

betrachtet, wobei G azyklisch war.

Was geschieht, wenn G nicht zykelfrei ist?

→ Schalt<u>pläne</u>, Schaltungen

Vorgehen

- Exkurs über physikalische Eigenschaften von Gattern → "Approximation" des Zeitverhaltens
- Analyse spezieller Schaltpläne mit Zyklen, nämlich Speicherbausteine wie z.B. Flipflops, Latches, Register, RAMs, ROMs, ...
- Betrachte nur noch bestimmte Teilklassen von Schaltplänen: Zusammenschaltungen von Speicherbausteinen und Schaltkreisen nach bestimmten Regeln
 - → sequentielle SKs bzw. Schaltwerke
- Diskreter Aufbau eines gesamten Rechners (Kap. 13 ff) mit Analyse des Zeitverhaltens
 - → Einsicht in die Funktionsweise eines Rechners (und z.T. auch in die eines Entwurfssystems)

BB TI II 12.1/3

12.1 Physikalische Eigenschaften und Timing

Bernd Becker - Technische Informatik II

Physikalische Eigenschaften von **Gattern**

3 wesentliche Punkte:

- 1. logische Signale ≅ Spannungspegel
- 2. Fanout von Gattern ist begrenzt
- 3. Gatter benötigen Zeit zum Schalten!!

BB TI II 12.1/5

Beispiel:

Notation zur Kennzeichnung von Bausteinen:

Technologie

Funktion des Bausteins

BB TI II 12.1/6

Beispiel: (ff)

Bausteinfamilie FAST (Fairchild Advanced Schottky TTL) (spezifiziert in FAST DATA BOOK, 1985)

Bsp: 54F04 =

Chip mit 6 Invertern in FAST Technologie, militärischer Bereich

BB TI II 12.1/7

Zur Notation:

- Temperaturbereich, Störanfälligkeit gegen Strahlung, Ausfallsicherheit
- 54 = militärischer Bereich
- 74 = kommerzieller Bereich

y y y:

Funktion unabhängig von Technologie und Betriebssystem

<u>W:</u>

F: FAST = Fairchild Advanced Schottky TTL

FACT: Fairchild Advanced **CMOS Technology**

TTL: Transistor-Transistor Logic

LS: Low Power Schottky

Logische Signale ↔ **physikalische Signale**

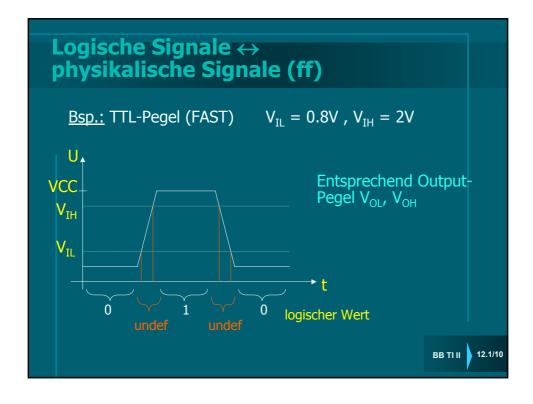
In jeder Technologie gibt es eine Versorgungsspannung VCC (z.B. VCC = 5V).

Zwei Input-Pegel: V_{IH} (V in high) und V_{IL} (V in low)

 \rightarrow Eine Spannung U \in [0, VCC] am Eingang eines Gatters wird als logischer Wert I(U) interpretiert.

$$I(U) = \begin{cases} 0 & \text{, falls } U \leq V_{IL} \\ 1 & \text{, falls } U \geq V_{IH} \\ \text{undef. , sonst} \end{cases}$$

BB TI II 12.1/9



Beispiel zum Output

FAST-Bausteine mit $V_{OL} \in [0.5, 0.55], V_{OH} \in [2, 2.7]$ Will man Ausgang u eines Gatters mit Eingang v verbinden, dann sollte gelten:

$$V_{\text{OL}}^{\text{u}} \leq V_{\text{IL}}^{\text{v}}$$
 , $V_{\text{OH}}^{\text{u}} \geq V_{\text{IH}}^{\text{v}}$,

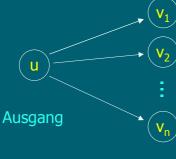
sonst werden Signale falsch interpretiert.

Bsp.: FAST benutzt TTL-Pegel

→ Hintereinanderschalten möglich

BB TI II 12.1/11

Fanout – graphisch veranschaulicht



Gattereingänge

Fanout bei FAST

Falls am Ausgang u Spannung U anliegt, dann gilt (Kirchhoff'sches Gesetz):

$$I(U) = \sum_{j=1}^{n} I^{j}(U)$$

(I(U) = Stromstärke an Ausgang u, $I^{j}(U) = Stromstärke an Eingang v_{i}$

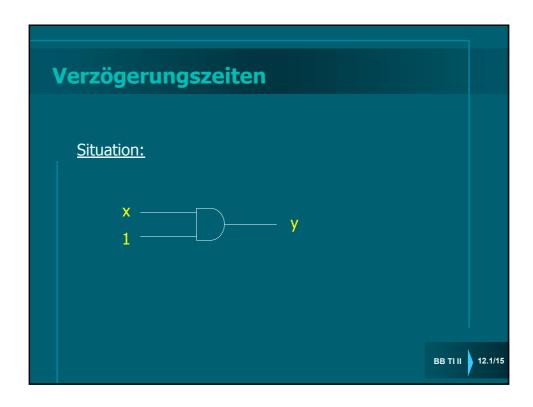
v_i verbrauchen Strom, aber u kann nicht unbegrenzt Strom liefern!!

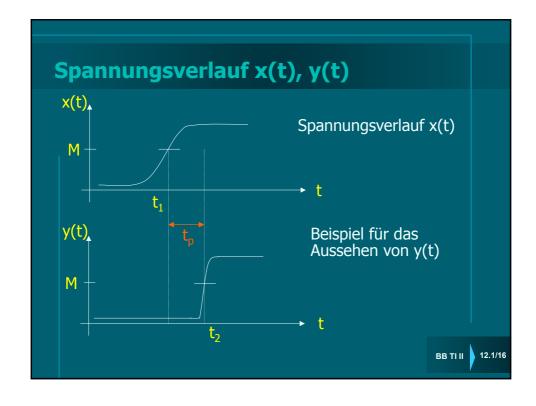
BB TI II 12.1/13

Fanout bei FAST ff.

In Katalogen nur

- (Ausgangsstrom bei Signal ■ I_{OL}, I_{OH} für Ausgänge low/high)
- I_{IL}, I_{IH} für Eingänge (Eingangsstrom für Signal low/high)
 - \Rightarrow $v_1, ..., v_n$ wird nur dann an u angeschlossen, wenn $I_{OL} \ge \sum_{i=1}^{n} I_{IL}^{j}$, $I_{OH} \ge \sum_{i=1}^{n} I_{IH}^{j}$





Allgemeine Bemerkung zu Verzögerungszeiten

Im allgemeinen gilt <u>nicht</u> $y(t) = x(t-t_p)$, so dass man dann einfach t_p als Verzögerungszeit definieren kann. y(t) wird <u>verformt</u>.

<u>Hier:</u> Verzögerungszeit bzgl. einer festen Spannung M mit $V_{\text{IL}} < M < V_{\text{IH}}$

Bestimme t_1 , t_2 mit $x(t_1) = y(t_2) = M$

 \rightarrow t_p = t₂ - t₁ (*propagation delay* = Verzögerungszeit)

BB TI II 12.1/17

Beispiel

FAST-Bausteine für M = 1.5V spezifiziert.
Bausteine 74F00, 74F04, 74F08, 74F32, 74F86:
(NAND, NOT, AND, OR, EXOR)

 t_n zwischen 1.5 und 8.0 ns (1 ns = 10^{-9} s)

Angaben zur Verzögerungszeit

In der Regel verschiedene Verzögerungszeiten für Übergänge $0 \rightarrow 1$ und $1 \rightarrow 0$.

Daher nicht t_n angegeben, sondern

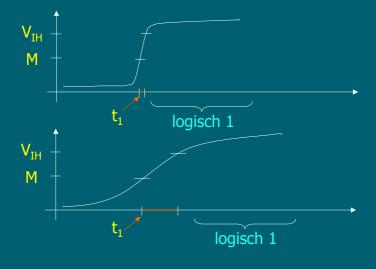
- t_{PLH} : Verzögerungszeit bei $0 \rightarrow 1$
- t_{PHI} : Verzögerungszeit bei $1 \rightarrow 0$

BB TI II 12.1/19

Modellierung der Verzögerungszeit

Problem bei Modellierung der Verzögerungszeit bzgl. fester Spannung M:

Keine Aussage darüber, wann logische Signale 0 bzw. 1 sind, d.h. physikalische Signale unterhalb V_{II} bzw. oberhalb V_{IH} sind.



Anstiegs- und Abfallzeit

Für jedes Signal braucht man also zusätzliche Informationen über:

- Anstiegszeit (rise time) = Zeit, in der Signal von $V_{\text{\scriptsize IL}}$ nach $V_{\text{\scriptsize IH}}$ steigt
- Abfallzeit (fall time) = Zeit, in der Signal von V_{IH} nach V_{IL} fällt

Beschränkung dieser Zeiten

Die in unseren Analysen verwendeten Gatter haben die folgende angenehme Eigenschaft:

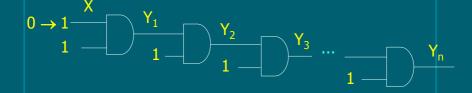
 $\exists \ \delta$ mit folgender Eigenschaft:

Falls rise/fall time $\leq \delta$ am Gattereingang, dann rise/fall time $\leq \delta$ am Gatterausgang.

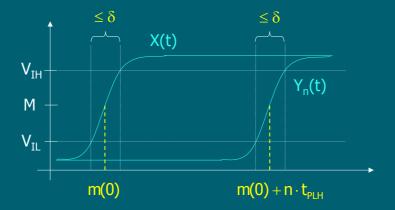
Bsp.: FAST-Bausteine: $\delta \approx 2.5$ ns

BB TI II 12.1/23

Analyse der Verzögerungszeit einer Kette von *n* Gattern



Analyse der Verzögerungszeit einer Kette von *n* Gattern (ff)



Analyse der Verzögerungszeit einer **Kette von** *n* **Gattern (ff)**

Durchläuft X(t) nach Zeit m(0) die Spannung M, dann durchläuft Y_n(t) die Spannung M nach $m(0) + n \cdot t_{PIH}$.

Falls X(t) mit Anstiegszeit $\leq \delta$, dann auch $Y_1(t)$, ..., $Y_n(t)$.

Also ist Y_n auf jeden Fall zur Zeit $m(0) + n \cdot t_{PLH} + \delta$ logisch 1.

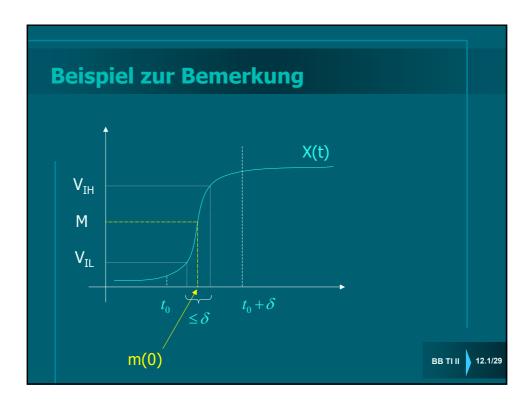
Allgemein:

Die Zeiten, an denen die entsprechenden Signale wohldefinierte logische Werte 0, 1 annehmen, unterscheiden sich von denen für M um höchstens δ .

BB TI II 12.1/27

Bemerkung:

Eine rise/fall time $\leq \delta$ an den primären Eingängen einer Schaltung kann man garantieren, wenn man den Schaltvorgang zur Zeit t₀ beginnt und spätestens zur Zeit $t_0 + \delta$ abschließt.



Bemerkung (ff)

Beginnt man im Beispiel den Schaltvorgang bei t₀ und beendet ihn bei $t_0 + \delta$, $dann \ gilt \ m(0) \leq t_0 + \delta$ und Y_n ist spätestens nach $t_0^{} + n \cdot t_{\mathsf{PLH}}^{} + 2\delta$ logisch 1.

Vereinbarung:

Im folgenden soll

Signal X wird zum Zeitpunkt t₁ abgesenkt/angehoben bedeuten

X wird abgesenkt/angehoben mit $X(t_1) = M$.

BB TI II 12.1/31

Kapazitive Last

Verzögerungszeiten von Gattern sind nicht konstant, sondern werden beeinflusst durch

- Betriebstemperatur
- Fertigungsprozess des Chips
- kapazitive Last am Gatterausgang

Kapazitive Last (1)

Kapazitive Last am Ausgang u entsteht dadurch, dass sich die Eingänge v_1 , ..., v_n , die mit u verbunden sind, wie Kondensatoren verhalten, die beim Schalten ge- bzw. entladen werden müssen.

BB TI II 12.1/33

Kapazitive Last (2)

Zusätzlich wird auch der Leitung zwischen u und v₁ (∀i) eine kapazitive Last zugeordnet.

Einheit für kapazitive Lasten:

1 Farad (1 F)

Jedem Eingang von Gattern wird eine kapazitive Last zugeordnet. (FAST: 4 – 5 pF)

Kapazitive Last (3)

Für die Gesamtlast C an u gilt:

$$C = C_L + \sum_{j=1}^{n} C_j$$

$$C = \sum_{j=1}^{n} C_j$$

$$C = \sum_{i=1}^{n} C_{i}$$

falls die Leitungskapazität ignoriert werden kann.

Dies ist auf Leiterplattenebene in der Regel der Fall.

BB TI II 12.1/35

Kapazitive Last (4)

Verzögerungszeiten t_D werden in der Regel für eine Standardlast C₀ angegeben.

(FAST: 50 pF)

Ist $C \neq C_0$, so gilt:

$$t_p(C) = t_p(C_0) + \alpha_u \cdot (C - C_0)$$

mit α_u technologieabhängige Konstante

FAST: $\alpha_u = 0.03 \frac{ns}{nF}$

Kapazitive Last (5)

Abschätzung:

Wieviele Eingänge kann man an Ausgänge hängen, ohne dass $t_n(C_0)$ überschritten wird?

BB TI II 12.1/37

Kapazitive Last (6)

Annahme:

 $C_{max} = 5 pF für jeden Eingang.$

Hängt man maximal $n_0 = \frac{C_0}{C_{max}} = \frac{50 \, pF}{5 \, pF} = 10$

Eingänge an einen Ausgang, so gilt

$$C = \sum_{i=1}^{n} C_i \le n \cdot C_{max} \le n_0 \cdot C_{max} = C_0$$

und damit $t_p(C) \le t_p(C_0)$

→ Fanoutbeschränkung ≤ 10 für FAST-Bausteine

Worst-case Timing-Analyse

Wegen Abhängigkeit der Verzögerungszeit von Temperatur oder Fertigungsprozess werden vom Hersteller keine festen Zeiten t_{PI H}/t_{PHI} angegeben, sondern 3 Werte:

- τ^{min} = untere Schranke
- τ^{max} = obere Schranke
- $\mathbf{v}^{\mathsf{typ}} = \mathsf{typischer} \, \mathsf{Wert} \, \, (???)$

BB TI II 12.1/39

min, max und typ

Bei Temperaturen im Bereich T (kommerzieller Temperaturbereich 0° - 70° C, militärischer Temperaturbereich -55° - 125° C) und Last C₀ gilt für tatsächliche Verzögerungszeit t_n:

$$\tau^{\text{min}} \leq t_{_{D}} \leq \tau^{\text{max}}$$

min, max und typ (ff)

Für τ^{typ} gilt ebenfalls $\tau^{\min} \leq \tau^{\text{typ}} \leq \tau^{\max}$. Beim Rechnen mit τ^{typ} macht man einen Fehler mit unbekannter Größe.

 \rightarrow kein Rechnen mit τ^{typ} , sondern mit Intervallen $(\tau^{\min}, \tau^{\max})$

BB TI II 12.1/41

Zeitintervalle bei Timing-Analysen

- zur Zeit (a, b) heißt: frühestens zur Zeit a, spätestens bei b
- zur Zeit a ≅ zur Zeit (a, a)
- \blacksquare min (a, b) = a, max(a,b) = b,(a, b) + (c, d) = (a+c, b+d)

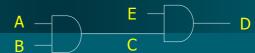
Beispiel: AND-Gatter

AND - Gatter (74F08):

	min	max
t _{PLH}	3.0	6.6
t _{PHL}	2.5	6.3

BB TI II 12.1/43

Fall 1



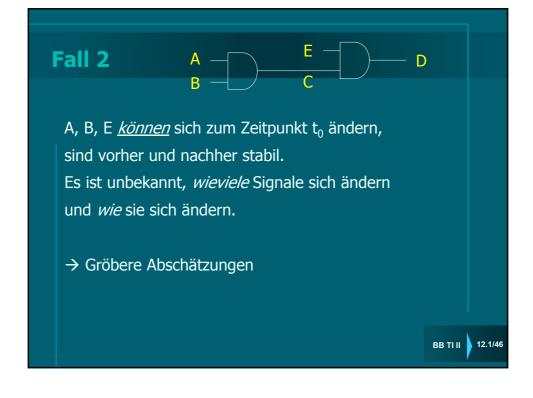
- A, E fest auf 1
- B von 0 auf 1 zum Zeitpunkt t₀
- → Änderung von C zur Zeit

$$t_1 = t_0 + (3.0, 6.6)$$

→ Änderung von D zur Zeit

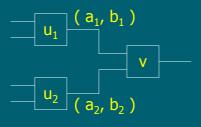
$$t_2 = t_1 + (3.0, 6.6) = t_0 + (6.0, 13.2)$$





Fall 2 (ff)

Bestimmung von Zeitintervallen, zu denen die Gatter überhaupt schalten können:



BB TI II 12.1/47

Fall 2 (ff)

$$\begin{aligned} \text{Sei} \qquad t^{\text{min}} &:= \text{min} \left(\, \tau_{\text{LH}}^{\text{min}} \, , \, \tau_{\text{HL}}^{\text{min}} \, \right) \\ \\ t^{\text{max}} &:= \text{max} \left(\, \tau_{\text{LH}}^{\text{max}} \, , \, \tau_{\text{HL}}^{\text{max}} \, \right) \end{aligned}$$

gegeben für Gatter v.

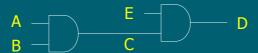
→ v kann schalten zur Zeit $(min (a_1, a_2), max (b_1, b_2)) + (t^{min}, t^{max})$

Im Beispiel:

AND	min	max
t _{PLH}	3.0	6.6
tou	2.5	6.3

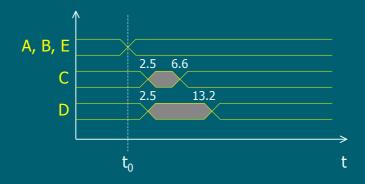
Wenn die Gatter schalten, dann in folgenden Intervallen:

- \blacksquare C: $t_0 + (2.5, 6.6)$
- \blacksquare E: $t_0 + (0.0, 0.0)$
- D: $(t_0 + 0.0, t_0 + 6.6) + (2.5, 6.6)$ = $(t_0 + 2.5, t_0 + 13.2)$



BB TI II 12.1/49

Fall 2 – Timing-Diagramm



Interpretation des Timing-Diagramms

Was kann im schraffierten Bereich passieren?

Beispiel:

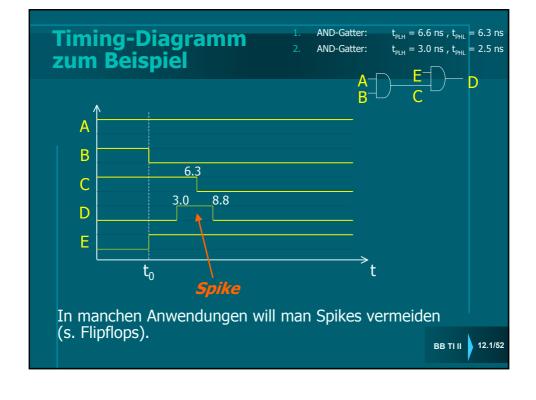
 t_0 : A, B, E: $110 \rightarrow 101$

Annahme:

AND-Gatter haben folgende Verzögerungszeiten

1. AND-Gatter: $t_{PLH} = 6.6 \text{ ns}$, $t_{PHL} = 6.3 \text{ ns}$ 2. AND-Gatter: $t_{PLH} = 3.0 \text{ ns}$, $t_{PHL} = 2.5 \text{ ns}$

BB TI II 12.1/51



Spikefreies Umschalten von Gattern

Ziel:

Übergang von A=1, B=0 zu A=0, B=1, ohne Spike am Ausgang.

Bemerkung:

Der Übergang (0, 1) \rightarrow (1, 0) bzw. umgekehrt ist der einzige, bei dem an AND/NAND-Gattern ein Spike auftreten kann.

BB TI II 12.1/53

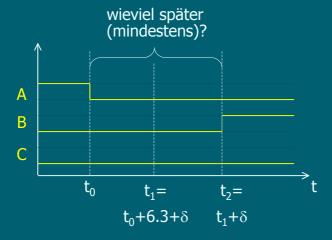
Erinnerung:

Signal s wird zum Zeitpunkt t gehoben/gesenkt heißt

s wird gehoben/gesenkt und durchläuft Spannung M dabei zum Zeitpunkt t.

AND-Gatter:

AND	min	max
t _{PLH}	3.0	6.6
tou	2.5	6.3



Timing im Gatter:

AND	min	max
$t_{\mathtt{PLH}}$	3.0	6.6
tou	25	63

- 1. Senke A bei $t_0 = 0$
 - →Internes Schalten (bzgl. M!) spätestens nach 6.3 ns
 - \rightarrow C = 0 wegen A = 0 spätestens bei $t_1 = t_0 + 6.3 + \delta$
- 2. Hebe B zum Zeitpunkt $t_2 = t_1 + \delta$

$$\rightarrow$$
B = 0 zum Zeitpunkt t₁

Also: Vor t_1 : $B = 0 \Rightarrow C = 0$

Nach t_1 : C = 0 wegen A = 0

→ Übergänge für A und B mit Abstand

$$t_2 - t_0 = 6.3 + 2\delta = 11.3$$

NAND-Gatter:

NAND – Gatter (74F00):

	min	max
t _{PLH}	2.4	6.0
t _{PHL}	1.5	5.3

Analog:

Abstand $t_2 - t_0 = 11.0$

BB TI II 12.1/57