6.2 Kodierung von Zahlen

Neue Begriffe

- Festkommadarstellungen
 - Zahlendarstellung durch Betrag und Vorzeichen
 - Einer-/Zweierkomplement-Darstellung
- Gleitkommadarstellung
 - IEEE-754 Format

BB TII

6.2/1

Zahlensysteme

Definition

Ein Stellenwertsystem (Zahlensystem) ist ein Tripel

 $S = (b, Z, \delta)$ mit denn folgenden Eigenschaften:

- b ≥ 2 ist eine natürliche Zahl, die Basis des Stellenwertsystems.
- Z ist eine b elementige Menge von Symbolen, den Ziffern.
- $\delta: Z \to \{0,\,1,\,...,\,b$ -1} ist eine Abbildung, die jeder Ziffer umkehrbar eindeutig eine natürliche Zahl zwischen 0 und b -1 zuordnet.

BB TII

Zahlensysteme Beispiele

- Dualsystem b=2, $Z = \{0,1\}$
- Oktalsystem b=8, $Z = \{0,1,2,3,4,5,6,7\}$
- Dezimalsystem b=10, $Z = \{0,1,2,3,4,5,6,7,8,9\}$
- Hexadezimalsystem:

b=16 $Z = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

BB TII

6.2/3

Festkommazahlen

Definition:

Eine Festkommazahl ist

eine endliche Folge von Ziffern aus einem Zahlensystem zur Basis *b* mit Ziffernmenge *Z*.

Sie besteht aus n+1 Vorkommastellen $(n \ge 0)$ und $k \ge 0$ Nachkommastellen.

Der Wert <d> einer nicht-negativen Festkommazahl

 $d = d_n d_{n-1} \dots d_1 d_0 d_{-1} \dots d_{-k}$

mit $d_i \hat{I} Z$ ist gegeben durch

 $< d >= \sum_{i=-k}^{n} b^{i} \cdot \boldsymbol{d}(d_{i})$

BB TII

Festkommazahlen

Schreibweise

Vorkomma- und Nachkommastellen werden zur Verdeutlichung durch ein Komma oder einen Punkt getrennt:

$$d = d_n d_{n-1} \dots d_1 d_0 d_{-1} \dots d_{-k}$$

Um anzudeuten, welches Zahlensystem zugrunde liegt, wird gelegentlich die Basis als Index an die Ziffernfolge angehängt.

Bsp.: 0110₂

BB TII

6.2/5

Festkommazahlen

Beispiele

Seien n = 3, k = 0, d = 0110

$$< d > = 6$$

$$b = 8$$

$$b = 16$$

вв ти

Negative Festkommazahlen

(Im folgenden b = 2.)

Bei der Darstellung negativer Festkommazahlen nimmt die höchstwertige Stelle de eine Sonderrolle ein:

Ist $d_n = 0$, so handelt es sich um eine nichtnegative Zahl.

Bei der Darstellung negativer Zahlen gibt es folgende Alternativen:

Darstellung durch Betrag und Vorzeichen

$$[d_{n'}d_{n-1},...,d_{0'},d_{-1},...,d_{-k}]_{BV} := (-1)^{d_n} \Sigma_{i=-k,...,n-1} d_i 2^i$$

■ Einer-Komplement Darstellung

$$[d_{n'}d_{n-1},...,d_{0'}d_{-1},...,d_{-k}]_1 := \Sigma_{i=-k,...,n-1} d_i 2^i - d_n (2^{n-2-k})$$

Zweier-Komplement Darstellung

$$[d_{n}, d_{n-1}, ..., d_{0}, d_{-1}, ..., d_{-k}]_{2} := \Sigma_{i=-k,...,n-1} d_{i} 2^{i} - d_{n} 2^{n}$$

Betrag und Vorzeichen

$$[d_{n'}d_{n-1},...,d_{0'}d_{-1},...,d_{-k}]_{BV} := (-1)^{d_n} \sum_{i=-k,...,n-1} d_i 2^i$$

Beispiel: n = 2, k = 0

а	000	001	010	011	100 0	101	110	111
[a] _{sv}	0	1	2	3	0	-1	-2	-3

Eigenschaften:

- Der Zahlenbereich ist symmetrisch:
 - Kleinste Zahl: -(2n-2-k
 - Größte Zahl: 2ⁿ-2^{-k}
- Man erhält zu a die inverse Zahl, indem man alle Bits komplementiert.
- Zwei Darstellungen für die Null (000 und 100 bei n = 2, k = 0).
- "Benachbarte Zahlen" haben gleichen Abstand 2-k.

Einer-Komplement

$$[d_{n}, d_{n-1}, ..., d_0, d_{-1}, ..., d_{-k}]_1 := \Sigma_{i=-k,...,n-1} d_i 2^i - d_n (2^{n-2-k})$$

Beispiel: n = 2, k = 0

a	000	001	010	011	100	101	110	111
[a] ₁	0	1	2	3	-3	-2	-1	0

Eigenschaften:

- Der Zahlenbereich ist symmetrisch:
 - Kleinste Zahl: -(2ⁿ-2^{-k}) Größte Zahl: 2ⁿ-2^{-k}
- Zwei Darstellungen für die Null (000 und 111 bei n = 2, k = 0).
- "Benachbarte Zahlen" haben gleichen Abstand 2-k.
- **Lemma:** Sei a eine Festkommazahl, a´ die Festkommazahl, die aus a durch Komplementieren aller Bits $(0 \to 1, 1 \to 0)$ hervorgeht. Dann gilt $[a']_1 = - [a]_1$.
- Man erhält zu a die inverse Zahl, indem man alle Bits komplementiert.

Zweier-Komplement

$$[d_{n}, d_{n-1}, ..., d_{0}, d_{-1}, ..., d_{-k}]_{2} := \Sigma_{i=-k,...,n-1} d_{i} 2^{i} - d_{n} 2^{n}$$

Beispiel: n = 2, k = 0

а	000	001	010	011	100	101	110	111
[a] ₂	0	1	2	3	-4	-3	110 -2	-1

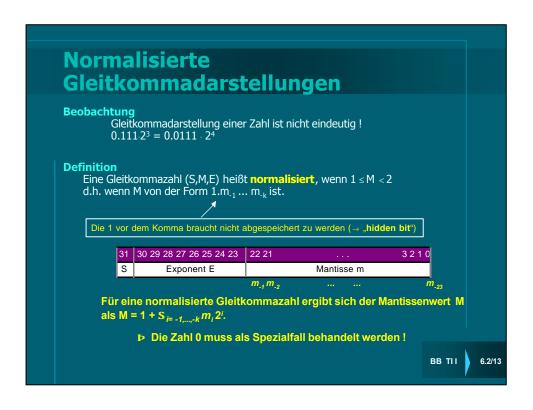
Eigenschaften:

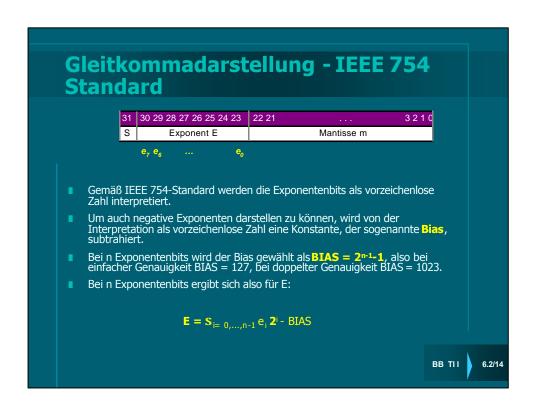
- Der Zahlenbereich ist unsymmetrisch:
 - Kleinste Zahl: -2ⁿ
 - Größte Zahl: 2n-2-k
- Die Zahlendarstellung ist eindeutig.
- "Benachbarte Zahlen" haben gleichen Abstand 2-k.
- **Lemma:** Sei a eine Festkommazahl, a´ die Festkommazahl, die aus a durch Komplementieren aller Bits $(0 \to 1, 1 \to 0)$ hervorgeht. Dann gilt $[a´]_2 + 2^{-k} = -[a]_2$.
- Man erhält zu a die inverse Zahl, indem man alle Bits komplementiert und an der niederwertigsten Stelle 2-k addiert.

Vorteil des Zweierkomplements:

Schaltkreise zur Realisierung der Addition / Subtraktion zweier vorzeichenbehafteter Festkommazahlen werden einfach. (→ später)

Probleme bei Festkommazahlen Betrachte die Menge aller Zahlen, die eine ZweierkomplementDarstellung mit n Vorkommastellen und k Nachkommastellen haben. keine ganz großen bzw. kleinen Zahlen darstellbar! Zahlen mit größtem Absolutbetrag: -2ⁿ und 2ⁿ-2^{-k} Zahlen mit kleinstem Absolutbetrag: -2^{-k} und 2^{-k} Operationen sind nicht abgeschlossen! 2ⁿ⁻¹+2ⁿ⁻¹ ist nicht darstellbar, obwohl die Operanden darstellbar sind. Assoziativgesetz und Distributivgesetz gelten nicht, da bei Anwendung der Gesetze evtl. der darstellbare Zahlenbereich verlassen wird! Bsp.: (2ⁿ⁻¹+2ⁿ⁻¹)-2ⁿ⁻¹ → ← 2ⁿ⁻¹+(2ⁿ⁻¹-2ⁿ⁻¹)





Sonderfälle IEEE 754 Standard

dargestellt wird.

Der Exponent 0 spielt beim IEEE 754-Standard eine Sonderrolle: Sind alle Exponentenbits 0, so wird ausnahmsweise das "hidden bit" der Mantissendarstellung weggelassen, so dass die Zahl

 $(S_{i=-1,...,-k} m_i 2^i) 2^{-126}$

- Auf diese Weise können "denormalisierte Zahlen" dargestellt werden, die kleiner als die kleinste darstellbare normalisierte Zahl sind.
- Auf diese Weise kann die Null dargestellt werden: Sämtliche Mantissenbits und Exponentenbits sind 0.
- Der Exponent 2n-1 spielt ebenfalls eine Sonderrolle: Sind alle Exponentenbits 1 und alle Mantissenbits 0, so wird der Wert ∞ dargestellt.

BB TII

6.2/15

Darstellbare normalisierte Gleitkommazahlen

	single precision	double precision
Vorzeichenstellen	1	1
Exponentenstellen	8	11
Mantissenstellen (ohne hidden Bit)	23	52
Bitstellen insgesamt	32	64
Bias	127	1023
Exponentenbereich	-126 bis 127	-1022 bis 1023
Darstellbare normalisierte Zahl mit kleinstem Absolutbetrag	2 ⁻¹²⁶	2 ⁻¹⁰²²
Darstellbare normalisierte Zahl mit größtem Absolutbetrag	(1-2 ⁻²⁴) 2 ¹²⁸	(1-2 ⁻⁵³) 2 ¹⁰²⁴
Darstellbare denormalisierte Zahl mit kleinstem Absolutbetrag	2 ⁻¹⁴⁹	2 ⁻¹⁰⁷⁴
Darstellbare denormalisierte Zahl mit größtem Absolutbetrag	(1-2 ⁻²³) 2 ⁻¹²⁶	(1-2 ⁻⁵²) 2 ⁻¹⁰²²

BB TII

IEEE 754 Standard - Eigenschaften

- Eindeutige Zahlendarstellung, falls auf normalisierte Darstellungen beschränkt
- Nicht alle Zahlen zwischen der kleinsten und größten darstellbaren Zahl sind darstellbar.
- Je näher bei der Null, desto dichter liegen die darstellbaren Zahlen.
- Arithmetische Operationen sind nicht abgeschlossen!
- Assoziativgesetz und Distributivgesetz gelten nicht, da bei Anwendung der Gesetze evtl. der darstellbare Zahlenbereich verlassen wird!

BB TII

6.2/17

Prinzipielle Arbeitsweise: Addition von Gleitkommazahlen

Rechenvorschrift

- Angleichung des kleineren an den grösseren Exponenten
- Addition der Mantissen
- Normalisierung, Rundung (falls erforderlich)

Beispiel

```
+(1.000)_2 \cdot 2^{-1} + -(1.110)_2 \cdot 2^{-2} = +(1.000)_2 \cdot 2^{-1} + -(0.111)_2 \cdot 2^{-1}
 = +(0.001)_2 \cdot 2^{-1}
 = +(1.000)_2 \cdot 2^{-4}
```

BB TII

Prinzipielle Arbeitsweise: Multiplikation von Gleitkommazahlen

Rechenvorschrift

- Multipliziere die Vorzeichen
- Multipliziere die beiden Mantissen
- Addiere die beiden Exponenten und subtrahiere (einmal) den Bias-Wert
- Normalisierung, Rundung (falls erforderlich)

Beispiel

```
+(1.000)_2 \cdot 2^{-1+BIAS} \times -(1.110)_2 \cdot 2^{-2+BIAS}
```

Multiplikation der Vorzeichen: 0⊕1=1

Multiplikation der Mantissen: $(1.000)_2 \times (1.110)_2 = (1.110)_2$ Addition der Exponenten: (-1+BIAS)+(-2+BIAS)-BIAS = (-3+BIAS)

Resultat: -(1.110)₂·2^{-3+BIAS}

BB TII