Preprint from Proceedings of Design, Automation and Test in Europe (DATE), February 2021

ICP and IC3

Karsten Scheibler*, Felix Winterer!, Tobias Seufert!, Tino Teige*, Christoph Schollt, Bernd Becker!

*BTC Embedded Systems AG
Oldenburg, Germany
{scheibler,teige } @btc-es.de

Abstract—If embedded systems are used in safety-critical envi-
ronments, they need to meet several standards. For example, in
the automotive domain the ISO 26262 standard requires that the
software running on such systems does not contain unreachable
code. Software model checking is one effective approach to
automatically detect such dead code. Being used in a commercial
product, iSAT3 already performs very well in this context. In this
paper we integrate IC3 into iSAT3 in order to improve its dead
code detection capabilities even further.

Index Terms—SMT, iSAT3, ICP, IC3, PDR, software verification

[. INTRODUCTION

Developing safety-critical embedded systems demands high-
quality production code. Several standards exist for the different
industrial sectors to guide the development of safety-critical soft-
ware and hardware applications like the ISO 26262 standard [1]
for the automotive domain.

Among many other criteria, the ISO 26262 objects to unin-
tended functionality like unreachable code fragments (so-called
dead code) and recommends several code coverage metrics to
prove the absence of such code like statement coverage, condi-
tion coverage, decision coverage, or modified condition/decision
coverage (MC/DC) [2]. A portion of code is considered as being
covered if a test case is able to execute this code. Thus, with
a coverage value of 100% no dead code exists according to the
applied coverage metric — otherwise there is a potential risk of
dead code requiring a further analysis.

One effective approach to automatically detect dead code is
software model checking. Among other use cases the commercial
test and verification tool suite BTC EmbeddedPlatform® (EP)
provides such functionality [3] by employing several model
checking tools like CBMC [4], [5] and iSAT3 [6]. In a recent
case study [7] several academic state-of-the-art software model
checkers were compared to EP. On 179 software requirements for
two large and floating-point dominated industrial models from
Ford, the academic model checkers were able to prove at most
20% of these requirements while various competitors obtained
results for 0% to 5%. In contrast, EP succeeded on 80% of the
requirements. This underlines that EP has a very strong support
for the automatic analysis of floating-point dominated production
code becoming increasingly important in industrial safety-critical
software [8].

We would like to emphasize that each single automatically
derived result of dead code or each proven requirement can save
several hours or even days of manual effort and is thus of utmost
importance in the development and verification of safety-critical
embedded software. Hence, improving the underlying model
checking technology within EP is not an academic exercise — it
has a strong practical relevance. Currently, iSAT3 with Craig
Interpolation [9] is the strongest proof engine regarding dead
code in EP [10]. In this paper we present an extended version
of iISAT3 improving its performance in this context even further.
Our contribution is as follows:

o We present iSAT3+IC3 which is the first ACDCL-style [11]
SMT solver based on interval abstraction and ICP [12] with
an IC3 [13] integration.

e We propose a new lifting scheme which also considers
relationships between interval bounds.

TUniversity of Freiburg
Freiburg, Germany

{winteref,seufert,scholl,becker } @informatik.uni-freiburg.de

e We present a semantic ungeneralization approach for
blocked cubes and a method to generalize proof obligations
in the presence of a generic transition relation.

e We show the effectiveness of a symbiotic combination of
k-induction and IC3.

Related work: Previous work like [14]-[17] already consid-
ered IC3 in the SMT context. However, these approaches do not
support floating-point. Instead, they build either on linear integer
or linear real arithmetic (LIA or LRA) with theory-specific
approximations of quantifier-elimination like interpolants or pro-
jections. The approach presented in [18] has similarities to
IC3 and utilizes an MCSAT-style [19] solver — requiring the
underlying theory to support quantifier-elimination. Therefore,
usually arithmetic over the reals is used to approximate floating-
point arithmetic. Thus, the methods of [14]-[18] are unable to
directly detect dead code in floating-point programs®. In contrast,
as iSAT3 only requires ICP-contractors for the operations of
the underlying theory, iSAT3+IC3 can directly detect whether a
floating-point program contains dead code.

Structure of the paper: After giving the preliminaries in
Section II, the approach of iSAT3+IC3 is presented in Section III
and experimentally evaluated in Section IV. Finally, Section V
concludes the paper.

II. PRELIMINARIES

A. SAT and Notations

The satisfiability problem (SAT) poses the question whether
a Boolean formula F' is satisfiable or not — i.e. it is checked
whether an assignment for the Boolean variables of I exists such
that F' evaluates to true. Current state-of-the-art approaches build
on Conflict-Driven Clause Learning (CDCL) [20]. CDCL-style
solvers require the formula of interest to be in conjunctive normal
form (CNF) — this can be achieved by applying the Tseitin-
transformation [21]. A CNF is a conjunction of clauses while a
clause is a disjunction of literals. A literal represents a Boolean
variable or its negation.

In this paper we use upper case letters to denote formulas.
Literals will be denoted by lower case letters — except ¢, j, k,
m and n which are used for indices and = which is used for
non-Boolean variables. In a slight abuse of notation lower case
letters are also used for Boolean variables — in particular for
sets of them, e.g. 7. Furthermore, a clause is denoted by a tilde-
decorated lower case letter, e.g. ¢. Similarly, a cube (which is
a conjunction of literals) is denoted by ¢. To simplify notation
a negated clause —¢ is seen as a cube containing the negated
literals of ¢ — and in the same manner a negated cube is seen
as a clause. Additionally, the notation F' (5') is used to indicate
that the formula F' depends on the Boolean variables contained
in the set 3. Similarly, the notations ¢(g) and é(q) are used to
indicate that the literals of clause ¢ and cube ¢ belong to the
Boolean variables in ¢.

“For example, when considering an if condition with an expression like
1020 4 1 = 1029, the expression evaluates to true under 64 bit floating-point
arithmetic (with round-to-nearest) while it evaluates to false under real-valued
arithmetic — leading to spuriously detected dead code.


scholl
Textfeld
Preprint from Proceedings of Design, Automation and Test in Europe (DATE), February 2021


B. BMC and k-Induction

Informally, when considering the verification of a system, the
system of interest is abstracted into a set of states and a relation
which encodes possible state transitions — i.e. how the state of
the system changes over time. In many cases the reachability of
states is verified, i.e.the question is asked: if the system starts in
a good state, is it possible to reach a bad state in a finite number
of transition steps?

Bounded Model Checking (BMC) [22] is a way to check
whether a system can reach a bad state. To achieve this, a
set of Boolean variables (denoted by S) is used to represent
states. Furthermore, the initial states and the transition relation
are encoded into the formulas 7(S) and T'(S;, §;+1) while the
set of allowed good states is encoded into the property P(5).
To simplify notation, we neglect that the transition relation
usually considers variables representing inputs as well. Thus,
P is violated if a bad state is reached. Performing BMC means
solving a sequence of formulas — one formula for each transition
step 0,1,...,k:

BMCO : I(go) A _'P(H())
BMC1 : I(Li()) A T(%:O, %:1) A _‘P_’(gll .
BMC; : I( 0)/\T(So,81)/\T(81, 2)/\ﬂP(82)
e -
BMCy : I(go) A ( A T(gi,a+1)> A _‘P(gk)
=0

The formulas are solved in the listed order until one of them
becomes satisfiable. In this case the satisfying assignment con-
tains the values for the state variables forming a sequence of
states ending in a bad state and thus violating P — such a state
sequence is also called a counterexample. Unfortunately, if k is
reached it is only known that P cannot be violated within up to
k transition steps. Thus, in general, BMC is unable to prove that
P is never violated. But the knowledge gained by BMC can
be exploited to achieve that. For example, if 1(Sp) A =P (5p)
is unsatisfiable 7(3y) = P(8p) is valid — i.e. whenever I(3p) is
true P(5p) is true as well. Thus, conjoining P(8p) to I(3) does
not constrain the set of possible solutions. Hence, BMC can also
be performed the following way:

k-1
BMC,, : I(g()) A\ </\0 (P(gz) A\ T(gl, §z+1))> AN ﬁp(gk)
This offers the possibility to prove P by considering the formula
suffix — e.g.if P(Sp) AT(30,51) A ~P(81) is unsatisfiable, all
BMC,; formulas with < > 1 will be unsatisfiable as well because
they contain this suffix”. Of course this check can also be applied
to suffixes of length k:

k-1
INDy, : < /\ (P(gz) A\ T(gl, §i+1))) AN ﬁP(gk)
i=0
Hence, when alternating BMC and IND checks it is possible to
prove P and find violations of P — which is the basic idea of
the k-induction approach presented in [23].

C. IC3 and PDR

Informally, when evaluating P(5q) A T'(Sp, §1) A ~P(31) the
following question is asked: when starting in the set of good
states is it possible to reach a bad state in one transition step? It
is reasonable to assume that k-induction is likely to fail in cases
with many unreachable good states which are able to reach a bad
state — as the only way to strengthen this check is to increase the
suffix length®. Hence, instead of starting in P it seems to be more
advantageous to start in a subset of P (denoted by F') which

>When neglecting variable renaming due to different time steps

“The unique states requirement mentioned in [23] gives only minor improve-
ments in practice.

overapproximates all reachable good states. In such a setting P
is proven if F'(8y) A T(8p,51) A —F(81) is unsatisfiable.

In order to obtain such an F', IC3 [13] builds a sequence of
frame formulas F; with Fy(5) = I(5) and F;(5) = Fi41(5).
Each F; is an overapproximation of the good states reachable in
up to ¢ transition steps. While BMC and k-induction unroll the
transition relation, IC3 considers only one transition relation at a
time, explicitly enumerates states, and incrementally refines the
F;;. Thus, compared to BMC and k-induction the IC3 approach
requires much more solver calls — but each solver call in IC3
processes only a small problem.

Before IC3 starts, the formulas BMCy and BMC; have to be
solved to ensure that P is not violated in up to one transition
step. Basically, the workflow of IC3 is similar to the following:
Procedure MAIN():

1) Fo(s) :=1(58), Fi(8):=P(3), i:=1

2) Solve Fz(go) AN T(§07 §1) A\ —|P(§1)

a) If satisfiable: extract ¢(5p), DFS(C, i — 1)
b) If unsatisfiable:
Fi11(8) := P(5), PUSH(), i:=i+1
3) goto 2)
Procedure DFS(¢, 7):
l) Solve Fi(go) N —\é(go) A T(go, §1) N é(gl)
a) If satisfiable and ¢ = 0: P violated, exit
b) If satisfiable and ¢ > 0: extract é(Sp), DFS(é, i —1)
¢) If unsatisfiable:
forall j € {1,...,i4 1} : F;(5) := F;(5) A =¢(3)

2) Return
Procedure PUSH(%):

1) j:=1

2) f :=true

3) For each clause ¢(5) in F};(§) which is not in Fj41(5)

solve Fj(go) AN T(go, §1) N —\5(5’1)
a) If satisfiable: f := false
b) If unsatisfiable: F)j(5) := Fj11(5) A &(5)

4) If f = true: P proven, exit

5) If j<i:j:=75+1, goto 2)

6) Return
Starting with ¢ = 1, MAIN() searches for a good state ¢(3)
in F;(5) which is able to reach a bad state in one transition
step. If such a state exists, a depth-first search is performed,
i.e. it is checked whether ¢(S) has itself a predecessor that is
reachable from Fpy. If this is the case, a counterexample is
found — otherwise one or more F; are constrained by adding
a blocked cube which represents a good state being unreachable
in up to ¢ transition steps. In IC3 a state ¢(5) which has to be
checked for a predecessor is called a proof obligation, because it
has to be proven whether ¢é(§) is part of a counterexample or not.
In case MAIN() does not find a predecessor for a bad state, a new
frame formula is added and all existing frame formulas are pro-
cessed by PUSH() in order (1) to push blocked cubes to higher
frames, and (2) to check whether F};(55) A T'(50,51) A —F;(51)
is unsatisfiable? to prove that P can never be violated.

This basic workflow neglects details like pushing blocked
cubes already in DFS(), remembering previously generated proof
obligations® and generalizing states. The last point is very
important. Instead of enumerating individual states, IC3 tries
to operate on sets of states by generalizing each blocked cube.
This is achieved by removing literals from ¢&(3) such that
Fz(go) VAN _‘é(go) A\ T(go7 §1) A\ 6(51) stays unsatisfiable’.

4This check exploits that —F;(51) can be rewritten to a disjunction of
negated clauses. Hence, each negated clause can be checked individually by
solving Fj(50) AT (50, 51) A —¢(51). If all these solver calls are unsatisfiable
F;(50) NT(50,51) A —F}(51) is unsatisfiable as well.

“Which allows to find counterexamples with more transition steps than the
current number of frame formulas.

fn order to maintain Fy(3) = I(3) and F;(5) = F;41(5) an ungeneral-
ization might be required to avoid that states contained in 1(S) are excluded.



Property Directed Reachability (PDR) [24] builds on IC3.
While IC3 only generalizes blocked cubes, PDR applies gen-
eralization to proof obligations as well. While in [24] ternary
simulation is proposed, current approaches like [25] use a solver
call as proposed in [26]. After extracting the state ¢ and its
predecessor é, it is checked whether é(Sp) A T'(Sp, 8§1) A —é(81)
stays unsatisfiable while removing literals from é(3p). If the
transition relation behaves like a function, i.e. there exists a
successor state for all states, then this unsatisfiability implies that
each state in é(Sp) has a successor in &(57) — thus, é(Sp) remains
a valid proof obligation after removing literals. For problems
originating from the Hardware Model Checking Competition
(HWMCC)? this is always the case if no invariant constraints are
present. On the other hand, a different approach is required when
considering transition relations in general (cf. Section III-D).

D. From SAT to iSAT3
CDCL-style solvers contain three building blocks [20]:

1) Boolean Constraint Propagation (BCP),
2) a decision heuristics, and
3) a conflict analysis.

BCP is used to deduce consequences regarding the current partial
assignment by searching for a unit clause — a clause is unit
if all literals but one are assigned and evaluate to false while
the remaining literal [ is unassigned. Thus, [ has to be true to
satisfy the clause and to retain a chance to satisfy the whole
formula. Obviously, BCP is incomplete — i.e. it is unable to
detect all consequences. Therefore, unassigned Boolean variables
are decided (i.e. assigned to either true or false) and BCP is
applied again. If all Boolean variables are assigned and all
clauses are satisfied a solution is found. In case a clause is
unsatisfied (i.e.all literals evaluate to false) the conflict analysis is
triggered and derives a conflict clause such that BCP is now able
to prevent this conflict. Such learned knowledge finally enables
BCP to detect whether a formula is unsatisfiable by causing a
conflict on decision level 0.

The iSAT algorithm [27] builds on this scheme and incor-
porates Interval Constraint Propagation (ICP) [12] as additional
deduction mechanism in order to handle Boolean combinations
of theory atoms. Thus, it is an approach to solve SAT Modulo
Theories (SMT) problems. iSAT3 [6] is the third implementation
of the iSAT algorithm and benefits from the knowledge gained
during the development of its predecessors HySAT [28] and
iSAT [29]-[31].

In order to allow arithmetic reasoning, further variable types
are required — besides Boolean variables, iISAT3 currently sup-
ports bounded integer- and real-valued variables as well as inte-
gers with a fixed bit width [32] and floating-point variables [10].
During the search process the set of possible solutions for

these variable types is overapproximated with intervals — i.e.

there exist dynamically generated literals representing lower
and upper bounds for a variable — so-called simple bound
literals. For example, when assigning the literals [; and —ls
with [; < (x > 5) and Il < (z > 7), this restricts the value
range of variable z to the interval [5, 7]. Thus, the solver core of
iSATS3 still operates on literals as a CDCL-style SAT solver, but
additionally keeps a mapping for simple bound literals. Hence,
clauses containing such literals exclude hyper-boxes from the
search space. Furthermore, the theory atoms are decomposed
by utilizing a Tseitin-like transformation to obtain primitive
constraints which assign the result of an arithmetic operation
to an auxiliary variable. An ICP-contractor exists for each
supported operation and dynamically generates new clauses and
simple bound literals during deduction — thus, adding support for
new operations is just a matter of adding new ICP-contractors to
iSAT3. For example, for z1 € [0,9], z2 € [5,7], z3 € [1, 3] and

Shttp://fmv.jku.at/hwmcc/

the primitive constraint x; = 22 + z3 the following deduction
can be performed ((z2 > 5) A (z3 > 1)) = (21 > 6).

iSAT3 builds on the three building blocks of CDCL-style

solvers and extends them as follows:

1) ICP is used as additional deduction mechanism and can
be understood as an oracle providing the currently needed
clauses and simple bound literals to enable BCP to perform
reasoning about them. Furthermore, bound-implication
clauses are generated lazily in order to encode implications
between simple bound literals belonging to the same
theory variable, e.g. (=(z > 7) V (z > 5)).

2) The decision heuristics is adapted as well. Besides de-
ciding existing literals, interval splits are performed by
dynamically generating new simple bound literals and
deciding them.

3) Similar to CDCL-style solvers a 1UIP [33] conflict anal-
ysis is performed by analyzing the implication graph.

While lazy SMT [34] operates on a fixed set of literals (i.e. it
generates new clauses over the literals representing the theory
atoms of the originating problem), iSAT3 also generates new
literals which is similar to MCSAT [19]. But in contrast to
MCSAT (which is able to generate completely new theory
atoms), the new literals in iSAT3 originate from the fixed set
of variables being the result of the Tseitin-like decomposition of
the theory atoms. Hence, informally, iSAT3 and thus the iSAT
algorithm lie somewhere between lazy SMT and MCSAT. On
the other hand, the iSAT algorithm can be seen as the first
incarnation of Abstract CDCL (ACDCL) [11] based on interval
abstraction as the iSAT algorithm was proposed several years
before ACDCL.

ITI. 1ISAT3+IC3

The fact that iISAT3 maps the interval bounds of each the-
ory variable to simple bound literals, makes it amenable to
perform literal-based IC3 in the same manner as described
in Section II-C — because the values of the state variables are
encoded by a set of literals which IC3 can directly operate
on. Although being correct, the resulting approach would suffer
from a suboptimal performance — as possible dependencies
between simple bound literals are completely ignored. Besides
the blocked cube generalization included in IC3 we also consider
the generalization of proof obligations as proposed in PDR.

In IC3 most of the solver calls contain a cube in the considered
formula. This can be exploited by using incremental SAT solving
and passing the cube as list of assumption literals [23]. In
particular, when performing a blocked cube or proof obligation
generalization it is very convenient to manipulate a list of
assumption literals. In iSAT3+IC3 we follow this approach and
describe in Sections III-A and III-B how the number of literals
in a given list of assumption literals is reduced. In Sections ITI-C
and III-D we address the problem when I and T are arbitrary
formulas — which is the case for iSAT3. Finally, a symbiosis of
k-induction and IC3 is shown in Section III-E.

A. Literal Rotation

When generalizing a blocked cube the following unsatisfiable
formula is considered: F;(5p) A =¢(5p) A T'(80,51) A ¢(51). In-
cluding —¢é(5p) in the formula can be viewed as a bounded
inductive reasoning [24] even allowing non-monotone reduc-
tions — i.e. while the solver call with a ¢ having n literals is
satisfiable, it becomes again unsatisfiable with n — 1 literals.
In iSAT3+IC3 we leave —¢é(8p) untouched and perform only
monotone reductions — as non-monotone reductions give only
a minor advantage according to the experiments of [24]. As
mentioned, ¢(57) can be passed as list of assumption literals.
Now the task is to remove assumption literals from ¢é(s7) such
that the formula stays unsatisfiable, i.e. removing redundant
literals while keeping the essential ones. This process can also
be called lifting as it has similarities to [35]. The authors



of [24] propose (1) to use the final conflict-clause of the SAT
solver, and afterwards (2) to remove assumption literals one by
one while solving again — so-called literal dropping. While the
final conflict-clause can be quickly determined by analyzing the
implication graph, literal dropping is more expensive.

In [24] the SAT solver MiniSat [36] is used. MiniSat assigns
all assumption literals before applying BCP. In contrast, we
assign each assumption literal as individual pseudo-decision (if
the literal is still unassigned) and execute BCP after such a
decision. Thus, there are constellations where MiniSat detects
fewer redundant literals compared to our pseudo-decision based
approach. For example, when considering the list of assumption
literals (I1,l2) and the following formula (with clause numbers
in superscripts):

(=l VI3) D A (Sl VI A (=l Vis)E) A (=l v =lg) @
A=l V1) B A (ml3 V=l Vi) ©)

If [; and [, are assigned first, the clauses (1), (2), (3) and (5)
become unit. Thus, the literals I3, 4, [5 and lg are deduced which
leads to a conflict in clause (4). An analysis of the implication
graph would not reveal that /5 is in fact redundant. In contrast,
if 1 is assigned and BCP is applied afterwards, clause (6) is
involved to provoke a conflict in (4). Thus, Iy is detected as
redundant when using pseudo-decisions. But, of course, this
depends on the order of the assumption literals. With (Io,1;)
it seems that [5 is essential for the conflict. Therefore, we rotate
the order of the assumption literals and perform multiple checks.
Furthermore, before solving the formula for the first time the
assumption literals are shuffled pseudo-randomly. The details
of literal rotation regarding an unsatisfiable formula G are as
follows:

1) i:=0

2) G was already solved and is known to be unsatisfiable
under the assumption literals (l1,...,0,). Thus, there
exists an unsatisfied [; being assigned by BCP, i.e. the
pseudo-decision of /; failed.

3) As there might be more than one unsatisfied assumption
literal, consider the decision levels of these unsatisfied
literals and select a literal {; which was assigned on the
lowest decision level.

4) Traverse the implication graph backwards to determine all
pseudo-decisions (I, ...,/ ) which are responsible for ;
being unsatisfied (this is similar to determining the final
conflict-clause).

5) Use (1;,11,...,1,,) as new list of assumption literals.

6) i:=1+1, if i <m+ 1: solve G, goto 2)

7) Return (I;,1%,...,10,)

While the first solver call (which determines whether G is
unsatisfiable) might be quite expensive, the subsequent solver
calls performed during literal rotation are in general cheaper. As
it is known that the assumption literals (17,...,10,,) imply —l;,
the solver call with (I;,1},...,1,,) will either cause a conflict
after pseudo-deciding an [, (and thus triggering the conflict
analysis) or directly imply —l;. Thus, no regular decisions and
only up to m + 1 pseudo-decisions are performed in each
iteration.

Intuitively, literal rotation tries to get most out of the learned
knowledge by rearranging the order of the pseudo-decisions.
Nonetheless, there might remain constellations which require
literal dropping in order to gain further knowledge to detect an
assumption literal as redundant. For example, when considering
the list of assumption literals (I1,l2) and the following formula:

(=l2 VI3)D A (2l V1) A (I2V 15)D A (12 V 16) 1Y
/\(_'ll V _|13 V _\14)(11) AN (_‘ll V _‘15 Vv _‘lﬁ)(lz)

After pseudo-deciding l5 the clauses (7) and (8) become unit and
imply [3 as well as Iy which leads to a conflict in clause (11).

This conflict occurs with (l2,1;) as well. Thus, [5 seems to be
an essential assumption literal.

During literal rotation the conflict clause (—l; V —l2) will be
learned. When dropping /5 from the list of assumption literals, [o
will be decided in both polarities during the search process. Thus,
now the clauses (9), (10) and (12) are also considered when
deriving new knowledge. Hence, the conflict clauses (—ly V I2)
and (—ly) will be learned. With this knowledge, already the
pseudo-decision of [; fails and /5 becomes redundant. Thus, it
seems beneficial to perform literal dropping in addition to literal
rotation — in Section IV we will evaluate whether this pays off.

B. Literal Rotation with Bound Generalization

When processing assumption literals with literal rotation no
distinction is made between simple bound literals and ordinary
ones. As simple bound literals represent interval bounds, this
opens a further dimension of generalization, i.e. if it is not
possible to remove a simple bound literal [ it might still be
possible to generalize the bound being represented by [. This is
achieved by replacing ! with another simple bound literal, e.g.
replacing (z < 5) with (z < 9). Thus, although the number
of assumption literals does not change, bound generalization
nevertheless enlarges the hyper-box being represented by the
cube of assumption literals.

When considering an unsatisfied assumption literal ; it is
checked whether [; is a simple bound literal and was assigned
due to a bound-implication clause (cf. Section II-D). Assuming
this is the case, let (bV —l;) be such a clause. Due to the nature
of bound implications, b represents a weaker upper (lower)
bound than [;. As —b is implied by the assumption literals
(4,...,10r,), the assumption literal [; can be replaced with b
which is the weakest possible bound still causing a conflicting
pseudo-decision. Interestingly, bound generalization seamlessly
integrates into literal rotation — as the rotation offers the chance
to generalize every essential simple bound literal.

For practical reasons we divide the list of assumption literals
into two parts representing the cubes ¢,1 and ¢, to be conjoined
to the given formula. Literal rotation is only applied to C45.
Thus, ¢,; can be used for assumption literals activating or
deactivating formula parts. Obviously, the assumption literals
in ¢,1 should be the first pseudo-decisions being made in the
solver as these literals stay unchanged during literal rotation. It
should be noted, that literal rotation might remove all literals in
Cq2 and thus returning an empty list of assumption literals. This
happens whenever the formula is already unsatisfiable under ¢, .
In particular this feature is used when ungeneralizing blocked
cubes regarding the initial states.

C. Ungeneralizing Blocked Cubes

Because of Fy(3) = I(5) and F;(5) = F;11(5) special care
must be taken during the generalization of blocked cubes — i.e.
it is not allowed to constrain an F; with a blocked cube which
excludes an initial state.

In contrast to HWMCC problems, iSAT3 does not restrict the
formulas for I, T and P. Thus, for 7T it is unknown whether
it behaves like a function and / might be an arbitrary formula
which does not necessarily represent a single state. Hence, a
syntactic literal comparison as performed in [13] and [24] is not
sufficient to ungeneralize a blocked cube if required — instead a
semantic approach is needed.

Let ¢(5) be the original blocked cube and let ¢(S) be the
generalized version of it. By construction ¢(§) never contains
an initial state. Thus, I(5) A ¢(5) is always unsatisfiable. Now,
all literals of ¢'(8) are put into é,; while all literals of ¢(S) not
contained in ¢ () are added to ¢,2. Hence, 1(8) A éq1 Aéqa will
be unsatisfiable as well — allowing literal rotation to be applied
in order to remove redundant literals from ¢,5. In the best case
¢q2 contains only redundant literals, i.e. () does not contain an
initial state and can be used as is. In case ¢, contains essential



literals, a new blocked cube ¢”(S) is created which contains all
literals of ¢/(S) and the essential literals of ¢,2. Furthermore, in
case ¢/(§) contains generalized bounds ¢’ (5) might contain the
original ungeneralized bound as well as the generalized version
of it. In such a case the weaker generalized bound is redundant
and can be removed.

D. Generalizing Proof Obligations with GeNTR

As it is unknown whether 1" behaves like a function, it would
be wrong to use é(5p) A T(5p, 81) A —¢é(81) for generalization
(cf. Section II-C) — because this formula would also be unsatis-
fiable for states without successor. Thus, the generalized é(35)
could contain dead-end states which cannot be extended to a
counterexample.

Therefore, we use Generalization with a Negated Tran-
sition Relation (GeNTR). Obviously, if a satisfying assign-
ment for a formula G is conjoined to —G the resulting
formula is unsatisfiable. Thus, as é(5p) A é(81) is a satis-
fying assignment for é(5p) A T'(50,51) A ¢(51), the formula
é(50) A —T'(50,51) A ¢(51) is unsatisfied. While ¢(57) is put
into ¢q1, cube é(Sp) is stored in ¢, to apply literal rotation.
In case T'(5p, 51) has input variables, their values are also part
of the satisfying assignment and are added to ¢,; as well.

E. A Symbiosis of k-Induction and IC3

IC3 enumerates states and generalizes them. In the context of
iSAT3 with its simple bound literals the generalized states can
be seen as hyper-boxes over the state variables. We observed
cases in which our IC3 implementation generates a large number
of new hyper-boxes without making much progress. In such
cases an approach seems favorable which requires fewer explicit
enumerations.

As explained in Section II-C procedure MAIN() searches
for a good state which is able to reach a bad state in one
transition step. At this point the idea of k-induction can be
incorporated — i.e. instead of considering only one transition
step, multiple transition steps can be used. This can be achieved
by understanding —P(57) as IND)" and replacing it with, e.g,
IND/. A longer suffix helps to filter out partial state sequences
which are known to be not part of a counterexample if more than
one transition step is considered. Of course a longer suffix also

requires more BMC checks being made before starting IC3 — i.e.

when using IND; all BMC formulas up to BMC;; have to be
solved in advance.

To some extent the authors of [37] made a similar
observation — i.e. it is beneficial to augment the local reasoning
of IC3 (which considers only one transition relation at a time)
with a global reasoning (which considers multiple transition re-
lations at once). Furthermore, the idea of combining k-induction
with IC3 is not new [18], [38], [39]. With target-enlargement a
similar idea was already proposed in the original PDR paper [24].
In contrast to [24] we consider target-enlargements above IND
as well. Moreover, while the experiments performed in [24]
show only small performance gains for Boolean problems, our
observations regarding iSAT3+IC3 are different (cf. Section IV)
and are thus inline with the observations being made in [18].

Additionally, iSAT3+IC3 uses a dynamic suffix length. This
means, we start with IND), when searching for bad states. In
order to determine whether progress is being made, we count
the number of processed proof obligations. This counter is reset
whenever a new frame formula is added. Furthermore, we use a
limit which is initially 128. If the counter reaches this limit, we
(1) double the limit, and (2) abort the solving process in order
to restart with a longer suffix — if the abort happened with Fj
being the last added frame formula, we restart from scratch with
IND’, and solve only BMC; ;1 before switching to IC3.

thDf) is similar to INDg from Section II-B but has an index offset of 1 in
order to be compatible with =P (37).

uniq.  Jsec.

CEX DC TM DC DC

iSAT3 BMC 7674 - 1104 - -
iSAT3 k-Induction 7640 630 508 2 4153
EP-CBMC k-Induction 7664 628 486 2 6.28
iSAT3 Craig Interpolation 7662 983 133 5 5.44
iSAT3+IC3 (ind2 +abort) 7622 1003 153 23 10.17
Portfolio w/o iSAT3+IC3 7687 1003 88 - 8.76
Portfolio with iSAT3+IC3 7687 1026 65 - 9.78
iSAT3+IC3 ind0 -bg -gentr 5870 926 1982 9  46.00
iSAT3+IC3 indO -gentr 6756 952 1070 14 55.89
iSAT3+IC3 ind0 +1d 6935 925 918 14 8.42
iSAT3+IC3 ind0 7171 977 630 14 10.71
iSAT3+IC3 ind0 +abort 7535 1003 240 24 1331
iSAT3+IC3 ind1 7435 988 355 16 19.50
iSAT3+IC3 indl +abort 7588 994 196 22 7.94
iSAT3+IC3 ind2 7555 996 227 20 8.58
iSAT3+IC3 ind2 +abort 7622 1003 153 23 10.17
iSAT3+IC3 ind3 7573 998 207 18 2261
iSAT3+IC3 ind3 +abort 7625 1002 151 23 19.55
iSAT3+IC3 ind4 7572 998 208 21 28.11
iSAT3+IC3 ind4 +abort 7620 1000 158 23 2477

TABLE I

EXPERIMENTAL RESULTS OVER 8778 BENCHMARK INSTANCES

FE. Overall approach

iSAT3+IC3 follows the basic workflow described in Sec-
tion II-C. Additionally, literal rotation with bound generalization
is used whenever a blocked cube or proof obligation has to be
generalized. Furthermore, blocked cubes are ungeneralized as
described in Section III-C and proof obligations are general-
ized according to Section III-D. Finally, the basic workflow is
wrapped by an outer loop which observes whether progress is
being made in order to restart with a longer IND), if required.

IV. EXPERIMENTAL RESULTS

We rely on the same benchmark set of 8778 instances
as [10]. These benchmarks originate from TargetLink-generated
production C code containing floating-point arithmetic and
were provided by BTC EmbeddedPlatform® (EP) users from
the industrial automotive domain. Each benchmark represents
a goal defined by a structural code coverage metrics like
MC/DC - unreachable goals correspond to dead code. In our
experiments we concentrate on the results of iSAT3 and
CBMC - as both are used within EP. We refer the reader to
a recent case study [7] for a comparison on a similar set of
benchmarks between EP and several academic state-of-the-art
software model checkers which also participate in the SV-COMP.

The iSAT3 experiments were performed on a cluster — with
each cluster node having 64 GB RAM and two 8-core CPUs
running at 2.6 GHz. We applied a time limit of 1 hour and a
memory limit of 8 GB per benchmark. The CBMC experiments
were performed with the same limits and on a computer with a
similar CPU type also running at 2.6 GHz. In our experiments
we used the CBMC [4] version 5.12.4.

As CBMC has no built-in support for k-induction, the EP tool
chain [3] prepares different input files in order to perform BMC;
and IND; checks. Thus, multiple CBMC calls are required for
k-induction — for a better distinguishability we call this method
EP-CBMC.

Table I contains the results for EP-CBMC with k-induction
and for iSAT3 when using BMC, k-induction, Craig Interpola-
tion (CI) as well as different settings of the newly integrated IC3
(indi: corresponds to IND/, -bg: without bound generalization,
-gentr: without GeNTR, +/d: with literal dropping, +abort: with
abort as explained in Section III-E). While column 2 lists the
number of counterexamples (CEX) being found, column 3 shows
the number of detected unreachable goals, i.e. dead code (DC).
Column 4 contains the unsolved instances due to the applied



time or memory limit (T/M). The last two columns relate to the
solved DC instances: the number of uniquely solved instances
(regarding all five solvers) and the average solving time in
seconds.

Table I is divided in two parts. In the first part we compare
the four existing solvers and the new solver iSAT3+IC3 which
is used in its best configuration ind2 +abort. When consider-
ing the four existing solvers, iSAT3 BMC finds most of the
counterexamples — i.e. it is the best solver to find reachable
code fragments while iSAT3 CI detects the highest number of
dead code instances. This picture changes when additionally
considering iSAT3+IC3. While iSAT3 BMC remains the best
solver for reachable goals, iSAT3+IC3 outperforms iSAT3 CI by
solving 20 additional DC instances. As in practice a portfolio of
multiple solvers is used to exploit the multi-core CPUs of today’s
workstations, we also evaluate two combinations of the best
solver results: one portfolio with iSAT3+IC3 and one without.
While the latter has 88 unsolved instances, the portfolio with
iSAT3+IC3 reduces this number to 65 — due to the 23 DC
instances uniquely solved by iSAT3+IC3. When considering this
in practice, where each of these unsolved instances requires
hours or even days of manual effort in order to meet the criteria
of the ISO 26262 standard, then 23 additionally detected DC
instances reduce the manual effort by 26%.

The second part of Table I underlines the effectiveness of
the methods proposed in Section III. Comparing ind0 -bg -gentr
with ind0 -gentr and ind0 shows that generalizing proof obliga-
tions and performing literal rotation with bound generalization
bump up the number of solved instances considerably while
reducing the average DC solving time. On the other hand,
when comparing ind0 and ind0 +Id it can be observed that
literal dropping deteriorates the performance. This is surprising
as literal rotation is theoretically weaker than literal dropping.
Presumably, the runtime overhead of literal dropping does not
pay off in the number of additionally removed redundant liter-
als — which emphasizes the effectiveness of literal rotation with
bound generalization. Furthermore, using a longer suffix and
increasing its length dynamically finally enables iSAT3+IC3 to
solve the highest number of DC instances. Based on the overall
performance, we selected ind2 +abort as the default setting.

V. CONCLUSION

In this paper we presented iSAT3+IC3 — which is the first
ACDCL-style SMT solver with an IC3 integration. In contrast
to other SMT solvers, iSAT3 allows a direct integration of the
literal-based IC3 into its ICP extended CDCL framework — but
requires additional techniques to make this integration perfor-
mant. Therefore, we proposed a new lifting scheme which
exploits dependencies between interval bounds and is in practice
surprisingly strong — i.e. an additional pass of literal dropping
(which is the dominant approach in Boolean IC3) just causes
overhead deteriorating the overall performance. Furthermore, we
presented approaches to handle arbitrary formulas for the initial
states and the transition relation, i.e.a semantic ungeneralization
for blocked cubes and GeNTR. While the first is a prerequisite
in order to allow blocked cube generalization, the latter allows
to generalize proof obligations with transition relations which do
not behave like functions. Finally, we showed the effectiveness
of a symbiosis of k-induction and IC3 - i.e. using the formula
suffix known from k-induction and dynamically extending it.
Compared to other approaches, the resulting solver iSAT3+IC3 is
able to detect considerably more dead code instances in floating-
point dominated C code. Furthermore, in our experiments we
showed that adding iSAT3+IC3 to a portfolio of solvers reduces
the number of unsolved instances by 26% from 88 down to
65 — which is a remarkable gain when considering that the
instances being left unsolved by an existing solver portfolio are
usually the hardest ones and require huge efforts for manual dead
code inspection.

(1]
(2]

(3]

(4]

[6

—

(7]
[8
[9]
[10]

—

[11]

[12]

[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23

—_

[24]
[25]
[26]
[27]

(28]

[29]

[30]
[31]

[32]

[33]
[34]
(351

[36]
[37]

[38]
(391

REFERENCES

ISO, “Road vehicles — Functional safety,” 2011.

H. Kelly J., V. Dan S., C. John J., and R. Leanna K., “A Practical Tutorial on
Modified Condition/Decision Coverage,” Tech. Rep., 2001.

F. Neubauer, K. Scheibler, B. Becker, A. Mahdi, M. Frinzle, T. Teige,
T. Bienmiiller, and D. Fehrer, “Accurate Dead Code Detection in Embedded
C Code by Arithmetic Constraint Solving,” in SC-square 2016. [Online].
Available: http://ceur-ws.org/Vol-1804/paper-07.pdf

E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS 2004.

P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and T. Bi-
enmiiller, “Incremental Bounded Model Checking for Embedded Software,”
Formal Aspects Comput., vol. 29, no. 5, pp. 911-931, 2017.

K. Scheibler, “Applying CDCL to Verification and Test: When Laziness
Pays Off,” Ph.D. dissertation, University of Freiburg, Freiburg im Breisgau,
Germany, 2017.

L. Westhofen, P. Berger, and J. Katoen, “Benchmarking Software Model
Checkers on Automotive Code,” in NFM 2020.

T. Bienmiiller and T. Teige, “Satisfaction Meets Practice and Confidence,” in
SC-square 2016.

K. L. McMillan, “Interpolation and SAT-Based Model Checking,” in CAV
2003.

K. Scheibler, F. Neubauer, A. Mahdi, M. Frinzle, T. Teige, T. Bienmiiller,
D. Fehrer, and B. Becker, “Accurate ICP-based Floating-Point Reasoning,” in
FMCAD 2016.

M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening, “Deciding
Floating-Point Logic with Abstract Conflict Driven Clause Learning,” Formal
Methods in System Design, vol. 45, no. 2, pp. 213-245, 2014.

F. Benhamou and L. Granvilliers, “Continuous and Interval Constraints,” in
Handbook of Constraint Programming, ser. Foundations of Artificial Intelli-
gence. Elsevier, 2006, vol. 2, pp. 571-603.

A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in VMCAI
2011.

A. Cimatti and A. Griggio, “Software Model Checking via IC3,” in CAV 2012.
K. Hoder and N. Bjgrner, “Generalized Property Directed Reachability,” in
SAT 2012.

A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model Checking
for Recursive Programs,” in CAV 2014.

J. Birgmeier, A. R. Bradley, and G. Weissenbacher, “Counterexample to
Induction-Guided Abstraction-Refinement (CTIGAR),” in CAV 2014.

D. Jovanovic and B. Dutertre, “Property-Directed k-Induction,” in FMCAD
2016.

L. M. de Moura and D. Jovanovic, “A Model-Constructing Satisfiability
Calculus,” in VMCAI 2013.

J. P. M. Silva and K. A. Sakallah, “GRASP - A New Search Algorithm for
Satisfiability,” in ICCAD 1996.

G. S. Tseitin, “On the Complexity of Derivations in Propositional Calculus,”
in Studies in Constructive Mathematics and Mathematical Logics, 1968.

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model
Checking Using SAT Procedures instead of BDDs,” in DAC 1999.

N. Eén and N. Sérensson, “Temporal Induction by Incremental SAT Solving,”
Electr. Notes Theor. CS, vol. 89, no. 4, pp. 543-560, 2003.

N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient Implementation of
Property Directed Reachability,” in FMCAD 2011.

T. Seufert and C. Scholl, “fbPDR: In-depth combination of forward and
backward analysis in Property Directed Reachability,” in DATE 2019.

H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
Formal Verification of Hardware,” in FMCAD 2011.

M. Frinzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
Solving of Large Non-Linear Arithmetic Constraint Systems with Complex
Boolean Structure,” JSAT, vol. 1, no. 3-4, pp. 209-236, 2007.

C. Herde, “Efficient Solving of Large Arithmetic Constraint Systems with
Complex Boolean Structure: Proof Engines for the Analysis of Hybrid
Discrete-Continuous Systems,” Ph.D. dissertation, Carl von Ossietzky Uni-
versity of Oldenburg, 2011.

T. Teige, “Stochastic Satisfiability Modulo Theories: A Symbolic Technique
for The Analysis of Probabilistic Hybrid Systems,” Ph.D. dissertation, Carl
von Ossietzky University of Oldenburg, 2012.

S. Kupferschmid, “Uber Craigsche Interpolation und deren Anwendung in der
formalen Modellpriifung,” Ph.D. dissertation, University of Freiburg, 2013.
A. Eggers, “Direct Handling of Ordinary Differential Equations in Constraint-
Solving-Based Analysis of Hybrid Systems,” Ph.D. dissertation, Carl von
Ossietzky University of Oldenburg, 2014.

K. Scheibler, F. Neubauer, A. Mahdi, M. Frinzle, T. Teige, T. Bienmiiller,
D. Fehrer, and B. Becker, “Extending iSAT3 with ICP-Contractors for Bitwise
Integer Operations,” SFB/TR 14 AVACS, Tech. Rep. 116, 2016.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver,” in ICCAD 2001.

R. Sebastiani, “Lazy Satisfiability Modulo Theories,” JSAT, vol. 3, no. 3-4,
pp. 141-224,2007.

K. Ravi and F. Somenzi, “Minimal Assignments for Bounded Model Check-
ing,” in TACAS 2004.

N. Eén and N. Sorensson, “An Extensible SAT-solver,” in SAT 2003.

Y. Vizel and A. Gurfinkel, “Interpolating Property Directed Reachability,” in
CAV 2014.

A. Gurfinkel and A. Ivrii, “K-Induction Without Unrolling,” in FMCAD 2017.
H. G. V. Krishnan, Y. Vizel, V. Ganesh, and A. Gurfinkel, “Interpolating
Strong Induction,” in CAV 2019.





