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Abstract—The characterization of analog-mixed signal (AMS)
silicon requires a suitable pattern set able to exercise the para-
metric operational space to – among other tasks – validate the
correct (specified) working behaviour of the device under test. As
experience shows, most of the unexpected problems occur for very
specific value combinations of a few test condition variables that
were not expected to have an influence. Additionally, restrictions
on the operational conditions have to be taken into account.

We present a method to efficiently create a set of test conditions
to cover such a constrained search space with a user-defined
density. First, an initial test condition set is generated using
quasirandom Sobol sequences. Secondly, we analyse the test
conditions to identify and fill uncovered areas in the parameter
space using the in-house interval constraint solver iSAT3.

The applicability of the method is demonstrated by experi-
mental results on a 19-dimensional search space using a realistic
set of constraints.

I. INTRODUCTION

Characterization of analog-mixed signal (AMS) circuits is
a challenging problem requiring a well-designed set of input
patterns [1], [2]. Among other tasks, characterization must
validate that the device under test works as specified under
all intended operating conditions. Operating conditions are
defined by a large number of test condition variables, here
called dimensions, that can be continuous, discrete or logical.
Usually, operating conditions are constrained to not destroy
the device (e. g. limit power consumption), avoid undesired
behaviour (e. g. frequencies with too many spurs) or avoid
unsupported or not implemented modes.

Experience shows that complex chips tend to have unex-
pected problems that occur for very specific value combina-
tions of a few test condition variables that were not expected
to have an influence. The goal of this work is to ensure that
such problems will most likely be found, even in a black-box
scenario, i. e. a scenario where a priori knowledge is (almost)
not available.

As already indicated above experience of the industrial
author shows that these unexpected problems depend on only
a very few (n ∈ {2, . . . , 5}) test condition variables. Therefore
it is not necessary to densely cover the high-dimensional space
of all test condition variables, which would be practically
impossible, rather it is sufficient to compute a characteriza-
tion set, that densely covers all n-dimensional subspaces for
small n, without leaving “large” untested areas between the
(exercised) test conditions. Furthermore, because no a-priori
knowledge is available for unexpected problems, all these

subspaces should be covered as uniformly as possible. In the
context of this work, a good coverage – and thus a good
density of the characterization set – will be indicated by a small
”Maximum Uncovered n-Cube (MUnC)” in any n-dimensional
subspace.

In the context of AMS circuits, typically constraints defining
operational restrictions on the test condition variables exist
(e. g. a power limit is provided). In the absence of such
constraints, low discrepancy codes, like Sobol sequences [3],
provide a fast and effective method to achieve a rather uni-
form distribution of test conditions in all subspaces [4], [5].
This is no longer guaranteed in the presence of constraints:
test conditions violating the constraints have to be excluded
because they are outside the given specification. This may
cause a distribution bias and an increase in size for the MUnC
(illustrated by Example 1 in Sec. II, Fig. 1a). Hence more
sophisticated methods are required to be able to take such
constraints into account.

This paper presents a method, that:
• generates a set of multi-dimensional test conditions (ini-

tial characterization set) using a Sobol sequence and
corrects all test conditions violating the user-defined set
of linear or non-linear constraints

• finds the maximum uncovered n-cube (MUnC) regarding
a given number n of so-called active dimensions to
estimate the density of the initial characterization set

• modifies the initial characterization set until a user-
defined density is reached by specifically generating test
conditions in uncovered regions of the input space.

II. GENERAL PROBLEM DESCRIPTION AND APPROACH

We consider AMS circuits having continuous (e. g. wave-
forms), discrete (e. g. register settings) and logic input pa-
rameters as well as static conditions (e. g. device number).
Those input parameters – in the following also referred to as
dimensions – span a multi-dimensional test space.

Example 1. Let’s assume there are 4 dimensions: the voltage
(continuous, value range: [0, 4]V ), the current (continuous,
value range: [0, 5]A), a mode (discrete; 3 different states)
and a Boolean dimension which states whether an embedded
component is activated or not.

The main task of the approach presented in this paper is to
get a high quality characterization set for such AMS chips. In



the context of black-box characterization it is beneficial to use
a characterization set well-distributed over the whole multi-
dimensional test condition space in order to uniformly cover
all fragments of that space. Thus as a quality measurement
the density of such a set is used which is defined as the
absence of test condition free spaces – so-called Uncovered
n-Cubes (UnC) – larger than a given size. The size of such
an n-cube is the distance from its central point to its side. For
continuous dimensions the distance is measured in percent of
the value range to be able to express this value in multiple
dimensions with potentially different value ranges at once.
For discrete dimensions it is sufficient to distinguish whether
the distance of two values is zero or not. The largest UnC is
called Maximum Uncovered n-Cube (MUnC). Consequently a
smaller MUnC implies a higher density of the characterization
set and vice versa.

A good initial method for characterization set generation
is using quasirandom low discrepancy sequences (e. g. Sobol
[3], [6], as in this paper). Such sequences are often used
for numerical integration, simulation, and optimization [5]. In
contrast to pseudorandom numbers, they have the property to
efficiently sample even a multi-dimensional space in a more
uniform way [4], [7].

However, even this initial characterization set may leave
UnCs of certain sizes (e. g. the orange UnC in Figure 1a). Fur-
thermore, usually there are additional dependencies between
different input parameters expressed by so-called parameter
constraints. In theory, those constraints can be arbitrarily
complex, including linear and non-linear arithmetic or even
transcendental functions. Figure 1a shows such a constraint for
Example 1 including initial Sobol generated test conditions.
The parameter constraint restricts the power of the chip by
demanding voltage · current < 9W and thus excludes the
blue area from the test condition space. This invalidates some
of the generated test conditions as they violate the parameter
constraint like the red point in the figure. Excluding such test
conditions affects the density of the characterization set as
existing UnCs are enlarged, lowering the quality of the set.
An example can be seen in Figure 1a where the existing green
UnC grows by the red part because of the removal of the red
invalid test condition.

Our approach tackles both issues by filling up the UnCs in
the initial characterization set to improve the density and thus
the quality.

The general work-flow of the proposed approach is shown
in Figure 2. Starting with a set of well-distributed initial test
conditions (generated using e. g. quasirandom Sobol sequences
or by any other means) the next step is the quality estimation
by finding the MUnC considering only a user-given number
n of active dimensions.

We iteratively generate new test conditions, filling uncov-
ered spaces until a certain density is reached.

Figure 1b shows the general encoding idea for Example
1 with two continuous and one discrete active dimensions
including three candidates of the initial characterization set
generated by a Sobol sequence.

The red squares around each test condition indicate the area

U

I

1 2 3 40

1

2

3

4

5
on

a) example representation

U

I

1 2 3 40

1

2

3

4

5
on

b) encoding idea, 3rd step (d = 37.5%)

Fig. 1. Example with the parameter constraint U · I < 9 and an initial Sobol
generated test condition set; active dimensions: U , I , on/off (only “on” is
shown)
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Fig. 2. Work-flow of proposed approach

within the defined distance d. These areas are already covered
and considered to be “forbidden”. Thus a new test condition is
allowed to lie somewhere in the green marked “white space”
of the picture. For larger distances or a greater amount of test
conditions more and more of the valid space is blocked until
at some point it is not possible to find a new test condition
with at least the considered distance to all other ones.

This task is encoded into a SAT Modulo Theory (SMT)
formula which represents the parameter constraints as well
as the “forbidden space” around each existing test condition.
The SMT formula is solved by the interval constraint solver
iSAT3 [8]–[10].

While a satisfying assignment of the variables provides a
new test condition, unsatisfiability of the formula proves its
in-existence. In the presented approach the solver can choose
any dimension subset of a given size as active dimensions
when searching for the location of a new test condition. This
ensures that all possible sub-spaces are considered, filled up
and hence covered.

The complexity of the proposed problem increases exponen-
tially with the number of dimensions as each new dimension
increases the possible test value combinations by at least
the factor 2. Considering not all dimensions at the same
time reduces the complexity tremendously even though all(

#dim
#actDim

)
possible subsets with a fixed number of dimensions

have to be taken into account.
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Fig. 3. Runtime (linear scale) and number of generated test conditions
(logarithmic scale) for different target MUnC sizes (19 dimensions, 3 active)

III. EXPERIMENTAL RESULTS

The results are based on data from an in-house AMS chip
of Advantest. This chip has 9 input parameters containing 4
continuous and 5 discrete dimensions extended by 10 random
dimensions (5 continuous, 5 discrete) in order to increase com-
plexity. Furthermore the continuous dimensions are restricted
by linear parameter constraints as well as more complex ones
including quadratic and even cubic constraints. In general, 3
dimensions are considered to be active. All experiments are
performed on an Intel R© Xeon R© CPU E5-2643 @ 3.30GHz.

Figure 3 shows the runtime and the size of the generated
characterization set for multiple experiments with different
target densities represented by the MUnC size. The curves
illustrate the exponential character of the task in the target
density not only for the runtime but also for the number
of test conditions. Comparing different numbers of (active)
dimensions shows a similar picture. Nevertheless the proposed
approach achieves very feasible runtimes, suitable for the
application in the industrial context.

As there is – as far as we know – no other approach targeting
the same task, the direct competitor is a pure Sobol approach
which generates the whole characterization set using a Sobol
sequence. As the Sobol approach cannot target for a certain
density but only generates a given number of test conditions,
the following experimental setup is chosen (see Table I): First
the proposed approach is applied for the target MUnC sizes of
10.0% to 2.0% which generates characterization sets of certain
magnitudes including #TCinitial test conditions generated by
Sobol. Afterwards a new set with the same size is created by
using the pure Sobol approach. The comparison of the MUnC
sizes shows the superior quality of the (improved) character-
ization sets generated by the proposed approach compared to
the ones generated using pure Sobol.

IV. CONCLUSION

We presented a method to generate and improve a paramet-
ric characterization set for AMS chips with various kinds of

proposed approach pure Sobol approach
MUnC (%) #TCinitial #TCtotal #TC MUnC (%)
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10.0 1500 6560 6560 22.0
9.0 2057 7716 7716 21.0
8.0 2929 10219 10219 20.5
7.0 4373 16211 16211 18.5
6.0 6944 21554 21554 17.0
5.0 12000 33632 33632 14.0
4.0 23437 59041 59041 13.5
3.0 55555 132382 132382 12.5
2.0 187500 375911 375911 7.5

TABLE I
DENSITY COMPARISON BETWEEN SOBOL AND THE PROPOSED APPROACH

FOR THE SAME AMOUNT OF TEST CONDITIONS

input parameters as well as complex constraints. Starting with
a uniformly generated initial characterization set generated
using a Sobol sequence, the maximum uncovered n-cube is
calculated which is a quality indicator of the characterization
set as it approximates the largest uncovered area in the
constrained test space. New test conditions are iteratively
generated to fill up the characterization set until a user-defined
density is reached. The latter two tasks are tackled by an SMT
encoding of the problem utilizing the interval constraint solver
iSAT3.

The experimental results show the benefits of the proposed
method in contrast to a pure Sobol approach: we obtain a
far better density for the same set size as well as a method
for measuring and selectively improving the quality of the
characterization set and all of that in a feasible amount of
time.
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