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Abstract

SAT-based automatic test pattern generation has several ad-

vantages compared to conventional structural procedures,

yet often yields too large test sets. We present a dynamic

compaction procedure for SAT-based ATPG which utilizes

internal data structures of the SAT solver to extract essen-

tial fault detection conditions and to generate patterns which

cover multiple faults. We complement this technique by

a state-of-the-art forward-looking reverse-order simulation

procedure. Experimental results obtained for an industrial

benchmark circuit suite show that the new method outper-

forms earlier static approaches by approximately 23%.
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1 Introduction

Recent advances in Boolean-satisfiability (SAT) solvers are
increasingly rendering SAT-based automatic test pattern gen-
eration (ATPG) [10,15] an attractive alternative to traditional
structural approaches [6, 7, 9, 14]. Particular strengths of
SAT-based ATPG algorithms are the ability to resolve hard-
to-detect faults in large industrial circuits [2, 3] and to pro-
duce a quick redundancy proof for untestable faults. Further-
more, SAT-based ATPG approaches are easily applicable to
non-standard fault models such as resistive bridging faults,
which require non-trivial constraints for fault activation [2].

One weakness of SAT-based ATPG methods is their rel-
atively high pattern count, which is due to overspecification
of the calculated test patterns. Structural test generators typi-
cally search for a pattern starting at the fault site and moving
towards the circuit’s inputs. In this way, only inputs nec-
essary for fault detection tend to be assigned 0 or 1 values;
the remaining inputs have don’t-care values which can sub-
sequently be assigned to detect other faults, thus reducing
the size of the test set. A SAT-based ATPG searches for a
test pattern based on the SAT engine’s decision heuristics,
which may or may not reflect the circuit’s structure. Hence,
the generated patterns have only few don’t-care positions.
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Test pattern compaction methods in structural test gener-
ation can be divided in two classes: static and dynamic com-
paction [1]. Static compaction starts with a generated test set
and produces a smaller test set which detects (at least) the
same faults as the original test set. This is done by merg-
ing compatible patterns or by eliminating patterns which do
not detect any fault not covered by other patterns. Dynamic
compaction considers test set minimization during the test
generation process by generating test patterns which detect
multiple faults [8, 12].

For SAT-based ATPG, static compaction based on merg-
ing is challenging because the generated patterns have few
don’t-cares. A simple static compaction method based on
injecting don’t-cares on inputs outside the input cone of the
fault site and its propagation path to the output was proposed
in [5]. Although high don’t-care densities are reported for
industrial circuits, the efficiency of this technique may not
be high, as faults from the same cone are still likely to re-
sult in test patterns with conflicting assignments to inputs.
Even though don’t-cares could be injected on these inputs
without sacrificing detectability, the method from [5] does
not handle such situations. Pattern counts after, but not be-
fore compaction are reported, so the practical efficiency of
the technique in reducing the test set size is unknown.

In this paper, we introduce a dynamic compaction pro-
cedure for SAT-based ATPG. It targets fault groups which
are enlarged consecutively. Whenever a pattern is generated
for fault f , necessary assignments to the circuit lines are ex-
tracted from the ATPG’s internal data structures. The pro-
cedure then attempts to add another fault (say, fn) to the
current group (say, f1, f2, . . . , fn−1) by generating a test
for fn while enforcing that the assignments for detecting
fault f1 through fn−1 are not violated. If test generation
is successful, the pattern is guaranteed to detect all the faults
f1, f2, . . . , fn−1 as well as the new fault fn. The approach
is different from classical dynamic compaction for structural
ATPG which fixes inputs of the circuit rather than internal
circuit lines after adding a new fault to a group.

First experimental results obtained by our ATPG tool
TIGUAN (Thread-parallel Integrated test pattern Generator
Utilizing satisfiability ANalysis) [2] show an average reduc-
tion in pattern count by approximately one half compared
to the standard ATPG flow with fault dropping. Compared
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to cone-based don’t-care injection followed by static com-
paction (which can be regarded as our implementation of
[5]), the dynamic compaction procedure achieves 23% re-
duction in pattern count and a slight improvement in overall
run time.

The remainder of the paper is organized as follows. SAT-
based ATPG is reviewed in Section 2, where emphasis is put
on data structures used for dynamic compaction. The dy-
namic compaction procedure is introduced in Section 3. In
Section 4, experimental results on an industrial benchmark
suite are reported. Section 5 concludes the paper.

2 SAT-Based Test Pattern Generation

A SAT-based ATPG tool such as PASSAT [3] or TIGUAN
[2] takes a circuit, a fault list and, possibly, further param-
eters such as the timeout (time budget which the tool is al-
lowed to spend to classify a fault as either detected or un-
detected). When no dynamic compaction is active, the tool
selects one fault from the fault list and attempts to generate
a test pattern for this fault by constructing the conjunctive

normal form (CNF) of the miter circuit [10, 15] (see Section
2.2). The CNF is handed to a Boolean SAT solver (PASSAT
calls MiniSAT [4] while TIGUAN is tightly integrated with
the thread-parallel solver MiraXT [11]). If the solver finds a
model of the instance, the fault is detectable and the pattern
is derived from the model. An unsolvable SAT instance is
formal evidence of a redundant fault. A fault which caused
the solver to time out is considered aborted.

Once all faults have been classified as detected, redundant
or aborted, static compaction by pattern merging can be per-
formed. TIGUAN injects don’t-cares into test patterns based
on the technique from [5] and runs the standard greedy merg-
ing algorithm [1]. After that, the remaining don’t-cares are
randomly filled with specified values and reverse-order sim-
ulation is performed: patterns are simulated in reverse order,
and patterns which do not detect new faults are eliminated.

In the following, we describe the conditional multiple
stuck-at (CMS@) fault model used by TIGUAN (Section
2.1) and provide some details on CNF generation (Section
2.2). The CMS@ fault model was introduced in [2] as a
generic interface to handle non-standard defect classes. Al-
though only stuck-at faults are considered in this paper, the
CMS@ fault model is utilized by dynamic compaction to
constrain the ATPG process such that the generated pattern
detects multiple faults. Auxiliary data structures called D-
chains [15] provide the source of the constraints for detecting
multiple faults and are explained in Section 2.2.

2.1 CMS@ Fault Model

A CMS@ fault consists of two lists of length r and s,
respectively. The list of aggressor lines has the form
{a1/aval

1
, . . . , ar/aval

r }. The list of victim lines is of the
form {v1/vval

1
, . . . , vs/vval

s }. ai and vj denote signal lines,

while all aval
i and vval

j indicate a logical value (0 or 1).

Figure 1: D-chain assignments

The behavior of a circuit under a CMS@ fault is as fol-
lows. If an input vector sets every aggressor line ai to value
aval

i , the fault is activated and the value on each victim line
vj changes to vval

j . Otherwise, no fault effect is present. A v-
single-stuck-at-val fault is represented by an empty aggres-
sor list and victim list {v/val}. Representation of further
fault models by CMS@ faults is explained in [2].

2.2 CNF generation

The SAT instance to generate a test pattern for CMS@ fault
f = {a1/aval

1
, . . . , ar/aval

r }, {v1/vval
1

, . . . , vs/vval
s } in a

circuit C models a miter circuit of the sub-circuit Cr of C
enriched by auxiliary structures called D-chains. Circuit Cr

contains the parts of C which are relevant for fault detection.

Every line i in circuit Cr is assigned two Boolean vari-
ables: Gi (value of the line in the fault-free (good) circuit)
and Bi (value of the line in the faulty (bad) circuit). For a
line i in the output cone of the victim line(s) of the fault, a
third variable Di ≡ (Gi ⊕Bi) is introduced. Di is 1 if line i
is sensitized to the fault. We require that Di = 1 implies that
the D variable of at least one input of the gate driving i must
also be 1 (this condition is not enforced at the fault site).

A successful test generation produces a sensitized path to
an output marked by D variables set to logic-1 (D-chain).
The D-chain technique was introduced to speed up test gen-
eration by guiding the search (the existence of a test pattern
does not depend on the D variables) [15]. In this work, we
utilize the information on the sensitized paths to generate
patterns for multiple faults. Figure 1 illustrates a D-chain.

3 Dynamic Compaction Procedure
The dynamic compaction procedure is outlined in Figure 2.
It attempts to find a fault group, i.e., a collection of mul-
tiple faults for which a common test pattern exists, and to
generate that pattern. The procedure first sorts the fault list
topologically (Line 1). Fault group construction starts with
one fault. In every iteration (Lines 3–22), the algorithm at-
tempts to add one more fault to the fault group by trying to
generate a pattern which detects the new fault while still de-
tecting the faults already contained in the fault group. Actual
test generation is done by procedure test gen (Line 7), which
takes two arguments: fault f and a list of additional condi-
tions FGA (fault group assignments) and returns the pattern
if the test generation is successful and the distinguished re-
turn value ⊥ otherwise.

In the beginning, FGA is empty and test gen performs
normal single-stuck-at test generation: the CNF is con-
structed and TIGUAN is invoked for the target stuck-at fault
f . If no pattern is found for the single fault f , this fault is
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Procedure dynamic compaction

Input: Fault list F

Output: Compact test set T

(1) Sort the fault list;

(2) T := ∅; FGA := ∅; told := ⊥;

(3) repeat

(4) if (F empty) then t := ⊥;

(5) else begin

(6) f := first fault from F ;

(7) t := test gen(f , FGA);

(8) end if

// Case 1: Redundant or aborted fault

(9) if (t == ⊥ and told == ⊥)

(10) then eliminate f from F ;

// Case 2: f conflicts with current fault group

(11) else if (t == ⊥ and told 6= ⊥)

(12) then begin

(13) Add told to T ;

(14) Fault simulate told, eliminate det. faults from F ;

(15) FGA := ∅; told := ⊥;

(16) end if

// Case 3: Current fault group successfully enlarged

(17) else begin

(18) Extract detection conditions from D-chains

and add them to FGA;

(19) told := t;

(20) Eliminate f from F ;

(21) end if

(22) until (F empty);

(23) return T ;

end dynamic compaction;

Figure 2: Dynamic compaction algorithm

removed from the fault list and the next fault from F is tried
as the first fault of a fault group in the next iteration (Lines
9–10). If test generation is successful (Lines 17–21), the dy-
namic compaction procedure extracts a compact set of value
assignments which are sufficient to detect the fault. These
assignments are:

• For the stuck-at-val fault at line v, v is assigned val.

• From all gates with the D variable at their output set to
logic-1, the gates which form one path to an output of
the circuit are selected. All side-inputs of these gates
are assigned the gate’s non-controlling value.

In Figure 1, Dc = Dg = 1 indicate the propagation path to
detect the a-stuck-at-0 fault. The sufficient assignments to
detect this fault are 1 at a (for fault activation), 0 at b and 1
at d and e (for propagation), written as {a/1, b/0, d/1, e/1}.
Every test pattern which sets lines a, b, d and e according to
these assignments, will detect the a-stuck-at-0 fault.

In Line 18, the extracted assignments are added to the
fault group assignment set FGA which is empty in the be-
ginning. As soon as a pattern is found for a fault, sufficient
assignments to detect this fault are contained in FGA in the
next iteration. Generating a test pattern for a fault f ′ by

test gen(f ′, FGA) ensures that, if a pattern is generated,
the values of all circuit lines under this pattern are consistent
with the assignments in FGA. Technically, this is imple-
mented by adding FGA as the aggressor list to the CMS@
fault while keeping the victim list from fault f ′. Suppose that
in the example in Figure 1, f ′ is the stuck-at-1 fault at a line h
elsewhere in the circuit. Adding fault f ′ to FGA is done by
targeting the CMS@ fault {a/1, b/0, d/1, e/1}, {h/1}. (If a
pattern is found, it still detects the a-stuck-at-0 fault.)

If fault f ′ is targeted in the second iteration and the test
generation is successful, the generated pattern detects all
faults in fault group {f, f ′}. New assignments are extracted
from the D-chain information and added to FGA. Every
pattern generated with the new FGA as the second input to
procedure test gen is guaranteed to still detect f and f ′.

In every iteration, another fault is added to the fault group,
until test generation fails, indicated by t = ⊥ (Lines 11–16).
This can be due to incompatibility of the detection conditions
for the new fault to assignments collected in FGA so far
(Line 7) or because all faults have been detected (Line 4).
The last successfully generated test pattern, told, is included
into the test set T , and fault dropping is performed (Line 14).
The current fault is used as the start for a new fault group.

The procedure terminates when no undetected faults are
left. The procedure returns the calculated test set T .

4 Experimental Results

We integrated the dynamic compaction procedure into our
ATPG tool TIGUAN and applied it to the combinational
cores of industrial circuits provided by NXP. Although the
same benchmark suite was used in [5], the circuits appear to
be synthesized using different options and have a different
structure, as indicated by the discrepancy in gate counts. We
found that the results of our re-implementation of [5] and the
results published in [5] did not track well. Therefore, when
we quote results on static compaction, we refer to our own
implementation. We used a timeout of 1 second per fault and
no multithreading.

Table 1 compares the pattern counts achieved by
TIGUAN with fault dropping and no further compaction,
TIGUAN followed by don’t-care injection and static com-
paction, and TIGUAN with dynamic compaction. For each
of these alternatives, the pattern counts before and after
reverse-order simulation are indicated by BROS and AROS,
respectively. In addition, we implemented forward-looking
reverse-order simulation: for every fault, the first test pattern
which detects it is stored; during the reverse-order simula-
tion, all the patterns which are not the first detecting pat-
terns for any faults are dropped without simulation [13].
The pattern counts obtained by replacing reverse-order fault
simulation by forward-looking reverse-order fault simulation
are denoted by AFLROS. For all three scenarios, forward-
looking reverse-order simulation outperforms reverse-order
simulation for every circuit. The final row of Table 1 con-
tains the cumulated numbers for all the benchmarks.
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Table 1: Pattern count for different compaction methods before (BROS) and after reverse-order simulation (AROS) and after

forward-looking reverse-order fault simulation (AFLROS)

No compaction Static compaction Dynamic compaction Run-time [s]

Circuit Gates BROS AROS AFLROS BROS AROS AFLROS BROS AROS AFLROS No comp. Static Dynamic

p35k 48927 9896 7196 6705 9414 8957 6305 5225 4655 4151 3049.0 4893.8 5339.5

p45k 46075 3450 2896 2747 3257 3248 3108 3204 3138 3078 241.8 629.2 906.8

p77k 75033 5293 3848 3231 2215 2149 1594 1609 1561 1373 10772.5 11044.3 10514.2

p78k 80875 1239 546 401 292 291 126 246 246 103 722.0 1494.0 3013.8

p81k 96722 8356 6509 5499 16844 16386 4392 4906 4860 1545 1765.9 11052.7 3177.3

p89k 92706 9141 6704 5847 7737 7706 4529 5861 5527 3912 2453.2 4956.5 4706.1

p100k 102443 5066 3645 3032 3113 3106 2801 3096 3093 2731 976.2 1867.0 3584.4

p141k 185360 8585 5845 5298 24717 22640 3952 9788 8942 3438 6894.3 24188.2 23673.0

p267k 296404 10222 8374 7441 7431 7103 3643 4475 4413 2879 5177.8 14334.9 17637.9

p269k 297497 10367 8452 7456 7465 7127 3638 4419 4367 2840 5940.1 13527.4 15019.9

p286k 373221 18738 14062 12240 22997 22501 7859 13212 12590 6407 14099.2 52224.3 48630.3

p295k 311901 17768 14636 12850 10406 10061 5017 11401 11132 6049 9418.0 47562.6 39785.4

p330k 365492 23546 18618 17676 16497 15874 12839 7252 7236 6547 12236.5 33720.7 27047.9

p378k 404367 3397 902 696 290 289 161 242 242 130 9251.0 18807.8 47684.5

p388k 506034 12198 8764 7684 4959 4939 2846 4883 4846 2813 12446.7 32830.6 44225.0

p469k 49771 610 430 341 1141 1061 352 739 647 330 27714.0 28286.9 41088.1

Sum 3332828 147872 111427 99144 138775 133438 63162 80558 77495 48326 123158.2 301420.9 336034.1

Both static and dynamic compaction are effective in re-
ducing the test set size for all but one circuit (p45k). The
total pattern count is reduced by 36% and 51% by these re-
spective techniques. Dynamic compaction outperforms its
static counterpart for 15 out of 16 circuits, reducing the to-
tal pattern count by 23%. (For reverse-order simulation or
in absence of any post-processing, the improvements are
around 42%.) Reverse-order and forward-looking reverse-
order simulation are less effective after dynamic compaction
than after static compaction because test patterns generated
by dynamic compaction typically target multiple faults and
are not very likely to cover no faults undetected by other pat-
terns.

The final three columns compare the run-times needed by
the three experiments. All measurements were performed
on a 2.3 GHz AMD Opteron computer with 64 GB RAM
(TIGUAN is a 32-bit application which does not consume
any memory exceeding 4 GB). The run times consumed
by both compaction types are similar for many circuits, al-
though sometimes one method takes considerably longer
than its counterpart.

5 Conclusions

We presented a dynamic compaction procedure for SAT-
based ATPG which scales to multi-million gate designs and
outperforms the static compaction method introduced be-
fore. The results demonstrate that dynamic compaction com-
pensates for one drawback of SAT-based ATPG, namely the
high pattern count. The procedure is tightly integrated into
the ATPG tool and makes use of its specific data structures
and interfaces.

Additional compaction can be achieved by better selec-
tion of the fault groups. We currently stop the fault group
construction as soon as one fault turns out to be incompati-
ble with the remainder of the group. It is possible to attempt
adding other fault to the fault group, thus yielding patterns
which detect even more faults.
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