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Abstract— We study motion planning problems where agents
move inside environments that are not fully observable and
subject to uncertainties. The goal is to compute a strategy
for an agent that is guaranteed to satisfy certain safety
and performance specifications. Such problems are naturally
modeled by partially observable Markov decision processes
(POMDPs). Because of the potentially huge or even infinite
belief space of POMDPs, verification and strategy synthesis is
in general computationally intractable. We tackle this difficulty
by exploiting typical structural properties of such scenarios; for
instance, we assume that agents have the ability to observe their
own positions inside an environment. Ambiguity in the state of
the environment is abstracted into non-deterministic choices
over the possible states of the environment. Technically, this
abstraction transforms POMDPs into probabilistic two-player
games (PGs). For these PGs, efficient verification tools are
able to determine strategies that approximate certain measures
on the POMDP. If an approximation is too coarse to provide
guarantees, an abstraction refinement scheme further resolves
the belief space of the POMDP. We demonstrate that our
method improves the state of the art by orders of magnitude
compared to a direct solution of the POMDP.

I. INTRODUCTION

Offline motion planning for dynamical systems with uncer-
tainties aims at finding a strategy for an agent that ensures
certain desired behavior [1]. Planning scenarios that exhibit
stochastic behavior are naturally modeled by Markov decision
processes (MDPs). An MDP is a non-deterministic model
in which the agent chooses to perform an action under full
knowledge of the environment it is operating in. The outcome
of the action is a distribution over the states. For many robotic
applications, however, information about the current state
of the environment is not observable [2], [3], [4]. In such
scenarios, where the actual state of the environment is not
exactly known, the model is a partially observable Markov
decision process (POMDP). By tracking the observations
made while it moves, an agent can infer the likelihood of
the environment being in a particular state. This likelihood is
called the belief state of the agent. Executing an action leads
to an update of the belief state because new observations
are made. The belief state together with an update function
form a (possibly infinite) MDP, commonly referred to as the
underlying belief MDP [5].
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As an example, take a scenario where a controllable agent
needs to traverse a room while avoiding static obstacles and
randomly moving opponents whose positions cannot always
be observed by the agent. The goal is to determine a strategy
for the agent, that (provably) ensures safe traversal with a
certain high probability.

Quantitative verification techniques like probabilistic model
checking [6] provide comprehensive guarantees on such a
strategy. For finite MDPs, tools like PRISM [7] or Storm [8]
employ efficient model checking algorithms to assess the
probability to reach a certain set of states. However, POMDP
verification suffers from the large, potentially infinite belief
space, and is intractable even for rather small instances.

Approach: We outline the approach and the structure of
the paper in Fig. 1, details in the figure will be discussed in
the respective sections. Starting from a problem description,
we propose to use an encoding of the problem as a POMDP.
We observe that motion planning scenarios as described
above naturally induce certain structural properties in these
POMDPs. In particular, we assume that the agent can observe
its own position while the state of the environment, i. e., the
exact position of the opponents, is observable only if they
are nearby according to a given distance metric. We propose
an abstraction method that, intuitively, lumps states inducing
the same observations. Since it is not exactly known in which
state of the environment a certain action is executed, a non-
deterministic choice over these lumped states is introduced.
Resolving this choice induces a new level of non-determinism
into the system in addition to the choices of the agent: The
POMDP abstraction results in a probabilistic two-player game
(PG) [10]. The agent is the first player choosing an action
while the second player chooses in which of the possible
(concrete) states the action is executed. Model checking
computes an optimal strategy for the agent on this PG.

The automated abstraction procedure is inspired by game-
based abstraction [10], [11], [12] of potentially infinite MDPs,
where states are lumped in a similar fashion. We show that
our approach is sound in the sense that a strategy for the
agent in the PG defines a strategy for the original POMDP.
Guarantees for the strategy carry over to POMDPs, as it
induces bounds on probabilities. As we target an undecidable
problem [13], our approach is not complete in the sense that
it does not always obtain a strategy which yields the required
optimal probability. However, we define a scheme to refine
the abstraction and extend the observability.

We implemented a Python tool-chain taking a graph
formulation of the motion planning as input and applying the
proposed abstraction-refinement procedure. The tool-chain
uses PRISM-games [9] as a model checker for PGs. For the
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Fig. 1: Schematic overview of the approach

motion planning scenario considered, our preliminary results
indicate an improvement of orders in magnitude over the
state of the art in POMDP verification [14].

Related work: Sampling-based methods for motion plan-
ning in POMDP scenarios are considered in [15], [16], [17],
[18]. An overview on point-based value iteration for POMDPs
is given in [5]. Other methods employ control techniques
to synthesize strategies with safety considerations under
observation and dynamics noise [2], [19], [20]. Preprocessing
of POMDPs in motion planning problems for robotics is
suggested in [21].

General verification problems for POMDPs and their
decidability have been studied in [22]. A recent survey about
decidability results and algorithms for ω-regular properties is
given in [13], [23]. The probabilistic model checker PRISM
has recently been extended to support POMDPs [14]. Partly
based on the methods from [24], it produces lower and
upper bounds for a variety of queries. Reachability can be
analyzed for POMDPs for up to 30,000 states. In [25], an
iterative refinement is proposed to solve POMDPs: Starting
with total information, strategies that depend on unobservable
information are excluded. In [26], a compositional framework
for reasoning about POMDPs is introduced. Refinement based
on counterexamples is considered in [27]. Partially observable
probabilistic games have been considered in [28]. Finally, an
overview of applications for PGs is given in [29].

II. FORMAL FOUNDATIONS

A. Probabilistic games

For a finite or countably infinite set X , let µ : X → [0, 1]
such that

∑
x∈X µ(x) = 1 denote a probability distribution

over X , and Dist(X) the set of all probability distributions
over X . The Dirac distribution δx ∈ Dist(X) on x ∈ X is
given by δx(x) = 1 and δx(y) = 0 for y 6= x.

Definition 1 (Probabilistic game) A probabilistic game
(PG) is a tuple G = (S1, S2, sinit,Act , P ) where S = S1 ∪̇S2

is a finite set of states, S1 the states of Player 1, S2 the
states of Player 2, sinit ∈ S the initial state, Act a finite set of
actions, and P : S×Act 7→ Dist(S) a (partial) probabilistic
transition function.

Let Act(s) = {α ∈ Act | (s, α) ∈ dom(P )} denote the
available actions in s ∈ S. We assume that PG G does not
contain any deadlock states, i. e., Act(s) 6= ∅ for all s ∈ S. A
Markov decision process (MDP) M is a PG with S2 = ∅. We
write M = (S, sinit,Act , P ). A discrete-time Markov chain
(MC) is an MDP with |Act(s)| = 1 for all s ∈ S.

Such a probabilistic game is played as follows: In each step,
the game is in a unique state s ∈ S. If it is a Player 1 state

(i. e., s ∈ S1), then Player 1 chooses an available action α ∈
Act(s) non-deterministically; otherwise Player 2 chooses. The
successor state of s is determined probabilistically according
to the probability distribution P (s, α): The probability of s′

being the next state is P (s, α)(s′). The game is then in state
s′.

A path through G is a finite or infinite sequence π =
s0

α0−→ s1
α1−→ · · · , where s0 = sinit, si ∈ S, αi ∈ Act(si),

and P (si, αi)(si+1) > 0 for all i ∈ N. The (i+1)-th state si
on π is π(i), and last(π) denotes the last state of π if π is
finite. The set of (in)finite paths is Pathsfin

G (Paths inf
G ).

To define a probability measure over the paths of a PG G,
the non-determinism needs to be resolved by strategies.

Definition 2 (PG strategy) A strategy σ for G is a pair σ =
(σ1, σ2) of functions σi : {π ∈ Pathsfin

G | last(π) ∈ Si} →
Dist(Act) such that for all π ∈ Pathsfin

G , {α | σi(π)(α) >
0} ⊆ Act

(
last(π)

)
. ΣG denotes the set of all strategies of G

and ΣiG all Player-i strategies of G.

For MDPs, the strategy consists of a Player-1 strategy only.
A Player-i strategy σi is memoryless if last(π) = last(π′)
implies σi(π) = σi(π

′) for all π, π′ ∈ dom(σi). It is
deterministic if σi(π) is a Dirac distribution for all π ∈
dom(σi). A memoryless deterministic strategy is of the form
σi : Si → Act .

A strategy σ for a PG resolves all non-deterministic choices,
yielding an induced MC, for which a probability measure over
the set of infinite paths is defined by the standard cylinder
set construction [30]. These notions are analogous for MDPs.

B. Partial observability

For many applications, not all system states are observable [2].
For instance, an agent may only have an estimate on the
current state of its environment. In that case, the underlying
model is a partially observable Markov decision process.

Definition 3 (POMDP) A partially observable Markov deci-
sion process (POMDP) is a tuple D = (M,O, λ) such that
M = (S, sinit,Act , P ) is the underlying MDP of D, O a finite
set of observations, and λ : S → O the observation function.

W. l. o. g. we require that states with the same observations
have the same set of enabled actions, i. e., λ(s) = λ(s′)
implies Act(s) = Act(s′) for all s, s′ ∈ S. More general
observation functions λ have been considered in the literature,
taking into account the last action and providing a distribution
over O. There is a polynomial transformation of the general
case to the POMDP definition used here [23].

The notions of paths and probability measures directly
transfer from MDPs to POMDPs. We lift the observation



function to paths: For a POMDP D and a path π =
s0

α0−→ s1
α1−→ · · · sn ∈ Pathsfin

D , the associated observation
sequence is λ(π) = λ(s0)

α0−→ λ(s1)
α1−→ · · ·λ(sn). Note

that several paths in the underlying MDP M can give rise to
the same observation sequence. Strategies have to take this
restricted observability into account.

Definition 4 (Observation-based strategy) An observation-
based strategy of POMDP D is a function σ : Pathsfin

D →
Dist(Act) such that σ is a strategy for the underlying MDP
and for all paths π, π′ ∈ Pathsfin

D with λ(π) = λ(π′) we
have σ(π) = σ(π′). Σo

D denotes the set of such strategies.

That means an observation-based strategy selects based on
the observations and actions made along the current path.

The semantics of a POMDP can be described using a belief
MDP with an uncountable state space. The idea is that each
state of the belief MDP corresponds to a distribution over
the states in the POMDP. This distribution is expected to
correspond to the probability to be in a specific state based
on the observations made so far. Initially, the belief is a Dirac
distribution on the initial state. A formal treatment of belief
MDPs is beyond the scope of this paper, for details see [5].

C. Specifications

Given a set G ⊆ S of goal states and a set B ⊆ S of bad
states, we consider quantitative reach-avoid properties of the
form ϕ = P>p(¬B U G). The specification ϕ is satisfied by
a PG if Player 1 has a strategy such that for all strategies
of Player 2 the probability is at least p to reach a goal state
without entering a bad state in between. For POMDPs, ϕ is
satisfied if the agent has an observation-based strategy which
leads to a probability of at least p to satisfy ¬B U G.

For MDPs and PGs, memoryless deterministic strategies
suffice to prove or disprove satisfaction of such specifica-
tions [31]. For POMDPs, observation-based strategies in their
full generality are necessary [32].

III. METHODOLOGY

We first intuitively describe the problem and list the assump-
tions we make. After formalizing the setting, we present a
formal problem statement. We present the intuition behind
the concept of game-based abstraction for MDPs, how to
apply it to POMDPs, and state the correctness of our method.

A. Problem Statement

We consider a motion planning problem that involves n+1
moving agents inside a world such as a landscape or a room.
One agent is controllable (Agent 0), the other agents (also
called opponents) move stochastically according to a fixed
randomized strategy which is based on their own location
and the location of Agent 0. We assume that all agents move
in an alternating manner. A position of an agent defines
the physical location inside the world as well as additional
properties such as the agent’s orientation. A graph models all
possible movements of an agent between positions, referred
to as the world graph of an agent. Therefore, nodes in the
graph uniquely refer to positions while multiple nodes may

refer to the same physical location in the world. We require
that the graph does not contain any deadlocks: For every
position, there is at least one edge in the graph corresponding
to a possible action an agent can execute.

A collision occurs, if Agent 0 shares its location with
another agent. The set of goal nodes (goal positions) in the
graph is uniquely defined by a set of physical goal locations
in the world. The target is to move Agent 0 towards a goal
node without colliding with other agents. Technically, we
need to synthesize a strategy for Agent 0 that maximizes the
probability to achieve the target. Additionally, we assume:
• The strategies of all opponents are known to Agent 0.
• Agent 0 is able to observe its own position and knows

the goal positions it has to reach.
• The positions of opponents are observable for Agent 0

from its current position, if they are visible with respect
to a certain distance metric.

Generalizing the problem statement is discussed in Sect. VI.

B. Formal setting

We first define an individual world graph for each Agent i
with 0 ≤ i ≤ n over a fixed set Loc of (physical) locations.

Definition 5 (World graph of Agent i) The world graph
Gi for Agent i over Loc is a tuple Gi = (Vi, v

0
i ,Mov i,

Ei, `i) such that Vi is the set of positions and v0
i ∈ Vi is the

initial position of Agent i. Mov i is the set of movements1;
the edges Ei : Vi×Mov i 7→ Vi are the movement effects. The
function `i : Vi → Loc maps a position to the corresponding
location.

The enabled movements for Agent i in position v are
Mov i(v) =

{
m | (v,m) ∈ dom(Ei)

}
.

For Agent 0 we need the possibility to restrict its viewing
range. This is done by a function ν0 : V0 → 2Loc which
assigns to each position of Agent 0 the set of visible locations.
According to our assumptions, for all v ∈ V0 it holds that
`(v) ∈ ν0(v) and Mov i(v) 6= ∅.

Each Agent i with i > 0 has a randomized strategy
σi : V0×Vi → Dist(Mov i), which maps positions of Agent 0
and Agent i to a distribution over enabled movements of
Agent i. The world graphs for all agents with randomized
strategies for the opponents are subsumed by a single world
POMDP. We first define the underlying world MDP modeling
the possible behavior of all agents based on their associated
world graphs.

Definition 6 (World MDP) For world graphs G0, . . . , Gn
and strategies σ1, . . . , σn, the induced world MDP M =
(S, sinit,Act , P ) is defined by S = V0 × V1 × · · · × Vn ×
{0, . . . , n}, sinit = (v0

0 , v
0
1 , . . . , v

0
n, 0), and Act = Mov0 ∪̇

{⊥}. P is defined by:

• For α ∈ Mov0(v0) and v̆ ∈ V1 × · · · × Vn, we have
P
(
(v0, v̆, 0), α

)
= δ(E0(v0,α),v̆,1).

1We use movements to avoid confusion with actions in PGs.



• P
(
(v0, v̂, vi, v̆, i),⊥

)(
(v0, v̂, v

′
i, v̆, i+1 mod n+1)

)
=

q, with v̂ ∈ V1 × · · · × Vi−1, v̆ ∈ Vi+1 × · · · × Vn,
1 ≤ i ≤ n and q =

∑
{m |Ei(vi,m)=v′i}

σi(v0, vi)(m).
• 0 in all other cases.

The first item in the definition of P translates each movement
in the world graph of Agent 0 into an action in the MDP that
connects states with probability one, i. e., a Dirac distribution
is attached to each action. Upon taking the action, the position
of Agent 0 changes and Agent 1 has to move next.

The second item defines movements of the opponents.
In each state where Agent i is moving next, the action ⊥
reflecting this move is added. The outcome of ⊥ is determined
by σi and the fact that Agent i+1 moves next.

Definition 7 (World POMDP) Let M be a world MDP. The
world POMDP D = (M,O, λ) with O = V0 ××1≤i≤n(Vi ∪̇
{∓}) and λ is defined by:

λ((v0, . . . , vn))i =

{
vi, if `(vi) ∈ ν0(v0),

∓, otherwise.

Thus, the position of Agent i is observed iff the location
of Agent i is visible from the position of Agent 0, and
otherwise a dummy value ∓, which is referred to as far
away, is observed.

Given a set GoalLocations ⊆ Loc, the mappings `i : Vi →
Loc are used to define the states corresponding to collisions
and goal locations. In particular, we have Collision ={

((v0, . . . , vn), j) ∈ S
∣∣∃1 ≤ i ≤ n. `0(v0) = `i(vi)

}
and

Goals =
{

((v0, . . . , vn), j)
∣∣ `0(v0) ∈ GoalLocations

}
.

Formal problem statement: Given a world POMDP D
for a set of world graphs G0, . . . , Gn, a set of collision states
Collision, and a set of goal states Goals, an observation-
based strategy σ ∈ Σo

D for D is p-safe for p ∈ [0, 1], if
Pσ>p(¬Collision U Goals) holds. We want to compute a p-
safe strategy for a given p ∈ [0, 1].

C. Abstraction
We propose an abstraction method for world POMDPs that
builds on game-based abstraction (GBAR), originally defined
for MDPs [10], [11].

GBAR for MDPs: For an MDP M = (S, sinit,Act , P ),
we assume a partition Π = {B1, . . . , Bk} of S, i. e., a set of
non-empty, pairwise disjoint, subsets (called blocks) Bi ⊆ S
with

⋃k
i=1Bi = S. GBAR takes the partition Π and turns

each block into an abstract state Bi; these blocks form the
Player 1 states. Then Act(Bi) =

⋃
s∈Bi

Act(s). To determine
the outcome of selecting α ∈ Act(Bi), we add intermediate
selector-states 〈Bi, α〉 as Player 2 states. In the selector state
〈Bi, α〉, emanating actions reflect the choice of the actual
state the system is in at Bi, i. e., Act(〈Bi, α〉) = Bi. For
taking an action s ∈ Bi in 〈Bi, α〉, the distribution P (s, α)
is lifted to a distribution over abstract states:

P
(
〈Bi, α〉, s

)(
Bj
)

=
∑
s′∈Bj

P (s, α)(s′).

The semantics of this PG is as follows: For an abstract state
Bi, Player 1 (controllable) selects an action to execute. In

selector-states, the Player 2 (adversary) selects the worst-case
state from Bi where the selection was executed.

Applying GBAR to POMDPs: The key idea in GBAR
for POMDPs is to merge states with equal observations.

Definition 8 (Abstract PG) The abstract PG of
POMDP D =

(
(S, sinit,Act , P ),O, λ

)
is G =

(S1, S2, s
′
init,Act

′, P ′, R′) with S1 =
{
{s ∈ S |λ(s) =

λ(s′)}
∣∣ s′ ∈ S

}
, S2 =

{
〈B,α〉

∣∣B ∈ S1 ∧ α ∈ Act(B)
}

,
s′init = B s. t. sinit ∈ B, and Act ′ = S ∪̇Act .

The transition probabilities P ′ are defined as follows:
• P ′(B,α) = δ〈B,α〉 for B ∈ S1 and α ∈ Act(B),
• P ′

(
〈B,α〉, s

)(
B′
)

=
∑
s′∈B′ P (s, α)(s′) for 〈B,α〉 ∈

S2, s ∈ B, and B′ ∈ S1,
• and 0 in all other cases.

By construction, Player 1 has to select the same action for all
states in an abstract state. As the abstract states coincide with
the observations, this means that we obtain an observation-
based strategy for the POMDP. For the classes of properties
we consider, a memoryless deterministic strategy suffices for
PGs to achieve the maximal probability of reaching a goal
state without collision [31]. We thus obtain an optimal strategy
σ : S1 → Act for Player 1 in the PG which maps every
abstract state to an action. As abstract states are constructed
such that they coincide with all possible observations in
the POMDP (see Def. 8), this means that σ maps every
observation to an action.

Abstract world PG: We now connect the abstraction to
our setting. For ease of presentation, we assume in the rest
of this section that there is only one opponent agent, i. e.,
we have Agent 0 and Agent 1. Therefore, if Agent 0 sees an
agent and moves, no additional agent will appear. Moreover,
Agent 0 either knows the exact state, or does not know where
the opponent is.

First, we call the abstract PG of the world POMDP the
abstract world PG. In particular, the abstract states Bk in the
world PG are either of the form Bk = (v0, v1, i) or of the form
Bk = (v0,∓, i), with i ∈ {0, 1}. In the former, the opponent
is visible and the agent has full knowledge, in the latter only
the own position is known. Recall that ∓ is a dummy value
for the distance referred to as far away. Furthermore, all
states in an abstract state correspond to the same position
of Agent 0. For abstract states with full knowledge, there
is no non-determinism of Player 2 involved as these states
correspond to a single state in the world POMDP.

Correctness: We show that a safe strategy for Player 1
induces a safe strategy for Agent 0. Consider therefore a
path B0

α0−→ 〈B0, α0〉
s∈B0−−−→ B1

α1−→ . . . Bn in the PG. This
path is projected to the blocks: B0

α0−→ B1
α1−→ . . . Bn. The

location of Agent 0 encoded in the blocks is independent of
the choices by Player 2. The sequence of actions α0α1 . . .
thus yields a unique path of positions of Agent 0 in its world
graph. Thus, if the path in the PG reaches a goal state, it
induces a path in the POMDP which also reaches a goal
state. Moreover, the worst-case behavior over-approximates
the probability for the opponent to be in any location, and



any collision is observable. Thus if there is a collision in the
POMDP, then there is a collision in the PG.

Formally, for a deterministic memoryless strategy σ′ in
the abstract world PG the corresponding strategy σ in the
POMDP is defined as σ(s) = σ′(B) for s ∈ B.

Theorem 1 Given a p-safe strategy in an abstract world PG,
the corresponding strategy in the world POMDP is p-safe.

The assessment of the strategy is conservative: A p-safe
strategy in the abstract world PG may induce a corresponding
strategy in the POMDP which is p+τ -safe for some τ > 0. In
particular, applying the corresponding strategy to the original
POMDP yields a discrete-time Markov chain (MC). This
MC can be efficiently analyzed by, e. g., probabilistic model
checking to determine the value of p+τ . Naturally, the optimal
strategy for the PG needs not be optimal in the POMDP.

All positions where Agent 1 is visible yield Dirac dis-
tributions in the belief MDP, i. e., the successor states in
the MDP depend solely on the action choice. These beliefs
are represented as single states in the abstract world PG.
The abstraction lumps for each position of Agent 0 all
(uncountably many) other belief states together.

D. Refinement of the PG
In the GBAR approach described above, we remove rele-
vant information for an optimal strategy. In particular, we
strengthen (over-approximate) Agent 1 (opponent) behavior:
• We abstract probabilistic movements of Agent 1 outside

of the visible area into non-determinism.
• We allow jumps in Agent 1’s movements, i.e., Agent 1

may change position in the PG. This is impossible in
the POMDP; these movements are called spurious.

If, due to the lack of this information, no safe strategy can
be found, the abstraction needs to be refined. In GBAR for
MDPs [11], abstract states are split heuristically, yielding a
finer over-approximation. In our construction, we cannot split
abstract states arbitrarily: This would destroy the one-to-one
correspondence between abstract states and observations. We
would thus obtain a partially observable PG, or equivalently,
for a strategy in the PG the corresponding strategy in the
original POMDP is no longer observation-based.

However, we can restrict the spurious movements of Agent 1
by taking the history of observations made along a path into
account. We present three types of history-based refinements.

a) One-step history refinement: If Agent 0 moves to
state s from where Agent 1 is no longer visible, we have
λ(s) = ∓. Upon the next move, Agent 1 could thus appear
anywhere. However, until Agent 1 moves, the belief MDP is
still in a Dirac distribution; the positions where Agent 1 can
appear are thus restricted. Similarly, if Agent 1 disappears,
upon a turn of Agent 0 in the same direction, Agent 1 will
be visible again. The (one-step history) refined world PG
extends the original PG by additional states (v0, v1, i) where
v1 6∈ ν0(v0), i. e., v1 is not visible for Agent 0. These
“far away” states are only reached from states with full
information. Intuitively, although Agent 1 is invisible, its
position is remembered for one step.

b) Multi-step history refinement: Further refinement is
possible by considering longer paths. If we first observe
Agent 1 at location x, then loose visibility for one turn, and
then observe Agent 1 again at position y, then we know that
either x and y are at most two moves apart or that such a
movement is spurious. To encode the observational history
into the states of the abstraction, we store the last known
position of Agent 1, as well as the number m of moves
made since then. We then only allow Agent 1 to appear in
positions which are at most m moves away from the last
known position. We can cap m by the diameter of the graph.

c) Region-based multi-step history refinement: As the
refinement above blows up the state space drastically, we
utilize magnifying lens abstraction [33]. Instead of single
locations, we define regions of locations together with the
information if Agent 1 could be present. After each move,
we extend the possible regions by all neighbor regions.

More formally, the (multi-step history) refined world PG
has a refined far-away value ∓: Given a partition of the
positions of Agent 1, e. g., extracted from the graph, into sets
X = {X1, . . . , Xl} with

⋃
X∈X = V1 and Xi ∩Xj = ∅ for

all 1 ≤ i < j ≤ l. We define ∓′ : X → {0, 1}. Abstract states
now are either of the form (v0, v1, i) as before, or (v0,∓′, i).
For singleton regions, this coincides with the method above.
This approach also offers some flexibility: If for instance two
regions are connected only by the visible area, Agent 0 can
assure wether Agent 1 enters the other region.

Correctness: First, a deterministic memoryless strategy
σ′ on a refined abstract world PG needs to be translated to a
strategy σ for the original POMDP while p-safety is conserved.
Intuitively, as the proposed refinement steps encode history
into the abstract world PG, the strategy σ is not memoryless
anymore but has a finite memory at most m according to the
maximum number of moves that are observed.

Theorem 2 A p-safe strategy in a refined abstract world PG
has a corresponding p-safe strategy in the world POMDP.

The proposed refinements eliminate spurious movements of
Agent 1 from the original abstract world PG. Intuitively, the
number of states where Player 2 may select states with belief
zero (in the underlying belief MDP) is reduced. We thus
only prevent paths that have probability zero in the POMDP.
Vice versa, the refinement does not restrict the movement
of Agent 0 and any path leading to a goal state still leads
to one in the refinement. However, the behavior of Agent 1
is restricted, therefore, the probability of a collision drops.
Intuitively, for the refined PG strategies can be computed that
are at least as good as for the original PG.

Theorem 3 If an abstract world PG has a p-safe strategy, its
refined abstract world PG has a p′-safe strategy with p′ ≥ p.

E. Refinement of the Graph

The proposed approach cannot solve every scenario – the
problem is undecidable [13]. Therefore, if the method fails to
find a p-safe scheduler, there may still exist such a scheduler.
However, if we increase the visibility of the agent, we at least



know that the maximal level of safety does not decrease in
both the POMDP and the PG. In the future, we will devise
techniques to automatically increase the visibility. Therefore,
we need to determine “good spots” for increased visibility,
for instance we can use the analysis results: Locations
in which a collision occurs, for instance determined via
counterexamples [34], are most likely good candidates.

IV. CASE STUDY AND IMPLEMENTATION

A. Description

For our experiments, we choose the following scenario: A
(controllable) Robot R and a Vacuum Cleaner VC are moving
around in a two-dimensional grid world with static opaque
obstacles. Neither R nor VC may leave the grid or visit
grid cells occupied by a static obstacle. The position of R
contains the cell CR (the location) and a wind direction. R
can move one grid cell forward, or turn by 90◦ in either
direction without changing its location. The position of VC
is determined solely by its cell CVC. In each step, VC can
move one cell in any wind direction. We assume that VC
moves to all available successor cells with equal probability.

The sensors on R only sense VC within a viewing range r
around CR. More precisely, VC is visible iff ‖CR−CVC‖∞ ≤
r and there is no grid cell with a static obstacle on the straight
line from CR’s center to CVC’s center. That means, R can
observe the position of the VC if VC is in the viewing range
and VC is not hidden behind an obstacle. A refinement of
the world is realized by adding additional cameras, which
make cells visible independent of the location of R.

B. Tool-Chain

To synthesize strategies for the scenario described above, we
implemented a Python tool-chain. The input is the grid with
the locations of all obstacles, the location of cameras, and the
viewing range. As output, two PRISM files are created: A
PG formulation of the abstraction including one-step history
refinement, to be analyzed using PRISM-games [9], and
the original POMDP for PRISM-pomdp [14]. For multi-step
history refinement, additional regions can be defined.

The encoding of the PG contains a precomputed lookup-
table for the visibility relation. The PG is described by two
parallel processes running interleaved: One for Player 1 and
one for Player 2. As only R can make choices, they are listed
in Player 1 actions, while VC’s moves are stored in Player 2
actions. More precisely, the process for R contains its location,
and the process for VC either contains its location or a far-
away value. Then, Player 1 makes its decision, afterwards
the outcome of the move and the outcomes of the subsequent
move of VC are compressed into one step of Player 2.

V. EXPERIMENTS

A. Experimental Setup

All experiments were run on a machine with a 3.6 GHz
Intel R© CoreTM i7-4790 CPU and 16 GB RAM, running
Ubuntu Linux 16.04. We denote experiments taking over
5400 s CPU time as time-out and taking over 10 GB memory
as mem-out (MO). We considered several variants of the

Fig. 2: Grid for SC4. The cameras observe the shaded area.

scenario described in IV-A. The Robot R always started in
the upper-left corner and had the lower-right corner as target.
The VC started in the lower-right corner. In all variants, the
view range was 3. We evaluated the following five scenarios:
SC1 Rooms of varying size without obstacles.
SC2 Differently sized rooms with a cross-shaped obstacle in
the center, which scales with increasing grid size.
SC3 A 25×25 room with up to 70 randomly placed obstacles.
SC4 Two rooms (together 10 × 20) as depicted in Fig. 2.
The doorway connecting the two rooms is a potential point
of failure, as R cannot see to the other side. To improve
reachability, we added cameras to improve visibility.
SC5 Corridors of the format 4× x – long, narrow grids the
robot has to traverse from top to bottom, passing the VC.

B. Results

Table I shows the direct comparison between the POMDP
description and the abstraction for SC1. The first column gives
the grid size. Then, first for the POMDP and afterwards for
the PG, the table lists the number of states, non-deterministic
choices, and transitions of the model. The results include the
safety probability induced by the optimal scheduler (“Result”),
the run times (all in seconds) PRISM takes for constructing
the state space from the symbolic description (“Model Time”),
and finally the time to solve the POMDP / PG (“Sol. Time”).
The last column shows the safety probability as computed
using the fully observable MDP; it is an upper bound on the
probability that is achievable for each grid. Note that optimal
schedulers from this MDP are in general not observation-
based and therefore not admissible for the POMDP. The time
for creating the PRISM files was < 0.1 s in all cases.

Table II lists data for the PG constructed from SC2 (first
block of rows) and SC5 (without additional refinement in the
second block, with region-based multi-step history refinement
in the third block), analogous to Table I. Additionally the
runtime for creating the symbolic description is given (“Run
times / Create”). On the fully observable MDP, the resulting
probability is 1.0 for all SC2- and 0.999 for all SC5 instances.
Table III shows the results for SC3. The first column (“#O”)
corresponds to the number of obstacles, while the remaining
entries are analogous to Table II. The data for SC4 is shown
in Table IV. Its structure is identical to that of Table III,
with the first column (“#C”) corresponding to the number of
cameras added for the graph refinement as in Sect. III-E.

C. Evaluation

Consider SC1: While for very small examples,
PRISM-pomdp delivers results within reasonable time,
already the 6× 6 grid yields a mem-out. On the other hand,



TABLE I: Comparing the POMDP solution (PRISM-pomdp) with the PG abstraction solution (PRISM-games) on SC1.

POMDP solution PG solution MDP
Grid size States Choices Trans. Result Model Time Sol. Time States Choices Trans. Result Model Time Sol. Time Result

3× 3 299 515 739 0.8323 0.063 0.26 400 645 1053 0.8323 0.142 0.036 0.8323
4× 4 983 1778 2705 0.9556 0.099 1.81 1348 2198 3897 0.9556 0.353 0.080 0.9556
5× 5 2835 5207 8148 0.9882 0.144 175.94 6124 10700 19248 0.9740 0.188 0.649 0.9882
5× 6 4390 8126 12890 0.9945 0.228 4215.056 8058 14383 26079 0.9785 0.242 0.518 0.9945
6× 6 6705 20086 12501 ?? 0.377 – MO – 10592 19286 35226 0.9830 0.322 1.872 0.9970
8× 8 24893 47413 78338 ?? 1.735 – MO – 23128 81090 43790 0.9897 0.527 6.349 0.9998

10× 10 66297 127829 214094 ?? 9.086 – MO – 40464 145482 78054 0.9914 0.904 6.882 0.9999
20× 20 – Time out during model construction – 199144 745362 395774 0.9921 8.580 122.835 0.9999
30× 30 – Time out during model construction – 477824 1808442 957494 0.9921 41.766 303.250 0.9999
40× 40 – Time out during model construction – 876504 3334722 1763214 0.9921 125.737 1480.907 0.9999
50× 50 – Time out during model construction – 1395184 5324202 2812934 0.9921 280.079 3129.577 – MO –

TABLE II: Results for the PG for differently sized models.

PG Run times
Grid States Choices Trans. Result Create Model Solve

SC
2

11× 11 36084 66942 120480 0.9920 0.08 3 24
21× 21 173584 331482 618148 0.9972 1.19 41 103
31× 31 431044 834242 1572948 0.9977 7.62 231 312
41× 41 808504 1575402 2985348 0.9978 31.92 1220 805

SC
5

4× 40 50880 93734 170974 0.9228 0.01 1.4 17
4× 60 77560 143254 261534 0.8923 0.01 2.8 64
4× 80 104240 192774 352094 0.8628 0.01 5.2 110
4× 100 130920 242294 442654 0.8343 0.02 6.9 157

SC
5

+
re

f. 4× 40 55300 120848 198088 0.9799 0.01 25.2 38
4× 60 83820 182368 300648 0.9799 0.01 42.6 177
4× 80 112340 243888 403208 0.9799 0.01 74.2 191
4× 100 140860 305408 505768 0.9799 0.02 117.5 629

TABLE III: Results for SC3

PG Run times MDP
#O States Choices Trans. Result Create Model Solve Result

10 297686 581135 1093201 0.9976 2.10 89.7 285.0 0.9999
40 234012 454652 823410 0.9706 2.74 87.3 179.1 0.9999
60 198927 385803 679321 0.6476 3.12 59.4 201.5 0.9999
70 187515 363401 633884 0.6210 3.30 59.4 116.1 0.9896

our abstraction handles grids up to 30× 30 within minutes,
while still providing schedulers with a solid performance.
The safety probability is lower for small grids, as there is
less room for R to avoid VC, and there are proportionally
more situations in which R is trapped in a corner or against
a wall. Notice that for the MDP, the state space for an n× n
grid is in O(n4) compared to a state space in O(r2n2) for
the PG, where r is the viewing range. As a consequence,
no upper bound could be computed for the 50× 50 grid, as
constructing the state space yielded a mem-out.

In Table II, for the SC5 benchmarks, we see that the safety
probability goes down for grids with a longer corridor. This
is because in the abstraction, the robot can meet the VC
multiple times when traveling down the corridor. To avoid
this unrealistic behavior, we used the region-based multi-step
history refinement as described in Sect. III-D. Although we
only look at histories of one step of the VC in length, this is
enough to keep the safety probability at a value much closer
to the upper bound, regardless of the length of the corridor.

Table II, SC2, indicates that the pre-computation of the
visibility-lookup (see Sect. IV) for large grids with many
obstacles eventually takes significant time, yet the model

TABLE IV: Results for SC4

PG Run times MDP
#C States Choices Trans. Result Create Model Solve Result

none 76768 145562 271152 0.5127 0.22 7.9 23.5 0.9999
2 152920 291866 546719 0.9978 0.24 16.9 68.1 0.9999

construction time increases on a faster pace. In comparison
with SC1, we see that adding obstacles decreases the number
of reachable states and thus also reduces the number of
choices and transitions. Eventually, model construction takes
longer than the actual model checking procedure.

Table III indicates that the model checking time is not sig-
nificantly influenced by the number of obstacles. Furthermore,
we observe that the first 50 obstacles behave benevolent and
only marginally influence the safety probability, while at 60+
obstacles, the probability dips significantly. This behavior is
caused by added obstacles inducing blind spots, in which the
robot can no longer observe the VC movement.

The same blind spot behavior can also be observed in
Table IV (SC4). Here we add cameras to aid the robot by
providing improved visibility around the blind spot, resulting
in a near-perfect safety property. This doubles state space size
and increases the model checking time by about 40 seconds.

VI. DISCUSSION

Game-based abstraction successfully prunes the state space of
MDPs by merging similar states. By adding an adversary that
assumes the worst-case state, a PG is obtained. In general,
this turns the POMDP at hand into a partially observable PG,
which remains intractable. However, splitting according to
observational equivalence leads to a fully observable PG. PGs
can be analyzed by black-box algorithms as implemented,
e. g., in PRISM-games, which also returns an optimal
scheduler. The strategy from the PG can be applied to the
POMDP, which yields the actual (higher) safety level.

In general, the abstraction can be too coarse; however, in
the examples above, we have shown successfully that the
game-based abstraction is not too coarse if one makes some
assumptions about the POMDP. These assumptions are often
naturally fulfilled by motion planning scenarios.

The assumptions from Sect. III-A can be relaxed in several
respects: Our method naturally extends to multiple opponents.
We restricted the method to a single controllable agent, but
if information is shared among multiple agents, the method



is applicable also to this setting. If information sharing is
restricted, special care has to be taken to prevent informa-
tion leakage. Richer classes of behavior for the opponents,
including non-deterministic choices, are an important area for
future research. This would lead to partially observable PGs,
and game-based abstraction would yield three-player games.
As two sources of non-determinism are uncontrollable, both
the opponents and the abstraction could be controlled by
Player 2, thus yielding a PG again.

Supporting a richer class of specifications is another option:
PRISM-games supports a probabilistic variant of alternating
(linear-) time logic extended by rewards and trade-off analysis.
With the same abstraction technique presented here, a larger
class of properties can be analyzed. However, care has to
be taken when combining invariants and reachability criteria
arbitrarily, as they involve under- and over-approximations.

Our method can be generalized to POMDPs for other
settings. We use the original problem statement on the graph
only to motivate the correctness. The abstraction can be lifted
(as indicated by Def. 8), for refinement, however, a more
refined argument for correctness is necessary.

The proposed PG construction is straightforward and
currently realized without constructing the POMDP first. This
simplifies the implementation of the refinement, but mapping
the scheduler on the POMDP is currently not supported.
Improved tool support thus should yield better results (cf. the
(p+ τ)-safety in Fig. 1) without changing the method.

VII. CONCLUSION

We utilized the successful technique of game-based ab-
straction to synthesize strategies for a class of POMDPs.
Experiments show that this approach is promising. In the
future, we will lift our approach to a broader class of POMDPs
together with an improved and automatic refinement loop.
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