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Abstract

Counterexamples for property violations have a number of important applications like supporting the
debugging of erroneous systems and verifying large systems via counterexample-guided abstraction refinement.
In this paper, we propose the usage of minimal critical subsystems of discrete-time Markov chains and Markov
decision processes as counterexamples for violated ω-regular properties. Minimality can thereby be defined in
terms of the number of states or transitions. This problem is known to be NP-complete for Markov decision
processes. We show how to compute such subsystems using mixed integer linear programming and evaluate
the practical applicability in a number of experiments. They show that our method yields substantially
smaller counterexample than using existing techniques.
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linear programming, SAT-modulo-theories

1. Introduction

Model checking is a prominent technique to check whether a system model exhibits any undesirable behaviors,
i. e., behaviors that violate the system specification. In fact, the main power of model checking is its ability
to generate such violating behaviors—called counterexamples—whenever possible. Model checking can thus
be viewed as an intelligent bug hunting technique. Even in cases when a full-fledged state-space exploration
is impossible, e. g., if the system’s size is too large to be effectively handled, model checking may be able to
generate counterexamples provided there is refuting behavior. As Edmund Clarke argues in his talk at the
celebration of 25 years of model checking [1]:

It is impossible to overestimate the importance of the counterexample feature. The counterexamples
are invaluable in debugging complex systems. Some people use model checking just for this feature.
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Jansen), abraham@informatik.rwth-aachen.de (Erika Ábrahám), katoen@informatik.rwth-aachen.de (Joost-Pieter Katoen),
becker@informatik.uni-freiburg.de (Bernd Becker)

Preprint submitted to Theoretical Computer Science June 23, 2014



Other applications of counterexamples include automated refinement of system abstractions as used in the
successful CEGAR (counterexample-guided abstraction refinement) framework [2–5].

Research on counterexample generation in model checking is abundant [6–11]. For linear-time specifications
such as ω-regular properties, counterexamples are simply paths in the Kripke structure K modeling the
system. For instance, for a Büchi automaton specification A corresponding to the negation of an LTL
formula ϕ, a counterexample is an infinite path in the Kripke structure K that is admitted by A, i. e., a path
that visits one of A’s accepting states infinitely often thus violating ϕ. The nested depth-first search LTL
model-checking algorithm straightforwardly generates such counterexamples while performing the state space
exploration without an additional time penalty. Infinite counterexamples are represented in a finite way by a
finite path leading to an accepting state followed by a loop containing that state. For branching-time logics
such as CTL or modal µ-calculus, counterexamples can be (much) more complex, and in general have a
tree-like shape [9] instead of a simple path representation as for Büchi automata.

Probabilistic model checking is a variation of traditional model checking that uses system models equipped
with randomness such as transition probabilities and/or random delays. Prevailing models in this field
are discrete-time Markov decision processes (MDPs) and deterministic simplifications thereof, so-called
discrete-time Markov chains (DTMCs). MDPs are well-suited to model—amongst others—randomized
distributed algorithms. Randomization is used in distributed algorithms to break the symmetry between
identical processes in leader election and mutual exclusion algorithms, for routing purposes, or for obtaining
consensus—a problem that is known to be practically unsolvable in a deterministic setting as indicated
by various results (e. g., [12]). Markov chains are typically used in performance and reliability analysis
as for instance in fault tree analysis. Properties that can be model checked on MDP models are safety
properties like “The maximal probability to reach a safety-critical state is at most 10−3” or, more generally,
maximal probabilities of satisfying ω-regular properties [13, 14] can be obtained. Solving linear programming
problems is at the heart of MDP model checking algorithms, whereas for DTMCs this reduces to solving
linear equation systems. Tools that support MDP model checking are PRISM [15] and LiQuoR [16]; DTMC
model checking is supported by, e. g., MRMC [17] and FMurphi [18]. The PRISM set of case studies [19]
convincingly witnesses the applicability of MDP and DTMC model checking.

An important limitation of probabilistic model checking is the lack of diagnostic feedback in case a
property is violated. Preferably a user would obtain information about why a given property is refuted. It is,
however, not clear upfront what counterexamples in the probabilistic setting actually are, let alone on how to
determine them algorithmically and efficiently. For instance, if the probability to reach a safety-critical state
in a DTMC exceeds the required threshold 10−3, this cannot be illustrated by a single path. In fact, a set of
paths all reaching the safety-critical state which together carry a probability mass exceeding 10−3 would be
needed. In case of an MDP, additionally a scheduler is required whose induced Markov chain exceeds the
probability threshold 10−3. In the last couple of years, the lack of diagnostic feedback has received more
and more attention. Initial approaches [20–23] have focused on computing such sets of paths with sufficient
probability mass. Recently, tree-based counterexamples have been proposed to provide evidence that an
MDP is not simulated by another one [24, 25].

For DTMCs, it was shown in [20] that computing the smallest number of such paths whose joint probability
mass maximally exceeds the threshold (thus yielding the largest possible deviation from the threshold with
a minimal number of witnesses) boils down to a k shortest paths problem. Here, k indicates the number
of paths in the counterexample and can be computed in an on-the-fly manner. Although this provides a
rather intuitive notion of a counterexample that can be efficiently computed (in pseudo-polynomial time in
k), the number of paths in many cases is however excessive. In some cases, it is even doubly exponential in
the problem size [20], rendering the counterexample practically unusable for debugging purposes. Different
proposals have been made to alleviate this problem. To mention a few, [20] represents the path set as a
(weighted) regular expression, [21] detects loops on paths, and [22] shrinks paths through strongly connected
components (SCCs) into single transitions.

As an alternative to these path-based counterexamples, the usage of winning strategies in probabilistic
games [26, 27] and of critical subsystems have been proposed in [5, 28, 29]. A critical subsystem is a
sub-DTMC of the Markov chain at hand such that the probability to reach a safety-critical state (or, more
generally, to satisfy an ω-regular property) inside this sub-DTMC exceeds the probability threshold. This
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induces a path-based counterexample by considering all paths leading through this subsystem. Put differently,
the sub-DTMC can be viewed as a representation of the set of paths constituting the counterexample.
Contrary to the path-based representation, the size of a critical subsystem is bounded by the size of the
model under consideration. So as to obtain comprehensive counterexamples, the aim is to obtain small
critical subsystems. Different heuristic methods have been proposed for computing small critical subsystems:
Aljazzar and Leue [28] apply best first search to identify a critical subsystem, while Jansen et al. [29] propose
a technique that is based on a hierarchical SCC-based abstraction of DTMCs in combination with heuristics
for the selection of the states to be contained in the subsystem. Both approaches use heuristic methods
to select the states of a critical subsystem and are implemented by the tools DiPro [30] and COMICS [31],
respectively. Although experimental results for these approaches show encouraging results, minimality of the
generated critical subsystems is not guaranteed (as we show). Moreover, the size is often significantly larger
than the minimum (up to two orders of magnitude in some cases).

This paper attempts to fill this gap by presenting an approach to compute a globally minimal critical
subsystem (MCS) of a given Markov chain or an MDP. Here, minimality refers to the number of states of the
subsystem, but our approach can straightforwardly be adapted to minimize the number of transitions. With
the notable exception of [32], most approaches for counterexample generation in probabilistic model checking
focus on reachability properties. Instead, this paper focuses on generating MCSs for the more general class
of ω-regular properties. So, the problem that we are considering is: Given an MDP, an ω-regular property,
and a probability threshold λ such that the actual probability violates this threshold, provide a minimal
sub-MDP whose maximal probability to satisfy the property exceeds λ. This problem has been proven
to be NP-complete [5]. We first consider DTMCs and provide two formulations to this MCS problem: A
SAT-modulo theories (SMT) formulation [33] and a mixed integer linear program (MILP) [34]. As the MILP
approach clearly outperforms the SMT-approach we focus on the MILP technique and extend this towards
MDPs. We will present a number of optimizations which significantly speed up the computation times of the
MILP formulation in many cases. Experimental results on a large set of benchmarks are provided, which
show the effectiveness of our approach and our optimizations. We show that our MILP approach often yields
considerably more compact counterexamples than the heuristic methods [28, 29]. Even in cases where the
MILPs cannot be solved to optimality due to time restrictions, the resulting critical subsystems are often
substantially smaller than for the heuristic methods [28, 29]. For the sake of understandability, we first
present our algorithms for reachability properties and then show how they can be extended to the more
general class of ω-regular properties.

Organization of the paper. In Section 2 we introduce the foundations that are needed for this paper. Section 3
presents the generation of MCSs for DTMCs; in Section 4 the approaches are extended to MDPs. In Section 5
we report on experiments on a number of case studies. Finally, we conclude the paper in Section 6.

This paper is an extended and refined version of the papers [35] and [36] that mainly covered DTMCs.
This paper discusses the underlying theory in much more depth and extends the theoretical and experimental
results to MDPs and ω-regular properties. The correctness of the approach is based on a series of theorems
(Theorems 3–6, 8, 9), which are deduced in this paper. Their proofs are provided in the Appendixes.

2. Foundations

We first introduce the probabilistic models and properties that we consider in this paper, briefly describe the
model checking algorithms for them, define minimal critical subsystems, and introduce the solver techniques
used in this paper.

2.1. Discrete-time Markov Decision Processes

Let S be a countable set. A (sub-stochastic) distribution on S is a function µ : S → [0, 1] ⊆ R such that∑
s∈S µ(s) ≤ 1. We denote the set of all distributions on S by Distr(S).

Definition 1 (Discrete-time Markov decision process) Let AP be a finite set of atomic propositions.
A discrete-time Markov decision process (MDP) is a tuple M = (S, sinit,Act , P, L), where
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• S is a countable set of states,

• sinit ∈ S is an initial state,

• Act is a finite set of actions,

• P : S × Act × S → [0, 1] ⊆ R assigns to each state a set of action-distribution1 pairs such that
∀s ∈ S ∀α ∈ Act :

∑
s′∈S P (s, α, s′) ≤ 1, and

• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set of atomic propositions that
are true in s.

The MDP M is called finite if S is finite and otherwise infinite.

In the following, if not stated differently, we assume that all MDPs we are dealing with are finite.
If s ∈ S is the current state of an MDP M = (S, sinit,Act , P, L), its successor state is determined as

follows: First a non-deterministic choice between the entries of Act is made; say α is chosen. Then the
successor state of s is determined probabilistically according to the distribution P (s, α, ·). We fix the sets

succM(s, α) = {s′ ∈ S |P (s, α, s′) > 0}, succM(s) =
⋃
α∈Act succM(s, α),

predM(s, α) = {s′ ∈ S |P (s′, α, s) > 0}, predM(s) =
⋃
α∈Act predM(s, α), and

EM =
{

(s, s′) ∈ S × S
∣∣ s′ ∈ succM(s)

}
.

We sometimes skip the index M when it is clear from the context. Additionally, we define the number of
states #S

M = |S| and the number of transitions #T
M =

∑
s∈S

∑
α∈Act |succ(s, α)| of M.

A finite path π of M is a sequence π = s0α0s1α1 . . . sn with si ∈ S for i ∈ {0, . . . , n} and αi ∈ Act for
i ∈ {0, . . . , n− 1} such that si+1 ∈ succM(si, αi) for all i ∈ {0, . . . , n− 1}. We write last(π) for the last state
of π, i. e., last(π) = sn. We denote the set of all finite paths in M by Pathsfin

M and all finite paths that start
in s ∈ S by Pathsfin

M(s).
An infinite path π of M is an infinite sequence π = s0α0s1α1 . . . with si ∈ S, αi ∈ Act and si+1 ∈

succM(si, αi) for all i ≥ 0. We use the notation Pathsinf
M for the set of all infinite paths and Pathsinf

M(s) for
those starting in s ∈ S. The state at position i of path π is denoted by π(i), i. e., π(i) = si. The trace of a
(finite or infinite) path π = s0α0s1α1 . . . is the sequence trace(π) = L(s0)L(s1) . . .

Before probability measures can be defined for MDPs, the non-determinism has to be resolved. This is
done by an entity called scheduler.

Definition 2 (Scheduler) A scheduler for an MDP M = (S, sinit,Act , P, L) is a function
σ : Pathsfin

M(sinit)→ Distr(Act). We denote the set of schedulers on M by SchedM.

A scheduler can be used to transform the non-deterministic choice of the next action into a probabilistic
choice, which depends on the path along which the current state is reached from the initial state. The
resulting MDP is deterministic regarding the choice of actions.

Definition 3 (Discrete-time Markov chain) A discrete-time Markov chain (DTMC) is an MDP D =
(S, sinit,Act , P, L) with |Act | = 1.

We use M as notation for arbitrary MDPs and D for DTMCs. In the case of DTMCs we omit the action
and write, e. g., P (s, s′) instead of P (s, α, s′) for transition probabilities, s0s1 . . . instead of s0α0s1α1 . . . for
paths and (S, sinit, P, L) instead of (S, sinit,Act , P, L). For a DTMC D, a probability measure is defined on
certain sets of infinite paths using the following construction: The cylinder set of a finite path π ∈ Pathsfin

D

1Please note that we allow sub-stochastic distributions. Usually, the sum of probabilities is required to be exactly 1. This
can be obtained by defining M′ = (S ] {s⊥}, sinit,Act , P ′, L′) such that (i) s⊥ is a fresh sink state, (ii) P ′ extends P with
P ′(s⊥, α, s⊥) = 1, P ′(s, α, s⊥) = 1−

∑
s′∈S P (s, α, s′) and P ′(s⊥, α, s) = 0 for all s ∈ S and α ∈ Act , and (iii) L′ extends L

with L′(s⊥) = ∅.
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is the set cyl(π) = {π′ ∈ Pathsinf
D |π is a prefix of π′} of all infinite extensions of π. For the DTMC D and a

state s0 ∈ S, a probability space (Ω,F ,Prs0D ) can be defined as follows: The sample space Ω = Pathsinf
D (s0) is

the set of all infinite paths starting in s0. The events F ⊆ 2Ω are given by the unique smallest σ-algebra
that contains the cylinder sets of all finite paths in Pathsfin

D (s0), i. e., it is the closure of the cylinder sets
under complement and countable union, including Ω. The probability measure Prs0D : F → [0, 1] ⊆ R is

the unique measure extending Prs0D
(
cyl(s0s1 . . . sn)

)
=
∏n−1
i=0 P (si, si+1) to the whole σ-algebra [37]. A set

Π ⊆ Pathsinf
D (s0) of paths is measurable iff Π ∈ F .

Now we return to MDPs and schedulers. A scheduler σ ∈ SchedM for an MDP M = (S, sinit,Act , P, L)
induces an (infinite) DTMC Mσ = (Pathsfin(sinit), sinit, P

σ, Lσ) with Pσ(π, π′) = σ(π)(α) · P (last(π), α, s)
if π′ = παs, and Pσ(π, π′) = 0 otherwise. The labeling function Lσ is given by Lσ(π) = L

(
last(π)

)
. The

probabilities of path properties of MDPs under scheduler σ are computed in this induced DTMC.
In the following, we do not need schedulers whose return value may depend on the complete path that led

from the initial state to the current state. Instead, for our purposes—the computation of counterexamples
for ω-regular properties—the subclass of memoryless deterministic schedulers suffices [38, Lemma 10.102].
The distribution assigned to a finite path by a memoryless scheduler only depends on the last state of the
path. A scheduler is deterministic if it removes the non-determinism by choosing for each finite path a single
action with probability 1.

Definition 4 (Memoryless and deterministic schedulers) LetM = (S, sinit,Act , P, L) be an MDP. A
scheduler σ for M is memoryless iff for all π, π′ ∈ Pathsfin

M with last(π) = last(π′) we have that σ(π) = σ(π′).
A scheduler σ for M is deterministic iff for all π ∈ Pathsfin

M and α ∈ Act we have that σ(π)(α) ∈ {0, 1}.

Memoryless deterministic schedulers can be regarded as (potentially partial) functions σ : S → Act .
The induced DTMC of a memoryless scheduler σ is bisimilar to Mσ,md = (S, sinit, P

′, L) with P ′(s, s′) =
P (s, σ(s), s′). Note that for finite MDPs this yields a finite DTMC. If not stated differently, in the following
we always refer to Mσ,md (instead of Mσ) as the DTMC induced by a memoryless deterministic scheduler.

2.2. Reachability Properties and their Model Checking

A linear-time property over the set AP of atomic propositions is a set L of traces γ0γ1γ2 . . . with γi ⊆ AP
for all i. In this paper we will deal with a certain class of linear-time properties, namely ω-regular properties.
Before dealing with this more general case, we address the important subclass of reachability properties.

2.2.1. Reachability Properties

A reachability property is a linear-time property which contains all traces that have a sequence element
containing a given proposition.

Definition 5 (Reachability property) The reachability property ♦ a for proposition a ∈ AP is the
linear-time property

♦ a = {γ0γ1 . . . ∈ (2AP)ω | ∃i ≥ 0 : a ∈ γi} .

A path π of a DTMC D satisfies a reachability property ♦ a with a ∈ AP, written π |= ♦ a, if trace(π) ∈ ♦ a.
We are interested in the total probability PrsinitD (♦ a) of all paths2 starting in the initial state and satisfying
the reachability property ♦ a. To be more precise, we want to check whether this total probability is between
some bounds. The case for lower bounds can be led back to upper bounds. In the following we restrict
ourselves to non-strict upper bounds; the case for strict upper bounds is similar. We use the notation
D |= P≤λ(♦ a) to express that Prsinit

D (♦ a) is at most the bound λ ∈ [0, 1] ⊆ R. For MDPs, M |= P≤λ(♦ a)
expresses that for all schedulers σ of M we have that Mσ |= P≤λ(♦ a).

2In the notation PrsD(♦ a) we overload ♦ a to denote the set of paths of D starting in s and satisfying ♦ a. Note that this set
of paths is measurable in the probability space introduced in Section 2.1, see [39].
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2.2.2. Model Checking Reachability Properties

Prior to checking D |= P≤λ(♦ a) for a DTMC D = (S, sinit, P, L), we compute the set S
rel(a)
D = {s ∈

S | PrsD(♦ a) > 0} of those states of D from which an a-state is reachable. These states, which we call relevant
for a, can be determined in linear time by applying a backward reachability analysis from the set of a-states.

Paths containing irrelevant states s /∈ Srel(a)
D do not contribute to the probability PrsinitD (♦ a). Optionally,

the set of relevant states can be reduced by removing all states that are unreachable from the initial state.
Also this computation can be done in linear time using a forward reachability analysis from sinit.

After this pre-processing, the probabilities ps = PrsD(♦ a) for all states3 s ∈ S are obtained as the unique
solution of the following linear equation system [38, p. 760]:

• ps = 1 for all states s ∈ Srel(a)
D with a ∈ L(s),

• ps = 0 for all states s 6∈ Srel(a)
D , and

• ps =
∑
s′∈S P (s, s′) · ps′ for all other states.

Finally, D |= P≤λ(♦ a) holds iff psinit
≤ λ.

The procedure for checkingM |= P≤λ(♦ a) for an MDPM = (S, sinit,Act , P, L) is similar. A state s ∈ S
is relevant for a if there exists a scheduler under which an a-state is reachable from s, i. e.,

S
rel(a)
M = {s ∈ S | ∃σ ∈ SchedM : PrsMσ (♦ a) > 0}.

Again, the set of relevant states can be computed in linear time by a backward reachability analysis on
M [38, Algorithm 46]. To check whether Mσ |= P≤λ(♦ a) holds for all schedulers σ of MDP M, it suffices
to consider a memoryless deterministic scheduler σ∗ that maximizes the reachability probability for ♦ a, and
to check whether Prsinit

Mσ∗ (♦ a) ≤ λ [38, Lemma 10.102]. The maximal probabilities ps = PrsMσ∗ (♦ a) for each
s ∈ S can be characterized by the following equation system:

• ps = 1 for all s ∈ Srel(a)
M with a ∈ L(s),

• ps = 0 for all s 6∈ Srel(a)
M and

• ps = max
{∑

s′∈S P (s, α, s′) · ps′ |α ∈ Act
}

for all other states.

This equation system can be transformed into a linear optimization problem that yields the maximal
reachability probability together with an optimal scheduler [38, Theorem 10.105].

2.3. ω-Regular Properties and their Model Checking

Now we consider the more general class of ω-regular properties and briefly describe the model checking
algorithms for them.

2.3.1. ω-Regular Properties

For defining and model checking ω-regular properties on MDPs, we follow the standard automata-theoretic
approach, as described, e. g., in [38, 40–42], making use of deterministic Rabin automata.

Definition 6 (Deterministic Rabin automaton) A deterministic Rabin automaton (DRA) is a tuple
A = (Q, qinit,Σ, δ, F ) such that Q is a finite, nonempty set of states, qinit ∈ Q is an initial state, Σ is an
input alphabet, δ : Q× Σ→ Q is a transition function, and F ⊆ 2Q × 2Q is an acceptance condition.

3For all reachable states if the unreachable ones are declared to be irrelevant.
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A run r of A is a state sequence q0q1q2 . . . ∈ Qω with q0 = qinit such that for all i ≥ 0 there is a γi ∈ Σ
with qi+1 = δ(qi, γi). We say that r is the (unique) run of A on the infinite word γ0γ1 . . . over Σ. By
inf(r) we denote the set of all states which appear infinitely often in the run r. Given the acceptance
condition F =

{
(Ri, Ai) | i = 1, . . . , n

}
, a run r is accepting if, for some i ∈ {1, . . . , n}, inf(r) ∩Ri = ∅ and

inf(r) ∩Ai 6= ∅. We denote the set of infinite words over Σ with an accepting run of A by L(A).

Definition 7 (ω-Regular property, Safra [43]) A linear-time property L is ω-regular iff there is a DRA
A with L = L(A).

Assume a set AP of atomic propositions, a DRA A with alphabet 2AP and the ω-regular property
L = L(A). A path π of a DTMC D satisfies L if the run of A on trace(π) is accepting. We are interested in
the question whether D |= P≤λ(L), i. e., whether the total probability4 PrsinitD (L) to walk along a path in D
which starts in sinit and satisfies L is at most a given upper bound λ ∈ [0, 1] ⊆ R. An MDP M satisfies the
property P≤λ(L) iff the property is satisfied for all schedulers, i. e., if Mσ |= P≤λ(L) for all σ ∈ SchedM.

2.3.2. Model Checking ω-Regular Properties

We consider an ω-regular property L and assume that a DRA A = (Q, qinit, 2
AP, δ, F ) with L = L(A) is

given. Checking the property L for an MDP M can be carried out by building the product automaton of
the MDP M with the DRA A and computing reachability probabilities therein.

Definition 8 (Product automaton) LetM= (S, sinit,Act , P, L) be an MDP over the atomic propositions
AP and A= (Q, qinit, 2

AP, δ, F ) a DRA with F =
{

(Ri, Ai)
∣∣ i = 1, . . . , n

}
. The product automaton of M

and A is an MDP M⊗A = (S ×Q, (s, q)init,Act , P ′, L′) over the set AP′ of atomic propositions such that

• (s, q)init =
(
sinit, δ(qinit, L(sinit))

)
,

• P ′
(
(s, q), α, (s′, q′)

)
=

{
P (s, α, s′) if q′ = δ

(
q, L(s′)

)
,

0 otherwise,

• AP′ = {Ri, Ai | i = 1, . . . , n}, and

• Ai ∈ L′(s, q) iff q ∈ Ai, and Ri ∈ L′(s, q) iff q ∈ Ri, for i = 1, . . . , n.

We first explain how to check ω-regular properties on the simpler model of DTMCs and cover the model
checking of MDPs afterwards. Given a DTMC D and an ω-regular property L, we consider the product
automaton of D with the DRA A of L. Note that the product automaton in this case is again a DTMC. The
next step is to determine the strongly connected components (SCCs) of the product DTMC.

Definition 9 (Strongly connected component) Let D = (S, sinit, P, L) be a DTMC and ∅ 6= S′ ⊆ S.

1. S′ is strongly connected iff for all s, s′ ∈ S′ there is a path s0s1 . . . sn ∈ Pathsfin
D with s0 = s, sn = s′

and si ∈ S′ for all i = 0, . . . , n.

2. S′ is a strongly connected component (SCC) of D iff it is strongly connected and maximal, i. e., for all
strongly connected sets S′′ ⊆ S we have that S′ 6⊂ S′′.

3. The set of input states of an SCC S′ is defined as In(S′) = {s ∈ S′ |predD(s) 6⊆ S′}.
4. The set of output states of an SCC S′ is defined as Out(S′) = {s ∈ S \ S′ |predD(s) ∩ S′ 6= ∅}.
5. S′ is a bottom SCC (BSCC) iff it is an SCC and for all s ∈ S′ we have that

∑
s′∈S′ P (s, s′) = 1.

4Again, in PrsD(L) we overload L to denote the set {π ∈ PathsinfD (s) | trace(π) ∈ L} of paths of D starting in s and satisfying
L. For each ω-regular property L, this set of paths is measurable in the probability space defined in Section 2.1, see [39].
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The SCC structure of a DTMC can be determined by Tarjan’s algorithm in linear time [44]. Paths can enter
(exit) an SCC through its input (output) states. BSCCs have no output states, i. e., the probability to visit
each state in a BSCC infinitely often is one. However, Out(S′) = ∅ is not sufficient to assure that an SCC S′

is bottom, since we allow sub-stochastic distributions.

Definition 10 (Accepting BSCC) Let D = (S, sinit, P, L) be a DTMC over AP, A = (Q, qinit, 2
AP, δ, F )

a DRA and D ⊗ A = (S × Q, (s, q)init,Act , P ′, L′) their product. A BSCC B ⊆ S × Q of D ⊗ A is called
accepting if there are (Ri, Ai) ∈ F and (s, q) ∈ B with Ai ∈ L′(s, q) and Ri 6∈ L′(s′, q′) for all (s′, q′) ∈ B.

We introduce the proposition accept and extend the labeling by accept ∈ L′(s, q) iff (s, q) is a state in an
accepting BSCC of D ⊗A. Then the following theorem holds:

Theorem 1 ([40]) Let D be a DTMC, L an ω-regular property, and A a DRA with L = L(A). Then:

Prsinit

D (L) = Pr
(s,q)init
D⊗A (♦ accept) .

Due to the dependence on a scheduler, the notion of accepting BSCCs is not directly applicable to MDPs,
instead, so-called end components are introduced.

Definition 11 (Accepting end component) Let M = (S, sinit,Act , P, L) be an MDP over AP.

1. A sub-MDP of M is a non-empty set of states S′ ⊆ S such that there exists an action function
A : S′ → 2Act \ ∅ with succM(s, α) ⊆ S′ for all states s ∈ S′ and actions α ∈ A(s).

2. A sub-MDP S′ with action function A is an end component of M if the directed graph G = (S′, V ) with
V =

{
(s, s′) ∈ S′ × S′ | ∃α ∈ A(s) : s′ ∈ succM(s, α)

}
is strongly connected and

∑
s′∈S′ P (s, α, s′) = 1

for all s ∈ S′ and α ∈ A(s).

3. Let A = (Q, qinit, 2
AP, δ, F ) be a DRA. An end component B ⊆ S ×Q of M⊗A is accepting if there

are (Ri, Ai) ∈ F and (s, q) ∈ B such that Ai ∈ L′(s, q) and Ri 6∈ L′(s′, q′) for all (s′, q′) ∈ B.

Intuitively speaking, S′ is an end component iff there is a scheduler σ such that S′ is a BSCC of the
induced DTMC. An end component is accepting iff there is a pair (Ri, Ai) ∈ F such that the label Ai occurs
in the end component while Ri does not. We again extend the labeling of M⊗A such that accept ∈ L′(s, q)
iff (s, q) belongs to an accepting end component. To determine whether P≤λ(L) is satisfied by M, it suffices
to compute whether Prsinit

Mσ∗ (L) = max
σ∈SchedM

PrsinitMσ (L) is at most λ.

Theorem 2 ([40]) Let M be an MDP, L an ω-regular property and A a DRA with L(A) = L. Then

Prsinit

Mσ∗ (L) = Pr
(s,q)init
Mσ∗⊗A(♦ accept) .

2.4. Minimal Critical Subsystems

Let M be an MDP and consider P≤λ(L) for an ω-regular property L. Assume that PrsinitM (L) > λ. The goal
is to identify a smallest possible part M′ of M such that PrsinitM′ (L) > λ.

Definition 12 (Minimal critical subsystem) Let M = (S, sinit,Act , P, L) be an MDP.

1. An MDP M′ = (S′, s′init,Act ′, P ′, L′) is a subsystem of M if S′ ⊆ S, s′init = sinit, L
′(s) = L(s) for all

s ∈ S′, Act ′ ⊆ Act, and P ′(s, α, s′) > 0 implies P ′(s, α, s′) = P (s, α, s′) for all s, s′ ∈ S′ and α ∈ Act ′.

2. A subsystem M′ of M is critical for property P≤λ(L) if M′ 6|= P≤λ(L).

3. A minimal critical subsystem (MCS) of M for P≤λ(L) is a critical subsystem of M for P≤λ(L) with a
minimal number of states among all critical subsystems of M for P≤λ(L).
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Figure 1: MDP M, induced DTMC D and minimal critical subsystem D′ for P≤0.6(♦ a).

Alternatively, minimality of critical subsystems could be defined in terms of the number of transitions.
Although in this paper we focus on state-minimality, our approach can be easily adapted to transition-
minimality.

Given that an MCS M′ violates P≤λ(♦ a), there exists a memoryless deterministic scheduler σ on M′
such that the probability of ♦ a in the induced DTMC M′σ exceeds λ. For ω-regular properties L, the same
holds for the product with a DRA for L. Thus, in order to determine an MCS of an MDP, it suffices to
consider memoryless deterministic schedulers. This fact is exploited in our approach later on.

Example 1 Consider the MDP M shown in Figure 1(a) with initial state s1. The bold edges indicate a
nondeterministic choice with actions α and β, resp. From the corresponding action nodes, a probabilistic
choice of the successor states is indicated by the edges labeled with probabilities. We define a memoryless
deterministic scheduler σ : S → Act as in Definition 4, which assigns β to s2 and s5, and α to all other
states. The scheduler σ maximizes the probability of reaching s3; the corresponding induced DTMC D is
depicted in Figure 1(b).

Consider a reachability property P≤0.6(♦ a). State s3 is the only target state. The overall probability
of reaching s3 in D is 0.9 which means the property is violated both for D and M. An MCS for D and
P≤0.6(♦ a) is given in Figure 1(c), where the probability of reaching s3 is 0.7.

2.5. SAT-Modulo-Theories

SAT-modulo-theories (SMT) [33] refers to a generalization of the classical propositional satisfiability problem
(SAT). Compared to SAT problems, in an SMT formula atomic propositions can be replaced by atoms of a
given theory, e. g., linear or polynomial (in)equalities. We use linear real arithmetic (LRA) as theory for the
computation of MCSs. SMT problems are typically solved by the combination of a DPLL-procedure (as used
for deciding SAT problems) with a theory solver that is able to decide the satisfiability of conjunctions of
theory atoms. For a description of such a combined algorithm for SMT problems over LRA see [45]. Several
tools for solving SMT formulae over LRA are available, e. g., Z3 [46], CVC [47], and MathSAT [48].

2.6. Mixed Integer Linear Programming

A mixed integer linear program optimizes an objective function under a condition specified by a conjunction
of linear inequalities. A subset of the variables in the inequalities is restricted to take only integer values,
which makes solving MILPs NP-hard [49, Problem MP1].
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Definition 13 (Mixed integer linear program) Let A ∈ Qm×n, B ∈ Qm×k, b ∈ Qm, c ∈ Qn, and
d ∈ Qk. A mixed integer linear program (MILP) consists in computing min cTx+dT y such that Ax+By ≤ b
and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm with the generation of
so-called cutting planes. These algorithms heavily rely on the fact that relaxations of MILPs which result by
removing the integrality constraints can be solved efficiently. MILPs are widely used in operations research,
hardware-software co-design, and numerous other applications. Efficient open source as well as commercial
implementations are available like Gurobi [50], Scip [51] or Cplex [52]. We refer the reader to, e. g., [34]
for more information on solving MILPs.

3. Minimal Critical Subsystems for DTMCs

In this section we present two approaches for computing MCSs of DTMCs: one using SMT and one using
MILP solvers. We start with reachability properties. Since our practical experiments revealed that the
MILP approach is clearly superior in terms of computation times, we only generalize the MILP approach to
ω-regular properties. An important advantage of using MILP solvers is that during the solving process a
lower bound on the optimal solution is obtained while both the current solution (i. e., the currently obtained
critical subsystem) and the lower bound are successively improved. That is to say, on halting the MILP
solver, a user obtains the best solution so far, as well as a precise indication of the size of an MCS. We start
with a basic encoding of the problem to find an MCS, and then provide several optimizations in the form of
redundant constraints that are aimed at speeding up the solving process by detecting conflicts at an earlier
stage.

3.1. Reachability Properties: An SMT Formulation

In order to obtain an MCS for a property P≤λ(♦ a) violated by a DTMC D = (S, sinit, P, L), we provide
an SMT formula over LRA whose satisfying variable assignments correspond to the critical subsystems (of
arbitrary size) of D. Let T =

{
s ∈ S

∣∣ a ∈ L(s)
}

be the set of target states. For simplicity we assume that all
for a irrelevant states have been removed from the DTMC D. An MCS is then obtained by minimizing over
the number of (relevant) states in D.

For our SMT formulation we introduce for each state s ∈ S a characteristic variable xs ∈ [0, 1] ⊆ R where
xs = 1 or xs = 0 will be ensured by the formula. A state s ∈ S is contained in the subsystem iff xs = 1 in the
satisfying assignment. Additionally, we use a real-valued variable ps ∈ [0, 1] ⊆ R for each state s ∈ S to keep
track of the reachability probability of a target state from s within the subsystem. The SMT formulation
reads:

minimize
∑
s∈S

xs (1a)

such that

∀s ∈ T :
(
xs = 0 ∧ ps = 0

)
⊕
(
xs = 1 ∧ ps = 1

)
(1b)

∀s ∈ S \ T :
(
xs = 0 ∧ ps = 0

)
⊕
(
xs = 1 ∧ ps =

∑
s′∈succ(s)

P (s, s′) · ps′
)

(1c)

psinit
> λ, (1d)

where ⊕ denotes exclusive or. As we are interested in a minimal critical subsystem, we have to minimize the
number of xs-variables with value 1. This corresponds to minimizing the sum over all xs-variables (line 1a).
If xs is zero, the corresponding state s does not belong to the subsystem. Then its reachability probability
is zero (first part of lines 1b and 1c). Target states that are contained in the subsystem have probability
one (second part of line 1b). Note that an MCS does not need to contain all target states. The reachability
probability of all non-target states in the subsystem is given as the weighted sum over the probabilities of
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their successor states (line 1c). In order to obtain a critical subsystem we additionally require psinit to exceed
λ (line 1d). Note that the size of the resulting SMT formula is in O(#S

D + #T
D).

Soundness and completeness of the SMT formulation are stated in the following theorem, whose proof
is given in Appendix A. Soundness in this case means that each satisfying assignment induces an MCS,
completeness means that each MCS is induced by some satisfying assignment.

Theorem 3 The SMT formulation (1a)–(1d) is sound and complete.

Since most state-of-the-art SMT solvers for LRA cannot cope with minimizing objective functions, we
apply a binary search in the range

{
1, . . . , |S|

}
to obtain the optimal value of the objective function. Starting

with kl = 1 and ku = |S|, we iteratively search for critical subsystems whose number of states is between kl
and km := kl + (ku − kl)/2. If we find such a subsystem with k states, then we set ku to k−1; otherwise,
we set kl to km+1. The search is repeated until ku < kl. The smallest k for which a satisfying assignment
was found yields the size of the MCS at hand. The SMT encoding yields a suitable and intuitive method to
compute MCSs. However, our experiments reveal that obtaining a satisfying assignment for larger DTMCs is
rather time-consuming. This is mainly due to the high number of disjunctions in the formula which trigger
relatively few implications, forcing the solver to attempt many different cases while searching for a satisfying
assignment.

3.2. Reachability Properties: An MILP Formulation

To overcome this limitation, we now provide an MILP formulation for finding an MCS for reachability
properties. As before, we assume the DTMC at hand to only contain relevant states. In order to avoid
disjunctions, we explicitly require the characteristic variables xs for each s ∈ S to be integer. As before,
we have variables ps ∈ [0, 1] ⊆ R. The MILP formulation of finding an MCS for reachability properties on
DTMCs is as follows:

minimize − 1

2
psinit +

∑
s∈S

xs (2a)

such that

∀s ∈ T : ps = xs (2b)

∀s ∈ S \ T : ps ≤ xs (2c)

∀s ∈ S \ T : ps ≤
∑

s′∈succ(s)

P (s, s′) · ps′ (2d)

psinit > λ . (2e)

The probability ps of a state s ∈ T is 1 iff the state is contained in the MCS, i. e., iff xs = 1 (cf. line (2b)).
Analogously, for every state s ∈ S\T that is not in the subsystem (i. e., xs = 0), ps is zero. This is achieved by
requiring ps ≤ xs (line 2c). Note that for states in the critical subsystem, this does not restrict the value of ps.
An additional upper bound on the probability ps is given by the weighted sum of the reachability probabilities
ps′ of the successor states s′ (line 2d). The final constraint (line 2e) is as before. Constraints (2b)–(2e)
together with the same objective function as in the SMT formulation (line 1a) yield an MCS. The objective
function can be improved in two aspects. Since constraint (2d) only imposes an upper bound on ps, we do
not obtain—in contrast to the SMT formulation—the desired reachability probability as the value of psinit ,
but only a lower bound. Additionally it is desirable to obtain an MCS with maximal probability. Both
can be achieved by maximizing the value of psinit . To that end, we add psinit to the minimizing objective
function with a negative coefficient. A factor 0 < c < 1 is needed because, if we only subtract psinit , then the
solver may add an additional state if this would yield psinit = 1. We choose c = 1

2 . This yields the objective
function (2a).

Both the number of real and integer variables is in O(#S
D) as well as the number of constraints. The

number of non-zero variable coefficients in the MILP formulation is in O(#S
D + #T

D).

11



On the one hand, soundness of the MILP formulation assures that each satisfying assignment induces an
MCS in that the probability to reach a target state from the initial state is maximal under all MCSs. On the
other hand, completeness assures that for each MCS with maximal probability to reach the target set there
is satisfying assignment inducing it. The proof of the following theorem can be found in Appendix B.

Theorem 4 The MILP formulation (2a)–(2e) is sound and complete.

Example 2 Consider again the DTMC D in Figure 1(b) and the reachability property P≤0.6(♦ a), which is
violated by D. The only state that satisfies the proposition a is s3. Determining the relevant states for the
label a yields the set {s1, s2, s3, s4, s5, s6} = S \ {s7}. For the MILP formulation we can therefore ignore s7

with all incident edges.
We introduce the binary variables xs1 , . . . , xs6 ∈ {0, 1} ⊆ Z and the real variables ps1 , . . . , ps6 ∈ [0, 1] ⊆ R.

The MILP is then given by:

minimize − 1
2ps1 + xs1 + xs2 + xs3 + xs4 + xs5 + xs6

such that ps3 = xs3
ps1 ≤ xs1 ps1 ≤ 0.7ps2 + 0.3ps4
ps2 ≤ xs2 ps2 ≤ 0.3ps2 + 0.7ps3
ps4 ≤ xs4 ps4 ≤ ps5
ps5 ≤ xs5 ps5 ≤ 0.5ps3 + 0.5ps6
ps6 ≤ xs6 ps6 ≤ 0.5ps4
ps1 > 0.6 .

Solving this MILP yields the following optimal satisfying assignment:

Variable xs1 ps1 xs2 ps2 xs3 ps3 xs4 ps4 xs5 ps5 xs6 ps6
Value 1 0.7 1 1 1 1 0 0 0 0 0 0

This satisfying assignment corresponds to the MCS shown in Figure 1(c).

3.3. Optimizations

As our experiments revealed that the MILP formulation yields substantially shorter computation times
compared to the SMT formulation, we will focus on the MILP approach in the remainder of this paper. We
first consider several optimizations.

The optimizations consist of adding redundant constraints to the MILP formulation. These constraints
are aimed to detect unsatisfiable or non-optimal branches in the search space at an early stage of the
solving process. As we will show, they do not affect the correctness. Imposing extra constraints to the
MILP formulations intuitively means adding cutting planes which cut off non-optimal solutions, tighten the
LP-relaxation of the MILP, and may lead to better lower bounds on the optimal value which allow to prune
parts of the search tree. All our constraints aim at guiding the MILP solver to only add states that are on
paths from the initial state to a target state (in the MCS), as only such states will be part of an MCS.

3.3.1. Forward and Backward Constraints

We require that every non-target state has a successor state in the MCS. These constraints are called forward
cuts (line 3a). Likewise, we add backward cuts, which enforce every state except sinit to have a predecessor in
the MCS (line 3b). To avoid self-loops, we exclude a state itself from its successor and predecessor states.

∀s ∈ S \ T : −xs +
∑

s′∈succ(s)\{s}

xs′ ≥ 0 (3a)

∀s ∈ S \ {sinit} : −xs +
∑

s′∈pred(s)\{s}

xs′ ≥ 0 . (3b)

These constraints are trivially satisfied if state s is not contained in the subsystem as xs is 0. If state s is
chosen (i. e., xs = 1), then at least one successor/predecessor state s′ must be contained (i. e., xs′ = 1) to
achieve a positive number of successors/predecessors.
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3.3.2. SCC Constraints

The forward/backward cuts do not precisely encode forward/backward reachability from the initial/target
states: During the assignment process a connected subset of states could be selected even if its states are
neither connected to the initial nor to any target state inside the subsystem. To partially remedy this
situation, we utilize the SCC decomposition of the input DTMC. States of an SCC S′ (not containing the
initial state sinit) can be reached from outside S′ through one of the input states In(S′) only. Therefore we
ensure that a state of an SCC can only be selected if at least one of the SCC’s input states is selected. The
corresponding constraints are referred to as the SCC input cuts (line 4a). Analogously we define SCC output
cuts: Paths from a state inside an SCC S′ that does not contain a target state have to lead through one
of the SCC’s output states Out(S′) to reach a target state. Therefore, if no output state of an SCC S′ is
selected, we do not select any state of the SCC (line 4b). Note that these SCC cuts do not enforce that the
subsystem corresponding to a satisfying assignment contains only states on a path from the initial state to
target states. This is still only ensured by minimizing the objective function.

∀SCC S′, sinit 6∈ S′ ∀s ∈ S′ \ In(S′) : xs ≤
∑

s′∈In(S′)

xs′ (4a)

∀SCC S′, S′ ∩ T = ∅ ∀s ∈ S′ : xs ≤
∑

s′∈Out(S′)

xs′ . (4b)

3.3.3. Reachability Constraints

If an SCC is selected which is connected to the initial state and to one of the target states, nevertheless an
isolated loop inside the SCC may be selected. We now present a set of constraints which precisely encode
reachability. An assignment will satisfy these additional constraints only if all selected states lie on a path
from the initial to a target state. Without these constraints, this is only ensured by the state-minimality as
forced by the objective function. We introduce the notions of forward and backward reachability. For the
encoding of forward reachability, we use a variable r→s ∈ [0, 1] ⊆ R for each state s except the initial state.
These variables define a partial order on the states. For each transition (s, s′) ∈ ED (s′ 6= sinit) we introduce
a characteristic integer variable t→s,s′ ∈ [0, 1] ⊆ Z. The constraints for forward reachability are as follows:

∀s′ ∈ S \ {sinit} ∀s ∈ pred(s′) : t→s,s′ ≤ xs (5a)

∀s′ ∈ S \ {sinit} ∀s ∈ pred(s′) : r→s < r→s′ + (1− t→s,s′) (5b)

∀s′ ∈ S \ {sinit} :
∑

s∈pred(s′)

t→s,s′ = xs′ . (5c)

If s ∈ S is selected and reachable from sinit then there is a loop-free path sinit = s0 . . . sn = s such that
r→si < r→si+1

for all 0 ≤ i < n and all states on the path are selected, i. e., xsi = 1 for all 0 ≤ i ≤ n. This
is reflected in the constraints: Each transition (s, s′) ∈ ED with t→s,s′ = 1 emanates from a selected state s
(line 5a). If xs′ = 0 then constraint (5c) ensures that all variables ts,s′ equal 0 for s ∈ pred(s′), i. e., ts,s′ = 1
implies xs′ = 1. Therefore ts,s′ = 1 implies that both s and s′ are contained in the subsystem.

If t→s,s′ = 1, r→s < r→s′ has to hold (line 5b), which defines the partial order on selected states. The
constraints defined in line (5c) imply that from each selected state s′ not being the initial state, one incoming
transition t→s,s′ has to be selected. One can show by induction that this ensures that for each selected state s
there is a path in the subsystem from sinit to s.

The constraints defining backward reachability from the target states are built analogously with variables
r←s for all states s ∈ S and variables t←s,s′ for all transitions (s, s′) ∈ ED (s 6∈ T ):

∀s ∈ S \ T ∀s′ ∈ succ(s) : t←s,s′ ≤ xs′ (6a)

∀s ∈ S \ T ∀s′ ∈ succ(s) : r←s < r←s′ + (1− t←s,s′) (6b)
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∀s ∈ S \ T :
∑

s′∈succ(s)

t←s,s′ = xs . (6c)

In the assignment process, the forward and backward reachability constraints eliminate all critical
subsystems with unreachable states. However, as there are additional variables for all states and for all
transitions, the usage of these cuts is expensive, as we discuss in detail when presenting the experiments in
Section 5. For MDPs (cf. Section 4), the backward reachability constraints are not only used as optimizations,
but they are needed for correctness.

The following theorem, whose proof is given in Appendix C, states soundness and completeness of the
optimization constraints. Soundness means that any satisfying assignment of the SMT or MILP formulation
with optimization constraints induces an MCS. Completeness means that for both the SMT and MILP
formulations with optimization constraints, for each MCS5 there is a satisfying assignment inducing it.

Theorem 5 Both the SMT formulation (1a)–(1d) and the MILP formulation (2a)–(2e) together with any
(combination) of the three above optimizations are sound and complete.

3.4. ω-Regular Properties

We now generalize our MILP formulation to arbitrary ω-regular properties. Let L be such a property and A
a DRA with L(A) = L. As before, we want to compute an MCS D′ for which PrsinitD′ (L) > λ holds. We follow
the model-checking algorithm for ω-regular properties on DTMCs as described in Section 2.3.2. We consider
the product D ⊗A of the DTMC D and the DRA A with distribution function PD⊗A as in Definition 8 and
assume (as before) that all irrelevant states have been removed. Let T1, . . . , Tn be the accepting BSCCs
of D ⊗ A and T =

⋃n
i=1 Ti. We introduce characteristic variables xTi ∈ {0, 1} ⊆ Z for all T1, . . . , Tn and

xs ∈ {0, 1} ⊆ Z for all states s ∈ S. We emphasize that the xs variables are not defined for every state of
D ⊗ A, but for all states of the DTMC D. This corresponds to our aim to obtain an MCS of D. As the
reachability probabilities for all states of the product automaton are needed, we use a variable p(s,q) for every
state (s, q) ∈ S ×Q. We obtain:

minimize − 1

2
p(s,q)init +

∑
s∈S

xs (7a)

such that

∀i = 1, . . . , n ∀(s, q) ∈ Ti : p(s,q) = xTi (7b)

∀i = 1, . . . , n ∀(s, q) ∈ Ti : xs ≥ xTi (7c)

∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤ xs (7d)

∀(s, q) ∈ SD⊗A \ T : p(s,q) ≤
∑

(s′,q′)∈succD⊗A((s,q))

PD⊗A
(
(s, q), (s′, q′)

)
· p(s′,q′) (7e)

p(s,q)init > λ . (7f)

Intuitively, the probability of a state in an accepting BSCC of D ⊗A is one iff that BSCC is selected
(line 7b). A BSCC can only be selected if (the projections of) all of its states on D are selected (line 7c).
If the probability contribution of a state (s, q) exceeds 0, the DTMC-state s is selected (line 7d). Using
constraint (7e), the probability of reaching accepting BSCCs inside the MCS is computed. This constraint is
similar as in the initial MILP formulation for reachability probabilities.
The MILP formulation contains O(#S

D⊗A) real variables, O(#S
D) integer variables, O(#S

D⊗A) constraints
and O(#S

D⊗A + #T
D⊗A) non-zero coefficients.

The following theorem states soundness and completeness of the MILP formulation for ω-regular properties.
Soundness means that the satisfying assignments induce MCSs, completeness expresses that each MCS with

5For MILP only those MCSs with maximal probability to reach target states under all MCSs.
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maximal probability to satisfy the given property under all MCSs is induced by some satisfying assignment.
The proof can be found in Appendix D.

Theorem 6 The MILP formulation (7a)–(7f) is sound and complete.

Remark 1 If we treat a reachability property ϕ = P≤λ(♦ a) as an ω-regular property and use the MILP
(7a)–(7f) instead of (2a)–(2e) to generate an MCS for ϕ, we obtain different results. While the latter
formulation only preserves finite paths ending in a target state (which is sufficient for reachability properties),
the former preserves infinite paths, which is necessary for general ω-regular properties. However, if the
validity of a property can be certified by a finite path (which holds for the subclass of regular linear-time
properties, including reachability), it suffices to preserve the corresponding finite paths. In this case, a
deterministic finite automaton (DFA) can be used to represent the property instead of a DRA. A similar
construction as for general ω-regular properties can be used to obtain a MCS, preserving only finite paths.

4. Minimal Critical Subsystems for MDPs

In this section we extend the approaches described in Section 3 to find MCSs for MDPs. This task is more
complicated than for DTMCs as we additionally have to find a scheduler which yields a critical subsystem
of minimum size. As before, we start by considering reachability probabilities and then treat ω-regular
properties.

4.1. Reachability Properties

Whereas the theoretical complexity of computing MCSs for reachability properties of DTMCs is (to our
knowledge) unknown6, for MDPs the following theorem holds, whose proof can be found in Appendix E:

Theorem 7 ([5]) Let M be an MDP with M 6|= P≤λ(♦ a) and k ∈ N. The problem to decide whether there
exists a critical subsystem of M for P≤λ(♦ a) with at most k states is NP-complete.

Let M = (S, sinit,Act , P, L) be an MDP, P≤λ(♦ a) a property violated by M and T =
{
s ∈ S

∣∣ a ∈
L(s)

}
⊆ S the set of target states. We assume that all irrelevant states for a (and their adjacent edges) have

been removed from M.
It is easy to see that there is a DTMC under the MCSs of M for P≤λ(♦ a): Assume an MDP M′ that

is an MCS of M for P≤λ(♦ a). Since M′ is critical, it violates the property P≤λ(♦ a). Then there is a
memoryless deterministic scheduler inducing a DTMC D′ with a probability mass exceeding λ. Furthermore,
since M′ is minimal and D′ is a subsystem of M′, also D′ is minimal.

To encode such a scheduler, we use a binary variable σs,α ∈ {0, 1} ⊆ Z for each state s ∈ S \ T and each
action α ∈ Act such that σs,α = 1 iff action α is selected in state s by the scheduler under consideration. Like
for DTMCs, we use a binary characteristic variable xs ∈ {0, 1} ⊆ Z for each state s ∈ S to encode whether
s belongs to the subsystem or not, and a real-valued variable ps ∈ [0, 1] ⊆ R to encode the reachability
probability under the given scheduler (determined by the variables σs,α) within the selected subsystem
(determined by the variables xs).

The core MILP formulation (i. e., the formulation without any optimizations) for reachability properties
of MDPs is more complicated than for DTMCs. This is due to the fact that the reachability of target states
in MDP subsystems does not exclusively depend on the states but also on the actions of the subsystem.
Recall that a state s ∈ S is irrelevant if there is no scheduler yielding T to be reachable from s. However, for
a relevant state s, T might be reachable under some schedulers and might not be reachable under others.
We therefore impose additional constraints to assure that we consider only schedulers under which the
target state set is reachable from all subsystem states. Note that these constraints are not optional: The

6The problem of finding an MCS for a PCTL-formula on DTMCs is NP-complete [5]. This result, however, exploits nested
PCTL-formulae.
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reachability properties are encoded based on backward reachability from the target states. Without these
additional constraints, the reachability probabilities for states in a bottom SCC of the induced DTMC could
be incorrectly determined to be 1 if it does not contain a target state, leading to wrong results. Let

S
probl(a)
M = {s ∈ S | ∃σ ∈ SchedM : PrsMσ (♦ a) = 0}

be the set of problematic states in MDP M for proposition a. If s 6∈ Sprobl(a)
M then s is called unproblematic

for a.

Example 3 To illustrate the issue with problematic states, consider again the MDP in Figure 1(a). States
s2 and s5 are both problematic since the scheduler which selects α in both s2 and s5 prevents reaching the
target state s3. We cannot remove the outgoing transitions belonging to action α in a preprocessing step
since a scheduler may choose α in one state and β in the other one. However, if a scheduler chooses α in
both states, we obtain the following constraints:

ps2 ≤ 1.0 · ps5
ps5 ≤ 1.0 · ps2 .

A solution is ps2 = ps5 = 1 and thereby the maximum probability for reaching a target state can be assigned
to both states, although s3 is not reachable under this scheduler.

Our additional constraints prevent from obtaining a scheduler that chooses the “wrong” actions in problematic
states (i. e., actions that yield the T states in the MCS to be unreachable) by requiring that such states are
backward reachable from some unproblematic state. These MILP constraints are defined in a similar way to the

backward reachability constraints (6a)–(6c) for DTMCs. Let Act
probl(a)
M =

{
(s, α) ∈ S ×Act

∣∣ succM(s, α) ⊆
S

probl(a)
M

}
be the set of state-action pairs such that selecting α in s yields a problematic state (for a). We

use a real-valued variable r←s ∈ [0, 1] ⊆ R for each problematic state s ∈ Sprobl(a)
M that defines a partial order

on the problematic states (for a). The binary variables t←s,s′ ∈ {0, 1} ⊆ Z are used to indicate the existence of

an edge in the MCS between states s and s′ ∈ Sprobl(a)
M where (s, α) ∈ Act

probl(a)
M for an action α ∈ Act . We

thus propose the following MILP formulation:

minimize − 1

2
psinit +

∑
s∈S

xs (8a)

such that

psinit > λ (8b)

∀s ∈ T : ps = xs (8c)

∀s ∈ S \ T : ps ≤ xs (8d)

∀s ∈ S \ T :
∑
α∈Act

σs,α = xs (8e)

∀s ∈ S \ T ∀α ∈ Act : ps ≤ (1− σs,α) +
∑

s′∈succM(s,α)

P (s, α, s′) · ps′ (8f)

∀(s, α) ∈ Act
probl(a)
M ∀s′ ∈ succM(s, α) : t←s,s′ ≤ xs′ (8g)

∀(s, α) ∈ Act
probl(a)
M ∀s′ ∈ succM(s, α) : r←s < r←s′ + (1− t←s,s′) (8h)

∀(s, α) ∈ Act
probl(a)
M : (1− σs,α) +

∑
s′∈succM(s,α)

t←s,s′ ≥ xs . (8i)

The constraints (8a)–(8d) are the same as for DTMCs. Eq. (8e) ensures that in each selected non-target
state a single action is selected by the scheduler. Line (8f) corresponds to line (2d) of the MILP for DTMCs.
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The only change is that if the action α, to which the constraint belongs, is not selected by the scheduler, i. e.,
if σs,α = 0, then the constraint is automatically satisfied due to the term (1 − σs,α). The following three
constraints (8g)–(8i) ensure for each problematic state the backward reachability from an unproblematic
state.

The number of real variables of the MILP is in O(#S
M), the number of integer variables and the number

of non-zero coefficients in O(#S
M + #T

M).
The following theorem formalizes the one-to-one correspondence between the satisfying assignments of the

MILP formulation and those MCSs in which the probability to satisfy the considered property is maximal
under all MCSs. The proof is provided in Appendix F.

Theorem 8 The MILP formulation (8a)–(8i) is sound and complete.

In addition, our MILP formulation yields a memoryless deterministic scheduler σ such that the reachability
probability of ♦ a in the DTMC induced by σ on the MCS exceeds λ. The optimizations for DTMCs in
Section 3.3 can, with the exception of the SCC cuts, be directly transferred to MDPs. For the sake of brevity,
we omit the details here.

Example 4 Consider the MDP M shown in Figure 1(a) with the violated property P≤0.6(♦ a). State s7 is

irrelevant as the only target state s3 is unreachable from s7. States S
probl(a)
M = {s1, s2, s4, s5} are problematic,

as choosing action α in both s2 and s5 makes s3 unreachable from these states, see Example 3. The problematic

actions are Act
probl(a)
M = {(s1, α), (s2, α), (s4, α), (s5, α)}. State s6 is not problematic as the irrelevant state

s7 is reached with probability > 0 under all schedulers.
For the MILP formulation we introduce the following variables: decision variables xs1 , . . . , xs6 ∈ {0, 1} ⊆ Z,

probability variables ps1 , . . . , ps6 ∈ [0, 1] ⊆ R, scheduler variables σs1,α, σs2,α, σs2,β, σs4,α, σs5,α, σs5,β,
σs6,α ∈ {0, 1} ⊆ Z. For the reachability constraints (8g)–(8i) we need the variables r←s1 , r

←
s2 , r

←
s4 , r

←
s5 ∈ [0, 1] ⊆ R

and t←s1,s2 , t
←
s1,s4 , t

←
s2,s5 , t

←
s4,s5 , t

←
s5,s2 ∈ [0, 1] ⊆ R.

minimize − 1
2ps1 + xs1 + xs2 + xs3 + xs4 + xs5 + xs6

such that
ps1 > 0.6
ps3 = xs3
ps1 ≤ xs3 σs1,α = xs1 ps1 ≤ (1− σs1,α) + 0.7ps2 + 0.3ps4
ps2 ≤ xs2 σs1,α + σs1,β = xs2 ps2 ≤ (1− σs2,α) + ps5

ps2 ≤ (1− σs2,β) + 0.7p3 + 0.3p2

ps4 ≤ xs4 σs4,α = xs4 ps4 ≤ (1− σs4,α) + ps5
ps5 ≤ xs5 σs5,α + σs5,β = xs5 ps5 ≤ (1− σs5,α) + ps2

ps5 ≤ (1− σs5,β) + 0.5ps3 + 0.5ps6
ps6 ≤ xs6 σs6,α = xs6 ps6 ≤ (1− σs6,α) + 0.5ps4︸ ︷︷ ︸
(8b)–(8d)

︸ ︷︷ ︸
(8e)

︸ ︷︷ ︸
(8f)

t←s1,s2 ≤ xs2 r←s1 < r←s2 + (1− t←s1,s2) (1− σs1,α) + t←s1,s2 + t←s1,s4 ≥ xs1
t←s1,s4 ≤ xs4 r←s1 < r←s4 + (1− t←s1,s4)
t←s2,s5 ≤ xs5 r←s2 < r←s5 + (1− t←s2,s5) (1− σs2,α) + t←s2,s5 ≥ xs2
t←s4,s5 ≤ xs5 r←s4 < r←s5 + (1− t←s4,s5) (1− σs4,α) + t←s4,s5 ≥ xs4
t←s5,s2 ≤ xs2 r←s5 < r←s2 + (1− t←s5,s2) (1− σs5,α) + t←s5,s2 ≥ xs2︸ ︷︷ ︸

(8g)

︸ ︷︷ ︸
(8h)

︸ ︷︷ ︸
(8i)
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Solving this MILP yields the following optimal variable assignment:

Variable xs1 ps1 xs2 ps2 xs3 ps3 xs4 ps4 xs5 ps5 xs6 ps6
Value 1 0.7 1 1 1 1 0 0 0 0 0 0

Variable σs1,α σs2,α σs2,β σs4,α σs5,α σs5,β σs6,α
Value 1 0 1 0 0 0 0

Variable t←s1,s2 t←s1,s4 t←s2,s5 t←s4,s5 t←s5,s2 r←s1 r←s2 r←s4 r←s5
Value 1 0 0 0 0 0 1 0 0

The resulting subsystem that corresponds to this variable assignment contains the states {s1, s2, s3}. It is
shown in Figure 1(c).

4.2. ω-Regular Properties

Determining MCSs for ω-regular properties of MDPs is more involved than for DTMCs, as we need to know
the set of accepting end components of the product MDP. Their number can be exponential in the size of
the MDP. Instead of computing them in a pre-processing step (as we did for BSCCs in the DTMC setting),
we pursue a different way: We encode the state sets that almost surely satisfy the ω-regular property directly
into the MILP and use these state sets as target states.

Let M = (S, sinit,Act , P, L) be an MDP and A = (Q, qinit, 2
AP, δ, F ) a DRA with F =

{
(Ri, Ai)

∣∣ i =

1, . . . , n
}

such that L(A) = L for an ω-regular property L. We assume that M 6|= P≤λ(L) and that M⊗A
has no irrelevant states. To determine the relevant states ofM⊗A, we compute its maximal end components.
This can be done efficiently [53]. States from which a maximal end component containing a state in

⋃n
i=1Ai

is reachable under at least one scheduler, are relevant.7

To simplify notation we use U = S ×Q, u = (s, q), and u′ = (s′, q′). We have variables xs ∈ {0, 1} ⊆ Z
for all s ∈ S indicating whether a state of the original MDP is contained in the subsystem and pu ∈ [0, 1] ⊆ R
which stores the probability of satisfying the property within the subsystem. The variables σu,α ∈ {0, 1} ⊆ Z
for u ∈ U and α ∈ Act store the selected scheduler. Please note that, as deterministic memoryless schedulers
on the product-MDP suffice for ω-regular properties, this encoding suffices. The identification of the set of
target states is based on the following lemma, whose proof can be found in Appendix G:

Lemma 1 Let (Ri, Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act a scheduler, and
Mi ⊆ U a set of states with the following properties:

1. ∀u ∈Mi :
∑

u′∈succ(u,σ(u))∩Mi

P ′(u, σ(u), u′) = 1,

2. Mi ∩ (S ×Ri) = ∅, and

3. for each state u ∈Mi there is a path from u to a state in S ×Ai.

Then the probability of satisfying the acceptance condition F in M because of the pair (Ri, Ai) is 1 for all
u ∈Mi.

For each (Ri, Ai) ∈ F and u ∈ U we introduce a characteristic variable mi
u ∈ {0, 1} ⊆ Z where mi

u = 1 iff
state u is contained in set Mi. For satisfying the third condition of Lemma 1, we need to ensure backward
reachability from Ai and use variables tiu,u′ ∈ {0, 1} ⊆ Z for all (u, u′) ∈ EM⊗A and ru ∈ [0, 1] ⊆ R
for all states u ∈ U . Recall that EM⊗A is the set EM⊗A = {(u, u′) ∈ U × U |u′ ∈ succM⊗A(u)}. Let
nu,α = |succM⊗A(u, α)| denote the number of successor states of u under action α.

7Strictly speaking, this condition is not sufficient since end components additionally have to satisfy a condition on the Ri

states to be accepting. However, exactly identifying the relevant states would require to determine all end components, which is
in general computationally infeasible. Therefore we resort to an over-approximation of the relevant states. Since we explicitly
add reachability constraints, this does not affect the correctness (as we will show).
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The MILP for computing a minimal critical subsystem ofM such that P≤λ(L) is violated is shown below.

minimize − 1

2
p(s,q)init +

∑
s∈S

xs (9a)

such that

• selection of at most one action per state:

∀u = (s, q) ∈ U :
∑
α∈Act

σu,α ≤ xs (9b)

• for all i = 1, . . . , n the definition of set Mi (closure w. r. t. succ(u, α) for α ∈ Act):

∀u ∈ U ∀α ∈ Act with
∑
u′∈U

P ′(u, α, u′) < 1 : mi
u ≤ 1− σu,α (9c)

∀u ∈ U ∀α ∈ Act : nu,α · (2−σu,α −mi
u) +

∑
u′∈succM⊗A(u,α)

mi
u′ ≥ nu,α (9d)

∀u ∈ S ×Ri : mi
u = 0 (9e)

• for all i = 1, . . . , n backward reachability of S ×Ai within Mi:

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : tiu,u′ ≤ mi
u′ + (1− σu,α) (9f)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : riu < riu′ + (1− tiu,u′) + (1− σu,α) (9g)

∀u ∈ S × (Q \Ai) ∀α ∈ Act : (1− σu,α) +
∑

u′∈succM⊗A(u,α)

tiu,u′ ≥ mi
u (9h)

• probability computation:

p(s,q)init > λ (9i)

∀i = 1, . . . , n ∀u ∈ U : pu ≥ mi
u (9j)

∀u ∈ U : pu ≤
∑
α∈Act

σu,α (9k)

∀u ∈ U ∀α ∈ Act : pu ≤ (1− σu,α) +

n∑
i=1

mi
u +

∑
u′∈succM⊗A(u,α)

P (u, α, u′) · pu′ (9l)

• backward reachability of M =
⋃n
i=1Mi within the subsystem:

∀u = (s, q) ∈ U ∀α ∈ Act ∀u′ = (s′, q′) ∈ succM⊗A
(
u, α

)
: tMu,u′ ≤ xs′ + (1− σu,α) (9m)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : rMu < rMu′ + (1− tMu,u′) + (1− σu,α) (9n)

∀u = (s, q) ∈ U ∀α ∈ Act : (1−σu,α) +

n∑
i=1

mi
u +

∑
u′∈succM⊗A

(
u,α
)tMu,u′ ≥ xs . (9o)

The target function is defined as before. Constraint (9b) defines a valid scheduler by ensuring that for
each selected state at most one action is chosen. The reason for selecting at most one action is the following:
If a subsystem S′ ⊆ S of the MDP is selected, we select the subsystem S′ ×Q of the product automaton.
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By this it is not guaranteed that in the DTMC induced by the scheduler of the product automaton from
each state (s, q) an accepting BSCC is reachable. Since we later require that from each state in S′ ×Q an
accepting BSCC is reachable under the selected action, we solve this problem by allowing not to select an
action. If no action is chosen, (9k) ensures that the probability pu is zero.

The next step is to define the sets Mi (i = 1, . . . , n) according to Lemma 1. The first condition, i. e., that
for each u ∈Mi the probability of staying in Mi is 1, is ensured in two steps: First we forbid in (9c) that a
state u is in Mi if under the selected action the sum of the probabilities of the out-going edges is less than
one. Note that for each state in Mi at least one out-going action is selected, since the probability of states
without selected action is zero, but (9j) sets the probability of Mi-states to one.

Second we ensure in (9d) the closure of Mi under successors. If state u belongs to Mi (i. e., mi
u = 1) and

action α is chosen by the scheduler (i. e., σu,α = 1), all successors of u w. r. t. action α have to belong to
Mi. The term nu,α(2− σu,α −mi

u) is zero iff α is selected in u and u ∈Mi. In this case the sum over the
corresponding variables mi

u′ of the successors u′ of u has to be at least the number of the successors of u.
Eq. (9e) ensures that Mi does not contain an Ri state (second condition of Lemma 1).
In order to ensure backward reachability from S ×Ai within Mi, we use the constraints known from the

DTMC optimizations and MDP reachability properties (cf. Section 3.3.3). The corresponding constraints are
given in (9f)–(9h). These constraints are defined separately for all sets (Ri, Ai) ∈ F . They ensure that, under
the chosen scheduler, from each state in Mi an Ai-state is reachable, as requested in the third condition of
Lemma 1. They are satisfied for a set Mi that contains accepting BSCCs of the induced DTMC, which are
reachable from all states in Mi. If no element of S ×Ai is contained, no partial order on the states can be
defined by (9f)–(9h) (see also Appendix C).

The remaining constraints are analogous to the MILP for reachability properties: Constraint (9i) ensures
criticality of the subsystem. Constraints (9j), (9k), and (9b) force the states of the sets Mi (i. e., target
states) to be included in the subsystem and to have probability 1:

∀u = (s, q) ∈ U : mi
u

(9j)

≤ pu
(9k)

≤
∑
α∈Act

σu,α
(9b)

≤ xs .

Constraints (9k) and (9b) assign probability 0 to all states not in the subsystem and (9l) computes the
probability of reaching a state in Mi for all remaining states. Since we do not know the target states in
advance, we have to ensure that (9l) is also satisfied for target states. This is the case due to the expression∑n
i=1m

i
u which is at least 1 if u is a target state.

The last three constraints are again backward reachability constraints, analogous to the reachability
constraints for problematic states in the case of reachability properties. They ensure that from each state
with a selected action in the subsystem an Mi state is reachable with non-zero probability.

The following theorem states that the solutions of the MILP formulation (9a)–(9o) encode MCSs and vice
versa, each MCS with maximal probability to satisfy the property under all MCSs is encoded by a solution.
The proof is given in Appendix G.

Theorem 9 The MILP formulation (9a)–(9o) is sound and complete.

A proof of this theorem can be found in Appendix G.
The number of integer variables in the MILP, its number of constraints, and the number of non-zero

coefficients are in O(n · (#S
M⊗A + #T

M⊗A)), while the number of real variables is in O(n ·#S
M⊗A), where n

is the number of acceptance pairs of A.
A remark on the result of the MCS computation is in order. Whereas for reachability properties, the

result of our MILP formulation is a DTMC (in fact, an MDP plus a memoryless deterministic scheduler
on this MDP) this is not the case for ω-regular properties. Instead our MILP formulation yields a DTMC
as substructure of the product M⊗A. Projecting this onto the MDP M however yields (in general) an
MDP, as e. g., states of the form (s, q) and (s, q′) are projected onto the state s in M but may have different
outgoing distributions.
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5. Experimental Evaluation

5.1. Implementation and Experimental Setup

To demonstrate the feasibility of our approaches, we implemented the algorithms described in the previous
sections using C++ in a tool named LTLSubsys. It supports the generation of MCSs for DTMCs and MDPs
with LTL properties [54]. LTL is a popular specification language for linear-time properties, which form a
subclass of ω-regular properties, including reachability. We use the symbols � for “globally”, ♦ for “finally”,
and © for “next”. E. g., �♦ϕ holds if infinitely often ϕ holds at some time point in the future.

We use Gurobi version 5.6 [50] as the MILP solver, and Microsoft Z3 4.0 [46] as the SMT solver for linear
real arithmetic. We started Gurobi with a single thread, since the tools we compare LTLSubsys with do
not support multi-threading. For all other options we used the default settings. To generate DRAs from
LTL properties, we use the tool ltl2dstar [55] in version 0.5.1 which first calls ltl2ba [56] (version 1.1) to
generate nondeterministic Büchi automata and afterward turns them into deterministic Rabin automata.

We compare the results of our tool LTLSubsys with the tools COMICS [31] and DiPro [30] that apply
(different) heuristics to obtain small critical subsystems. To the best of our knowledge these are the only
available tools for counterexample generation in form of a critical subsystem.

For COMICS we use both its global and its local search algorithm on the non-abstracted DTMC. We did
not make use of its graphical interface, but used the provided command line tool. COMICS supports only
reachability properties of DTMCs; MDPs and ω-regular properties are not supported yet.

DiPro comes with several different search methods: eXtended Best First search (XBF) [57], Eppstein’s
k shortest paths algorithm [58], K* [59], and K* with X improvement (XK*) [60]. It is possible to extend
DiPro with user-defined heuristics to guide the search, which can lead to considerable speed-ups. Such a
heuristic, however, has to exploit the user’s knowledge about the structure of the model under consideration.
Since all other approaches work for arbitrary models without knowing their internals, we did not develop
any heuristics for DiPro to make the comparison fair. DiPro is also restricted to reachability properties,
but besides DTMCs it can handle MDPs using the Eppstein, K*, and XK* engines; XBF does not support
MDPs.

5.2. Benchmarks

As benchmark models we use the following randomized protocols and algorithms, which are all publicly
available from the PRISM benchmark repository [19] at http://www.prismmodelchecker.org/casestudies.
While DiPro can read PRISM models directly, we used the export function of PRISM to convert them into
MRMC’s input format [17], which is essentially a list of states and transitions. MRMC’s input format can be read
both by LTLSubsys and COMICS.

The following benchmarks are DTMCs:

• sleader-N -K is a synchronous leader election protocol [61]. Its purpose is to identify a leader node
in a symmetric synchronous network ring of N participants. Each node randomly chooses a value
from {1, . . . ,K} and sends its drawn number around the ring. The node with the highest unique
number becomes the leader. If there is no unique number, a new round starts. We check if a leader is
finally elected with a large enough probability (Property 1) and if the probability to need at least three
election rounds is small enough (Property 2).

– Property 1: P≤λ1
(♦ elected)

– Property 2: P≤λ2(start ∧©♦(start ∧©♦(start ∧©♦ elected)))

• crowds-N -R is a model of the crowds protocol [62], which provides a mechanism for anonymous surfing
on the Internet. The idea is that each node sends a packet with probability p = 0.8 directly to the
target node, but with probability 1 − p it is sent to a randomly chosen node in the crowd. A fixed
percentage of the members are corrupt and try to identify the sender of a packet. The parameter
R denotes the number of rounds in which packets are sent, N is the number of non-corrupt crowd
members. We check the property that the sender gets identified by a corrupt crowds member once
(Property 1) and infinitely often (Property 2), respectively.
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– Property 1: P≤λ1(♦ identified) (identified once)
– Property 2: P≤λ2

(� ♦ identified) (identified infinitely often)

• nand-N -K: This benchmark is about constructing reliable computation from unreliable components [63,
64]. It uses a redundancy technique called NAND multiplexing. The model operates in stages, each
of which contains N NAND gates. K is the number of stages. We check the property that never a
reliable state is reached.

Property: P≤λ1(�¬reliable)

• brp-N -K is the bounded retransmission protocol [65, 66]. A file, which consists of N chunks, has to
be transferred over an unreliable network. On the way to the target node, chunks might get lost.
Therefore each chunk is transferred up to K times until the target node has received it properly and
the sender node has obtained an acknowledgment thereof. We check the property that the sender is
unsure whether the target node has successfully received the file.

– Property: P≤λ1
(♦ sender is unsure)

We additionally used the following MDP benchmarks:

• aleader-N is the asynchronous leader election protocol [61]. Here, a leader is chosen from an asyn-
chronous ring of N nodes in a network. Every node sends a number 0 or 1, each with probability 0.5, to
the next node in the ring. If a node chooses 0 while his predecessor has sent 1, the node is deactivated.
When only one node remains active, it becomes the leader. As the ring is not synchronized, the message
sending has to be regulated by a scheduler.

– Property: P≤λ1
(♦ one node is elected as leader)

• consensus-N -K is the randomized consensus shared coin protocol [67] that establishes agreement
between N asynchronous processes. The processes access a global counter which is increased or
decreased in dependence of a coin flipping which is performed when a process enters the protocol.
Dependent on the current counter value and the values of N and K the process decides whether it
agrees or not. The protocol proceeds in rounds as long as no agreement is achieved. As different
processes may try to access the protocol at the same time, it is nondeterministically decided which
process may flip a coin.

– Property: P≤λ1
(♦ all processes have flipped their coin and made their decision)

• csma-N -K is a PRISM-model of the IEEE 802.3 CSMA/CD communication protocol, which is described
in [68]. The protocol aims at the minimization of data collisions in a network of N processes with one
single channel. If a process tries to send data while the channel is busy, the process waits a number of
time slots, which is determined by K.

– Property: P≤λ1
(♦ all processes have delivered their message)

Table 1 provides information about the used benchmarks. It contains besides the name of the instance its
number of states (“|S|”) and transitions (“|E|”). For the considered properties we give the actual probability
(“Pr(Li)”) and the imposed upper bound (“λi”). The probabilities were determined using PRISM version
4.0.3 [15], which took only a few seconds per instance.

All experiments were carried out on a Quad-Core Intel Xeon E5-2450 Processor running at 2.1 GHz clock
frequency with 32 GB of main memory under Kubuntu 12.04 Linux running in 64 bit mode. Unless otherwise
stated, a time limit of 3 600 seconds and a memory limit of 16 GB were set.

5.3. Evaluation

Table 2 lists the benchmark results, obtained using LTLSubsys, for the series of instances of the DTMC and
MDP benchmarks described above. The first block of columns contains the name of the benchmark, the
considered property and the number of states in the MCS. In case LTLSubsys was not able to determine the
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Property L1 Property L2

Model |S| |E| Pr(L1) λ1 Pr(L2) λ2
D
T
M
C
s

brp32-2 1 349 1 731 2.61 · 10−5 1.0 · 10−5

brp512-2 21 509 27 651 2.61 · 10−5 1.0 · 10−5

crowds5-4 3 515 6 035 0.235 0.1 0.235 0.1
crowds5-6 18 817 32 677 0.427 0.1 0.427 0.1
crowds5-8 68 740 120 220 0.591 0.1 0.591 0.1
crowds12-6 829 669 2 166 277 0.332 0.1 0.332 0.1
nand5-2 1 728 2 505 0.389 0.2
nand5-3 2 526 3 639 0.384 0.2
nand5-4 3 324 4 773 0.386 0.2
nand25-2 347 828 541 775 0.435 0.1
sleader4-4 782 1 037 1.0 0.5 0.02441 0.01
sleader4-6 3 902 5 197 1.0 0.5 0.005487 0.001
sleader4-8 12 302 16 397 1.0 0.5 0.001846 0.0005
sleader8-4 458 847 524 382 1.0 0.5 0.057478 0.01

M
D
P
s

aleader3 364 573 1.0 0.5
aleader4 3 172 6 252 1.0 0.5
consensus2-2 272 400 1.0 0.1
consensus2-4 528 784 1.0 0.1
csma2-2 1 038 1 054 1.0 0.1
csma2-4 7 958 7 988 1.0 0.1
csma2-6 66 718 66 788 1.0 0.1

Table 1: Model statistics of the benchmarks

optimal subsystem (or prove optimality) due to resource restrictions (entries marked with ∗), we give the size
of the smallest subsystem LTLSubsys was able to find.

The next block (“Without cuts”) shows the results obtained by LTLSubsys using the MILP formulations
(2a)–(2e) for reachability properties of DTMCs, (7a)–(7f) for other ω-regular properties of DTMCs, and
(8a)–(8i) for reachability properties of MDPs without adding any of the redundant constraints described in
Section 3.3. We give the number of variables (“|Vars|”) and constraints (“|Constr|”) in the MILP formulation,
the computation time (“Time”) in seconds and the memory consumption (“Mem.”) in megabytes. The
running times include reading the model from the file, generating the DRA and the product automaton,
and the computation of the subsystem. If the time limit was exceeded, we give instead in parentheses the
computed lower bound on the size of the subsystem. For sleader8-4 with the second property and without
additional constraints, the Simplex algorithm on the LP-relaxation did not terminate within the time bound;
therefore we cannot give a lower bound on the optimal solution in this case.

For the last block of columns (“Best cut combination”) we ran LTLSubsys with all possible combinations
of redundant constraints and report one which lead to the smallest computation time or—in case none
terminated within one hour—one with the best lower bound on the size of the MCS. For the reported
combination of constraints, the first four columns show which optimizations were enabled: forward cuts
(“F”), backward cuts (“B”), SCC cuts (“S”), and reachability constraints (“R”). Note that for MDPs we do
not have SCC cuts. For the SCC cuts, we specify whether input cuts (“in”), output cuts (“out”) or both
(“both”) are used. For reachability constraints, either forward (“fwd”), backward (“bwd”) constraints or both
(“both”) can be used. Additionally we report, as before, the computation time and memory consumption.

Our optimizations, presented for DTMCs in Section 3.3, have a great impact on the solving times.
Especially the forward and backward constraints improved the feasibility of our approaches for all benchmarks.
However, it was not always predictable which cut improved the running-times on individual benchmarks,
e. g., the complete reachability constraints sometimes slowed down the computations due to the high amount
of variables while they highly enhanced the running times for both leader election protocols. Consider the
sleader4-4 benchmark and the second property, where the computation took without optimizations more
than 500 seconds while the MILP together with forward constraints and backward reachability constraints
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Without cuts Best cut combination
Model ϕ |Smin| |Vars| |Constr| Time Mem. F B S R Time Mem.

D
T
M
C
s

brp32-2 1 212 1 992 1 988 0.09 8 × × × × 0.09 8
brp512-2 1 3 263 31 752 31 748 18.85 70 × × × × 18.85 70
crowds5-4 1 83 2 161 2 119 5.25 17

√ √
× × 5.10 21

crowds5-4 2 188 2 811 2 769 11.80 24
√ √

out × 8.82 31
crowds5-6 1 83 14 436 14 184 190.50 129 ×

√
× × 42.99 99

crowds5-6 2 415 21 604 21 352 554.33 134
√ √

in × 230.52 151
crowds5-8 1 83 56 156 55 232 310.39 347

√ √
× × 178.32 326

crowds5-8 2 1 037 ∗ 94 208 93 284 TO (828) 850 × × out × TO (830) 1 016
crowds12-6 1 270 ∗ 395 488 391 848 TO (223) 3 944 ×

√
× × TO (249) 3 047

crowds12-6 2 1 995 ∗ 509 098 505 458 TO (1 710) 2 256
√ √

× × TO (1 762) 3 013
nand5-2 1 394 3 457 3 447 19.50 21 × × × × 19.50 21
nand5-3 1 614 5 053 5 043 50.01 36 × × in × 48.22 36
nand5-4 1 854 6 649 6 639 299.62 101

√ √
in × 268.40 57

nand25-2 1 344 829 ∗ 695 567 695 521 TO (2 661) 2 531
√ √

× × TO (2 743) 2 471
sleader4-4 1 392 1 565 1 563 0.33 10 ×

√
× bwd 0.09 10

sleader4-4 2 394 1 809 2 051 506.90 53
√
× × bwd 2.88 18

sleader4-6 1 1 950 7 805 7 803 2.24 23 ×
√

out bwd 0.67 31
sleader4-6 2 949 8 385 8 963 119.75 100

√ √
× bwd 14.22 40

sleader4-8 1 6 149 24 605 24 603 13.00 156 ×
√

both bwd 3.62 83
sleader4-8 2 3 712 25 665 26 723 1 100.20 161

√ √
both bwd 264.44 157

sleader8-4 1 229 389 917 695 917 693 1 021.33 1 018 × × both × 508.50 1 010
sleader8-4 2 116 113 ∗ 1 137 667 1 357 637 TO 3 616

√ √
× × TO (8 086) 2 808

M
D
P
s

aleader3 1 66 ∗ 2 677 1 295 TO (18) 1 702
√
× × TO (27) 874

aleader4 1 215 ∗ 26 076 12 588 TO (10) 2 454 × × × TO (10) 2 454
consensus2-2 1 15 1 964 928 TO (9) 3 529

√ √
× 2 167.19 217

consensus2-4 1 35 ∗ 3 852 1 824 TO (8) 4 732
√ √

× TO (12) 1 848
csma2-2 1 195 6 482 3 124 TO (184) 1 017

√
× fwd 638.52 161

csma2-4 1 410 50 400 23 890 TO (408) 1 154
√ √

both 1 342.57 234
csma2-6 1 415 426 678 200 170 2 364.10 910 × × × 2 364.10 910

Table 2: Benchmark results of LTLSubsys for DTMCs and MDPs. All times are measured in seconds, memory consumption in
MB. The time limit was set to 3 600 seconds, the memory limit to 16 GB.

XBF Eppstein K∗ XK∗

Model ϕ |Smin| Time Mem. |Smin| Time Mem. |Smin| Time Mem. |Smin| Time Mem.

D
T
M
C
s

brp32-2 1 989 3.05 148 218 1.02 57 218 1.09 59 235 1.94 61
brp512-2 1 15875 89.28 2384 TO TO TO
crowds5-4 1 117 1.29 38 670 8.0 300 670 9.06 323 154 3.31 79
crowds5-6 1 117 1.91 38 670 22.27 805 670 10.26 373 154 3.42 79
crowds5-8 1 117 1.27 38 670 90.05 2253 670 10.02 373 154 3.55 79
crowds12-6 1 1260 10.42 1011 TO TO 726 52.63 1190
sleader4-4 1 563 2.37 84 400 1.11 40 400 1.1 40 472 3.56 46
sleader4-6 1 3541 10.3 428 1957 4.85 200 1957 4.91 200 2101 12.43 222
sleader4-8 1 6221 27.85 1305 6160 23.92 629 6160 24.48 629 7342 48.02 719
sleader8-4 1 TO TO TO TO

M
D
P
s

aleader3 1 107 8.98 11855 107 10.19 11856 107 10.27 11856
aleader4 1 MO MO MO
consensus2-2 1 25 0.6 17 25 0.65 15 25 0.65 15
consensus2-4 1 MO MO MO
csma2-2 1 611 2.05 2257 614 2.08 2311 614 2.09 2311
csma2-4 1 788 8.36 2762 788 5.84 2611 788 5.82 2611
csma2-6 1 797 70.39 4980 518 4.35 3103 518 4.36 3103

Table 3: Benchmark results of DiPro for DTMCs and MDPs. All times are measured in seconds, memory consumption in MB.
The time limit was set to 3 600 seconds, the memory limit to 16 GB. Note that the XBF algorithm does not support MDPs.
DiPro only supports reachability properties. Therefore the NAND instances are missing in the table.
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global search local search
Model ϕ |Smin| Time Mem. |Smin| Time Mem.

D
T
M
C
s

brp32-2 1 219 0.01 2.31 828 0.18 10.82
brp512-2 1 9 140 0.74 136.67 15 713 138.26 3251.87
crowds5-4 1 143 0.01 3.86 89 0.06 4.09
crowds5-6 1 143 0.04 16.34 89 0.63 15.83
crowds5-8 1 143 0.19 55.42 89 2.55 53.09
crowds12-6 1 591 4.21 759.00 TO
sleader4-4 1 398 0.01 1.66 462 0.05 4.82
sleader4-6 1 1 960 0.13 5.58 1 962 1.45 58.42
sleader4-8 1 6 160 0.26 15.41 6 426 13.68 564.81
sleader8-4 1 229 438 385.56 510.39 TO

Table 4: Benchmark results of COMICS for DTMCs. All times are measured in seconds, memory consumption in MB. The time
limit was set to 3 600 seconds, the memory limit to 16 GB. Note that COMICS supports neither MDPs nor ω-regular properties
besides reachability properties. Therefore the NAND instances are missing in the table.
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Figure 2: Comparison of the sizes of the computed systems and the computation times of the different tools. The time limit was
set to 1 hour, the memory limit to 16 GB.
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was solved to optimality within 2.88 seconds.

We compare the MILP formulation for DTMCs (Section 3.2) against the SMT formulation (Section 3.1).
However, Z3 runs into a timeout for all instances in Table 2. We therefore applied Z3 to the smaller instance
crowds3-3 with λ = 0.1. It consists of 396 states and has an MCS with 39 states. Z3 needed for this small
instance 8 526.30 seconds, while Gurobi solved the MILP formulation within 0.09 seconds.

Tables 3 and 4 list the results of DiPro and COMICS, respectively, on our model instances. For each of the
four algorithms that are available in DiPro we give the size of the computed subsystem (“|Smin|”), the
computation time in seconds (“Time”) and the memory consumption in megabytes (“Mem.”). For COMICS
we give the same data both for local and for global search.

Regarding the sizes of the computed subsystems we can observe that none of the heuristic tools was
able to find an MCS. No heuristic algorithm dominates the others w. r. t. the size of the subsystem. COMICS’
global search seems to be the fastest, but other methods sometimes yield smaller subsystems.

In some cases the differences in size to the MCS are considerable, cf. crowds12-6, for which DiPro’s XBF
algorithm returned 1 260 states, while the MCS contains at most 270 states. For brp512-2, both local search
of COMICS and DiPro’s XBF algorithm returns subsystems with more than 15 000 states, whereas the MCS
consists of only 3 263 states.

The running time of LTLSubsys is often significantly larger than the times of the heuristic tools. However,
LTLSubsys solves the optimization problem exactly, while COMICS and DiPro apply heuristics without any
guarantees on the solution quality. Therefore LTLSubsys is only able to solve smaller instances of a few
thousand states to optimality. In many cases in which the computation has to be terminated prematurely,
LTLSubsys returns a subsystem that is much smaller than the heuristically computed subsystems by COMICS

and DiPro. State-of-the-art MILP solvers apply very sophisticated heuristics to find good solutions quickly.
Additionally a lower bound on the value of the best solution is obtained from an MILP solver. This allows to
judge how far the found solution is at most from the optimum. For some instances, the gap between the best
solution and the lower bound is fairly small—see, for example, crowds12-6 (property 2) with a solution of
1 995 states and a lower bound of 1 710 states. In other cases, the gap is much larger, e. g., for aleader4 with
215 compared to 10.

Figure 2 provides a direct comparison of the different algorithms on all considered instances with
reachability properties. The upper diagram shows the sizes of the different computed subsystems divided
by the size of the MCS computed by LTLSubsys. For the sake of readability, we abstain from showing the
results of DiPro with Eppstein’s k shortest paths algorithm since it always performed worse than DiPro with
the K* algorithm. One the one hand, most algorithms yield subsystems whose size is smaller than twice the
size of the MCS. On the other hand, we can observe that some of the subsystems are up to eight times as
large as the MCS.

The lower diagram shows the computation times. If an experiment was finished within the time limit,
but took more than 100 seconds, we give the running time above the diagram. With a few exceptions (e. g.,
brp512-2), the heuristic approaches are faster than LTLSubsys at the price of larger subsystems.

In Figure 3 we study the evolution of the sizes of computed critical subsystems and the computation times,
depending on the value of λ. We computed a critical subsystem of crowds5-6 for λ ∈ [0, 0.42] with each of
the three tools. The left graphic shows the sizes of the subsystems, the right one the computation times. We
can observe that the gap between the heuristically computed and the minimal subsystems increases with
increasing λ. The sizes of the subsystems computed by the various heuristic approaches are similar, and
no clear winner can be identified. On crowds5-6, the fastest approach is the local search of COMICS, closely
followed by the XBF algorithm implemented in DiPro. This trend can, however, not be generalized to other
benchmark models. DiPro using the XK* algorithm fails for values λ ≥ 0.35 with an out-of-memory error
after about three hours of computation. We observed the same for COMICS for λ ≥ 0.33 when using global
search. Since all heuristic tools increase the subsystem until it becomes critical, no result is returned if the
computation is aborted prematurely. LTLSubsys runs into a timeout for most values of λ ≥ 0.23. In this
case the best found solution is shown.
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Figure 3: Size of the computed subsystem of crowds5-6 and its computation time for different values of λ, comparing COMICS

and DiPro with LTLSubsys. The time limit was set to 5 hours. DiPro with the XK* algorithm failed on λ ≥ 0.35 due to the
memory limit. The same holds for COMICS using global search for λ ≥ 0.33.

In principle, the heuristic tools and LTLSubsys can also be combined: One can first compute a small
critical subsystem using COMICS or DiPro and feed its solution into the MILP solver. If a good heuristic
solution is available early during the search for an optimal solution it enables the solver to prune branches of
the search space which cannot contain a better solution. This can speed up the computation in some cases.

6. Conclusion

In this paper we presented methods for the computation of optimal counterexamples in the form of minimal
critical subsystems for DTMCs and MDPs. Our algorithms are based on mixed integer linear programming.
We presented the MILP formulation, proved its correctness, and suggested several optimizations to speed
up the MILP solver. Contrary to available tools, our methods are not restricted to reachability properties
but can also handle arbitrary ω-regular properties. Our experiments with a prototype implementation have
shown that in most cases they yield (much) smaller subsystems than the available heuristic tools, in some
cases even up to two orders of magnitude. Even in case the exact minimization does not terminate within
the given time limit, our methods yield very good approximative solutions together with a lower bound on
the size of the MCS. This allows to judge the quality of the approximation. None of the other tools is able to
give such information or the actual proof of minimality.

As future work we will investigate the complexity of MCS for reachability properties of DTMCs. For
MDPs it has been proven to be NP-complete, but for DTMCs such a result is missing. Furthermore we will
develop more optimizations, in particular for MDPs, to speed up the computation. As most benchmarks are
given as compositional models, we want to extend our approaches such that optimal counterexamples on
the basis of the single components are computed, in contrast to the monolithic composed system. We will
investigate the extension of our approaches to further models whose model checking algorithms are based on
the solution of linear equation systems.
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Appendix A. SMT-Formulation for Reachability Properties of DTMCs

Let Var be the set of variables of an SMT or MILP problem formulation as defined in Sections 3 and 4.
Each variable v ∈ Var has a domain dom(v), which is either dom(v) = [0, 1] ⊆ R for real-valued variables
or dom(v) = {0, 1} ⊆ Z for integer-valued variables. A variable assignment is a function ν : Var→ R such
that ν(v) ∈ dom(v) for all v ∈ Var. A constraint is satisfied by an assignment ν, if replacing each variable
v ∈ Var by ν(v) yields a tautology.

In the whole appendix, let AP be a set of atomic propositions over which the labelings of all considered
DTMCs and MDPs are defined, and D = (S, sinit, P, L) be a DTMC. When we consider reachability properties
P≤λ(♦ a), let furthermore a ∈ AP and assume that all BSCCs of D contain at least one state labeled with
a, and T =

{
s ∈ S

∣∣ a ∈ L(s)
}

. (Note that if a DTMC has only states relevant for a then all of its BSCCs
contain a-labeled states.) For a state set S′ ⊆ S with sinit ∈ S′ we use DS′ = (S′, sinit, P

′, L′) to denote the
DTMC with P ′(s, s′) = P (s, s′) and L′(s) = L(s) for all s, s′ ∈ S′.

Lemma 2 Let S′ ⊆ S with sinit ∈ S′. Then the linear equation system

∀s ∈ S′ \ T : ps =
∑

s′∈S′\T

P (s, s′) · ps′ +
∑
s′∈T

P (s, s′) (A.1a)

has a unique satisfying assignment mapping the probability PrsDS′ (♦ a) to each variable ps.

Proof. First we observe that the assignment ν : Var → R that maps to each variable ps the probability
ν(ps) = PrsD(♦ a) to reach T from s in DS′ is a satisfying assignment [38, Theorem 10.15].

Following the proof idea of [38, Theorem 10.19] we show that this satisfying assignment is unique. Suppose
that there are two different satisfying assignments µ1, µ2 : Var→ R, µ1 6= µ2, and let µ : Var→ R be their
absolute difference, i. e., µ(ps) = |µ1(ps)− µ2(ps)| ≥ 0 for each s ∈ S′.

Since S′ is finite, there exists a state s∗ ∈ S′ \ T such that µ(ps∗) ≥ µ(ps) for all s ∈ S′ \ T . Let s∗ be
such a state. Because P (s∗, s) ≥ 0 for all s ∈ S′ and

∑
s∈S′ P (s∗, s) ≤ 1, by the definition of µ and by the

choice of s∗ the following (in)equations hold:

µ(ps∗) =
∣∣µ1(ps∗)− µ2(ps∗)

∣∣
=
∣∣∣( ∑
s∈S′\T

P (s∗, s) · µ1(ps) +
∑
s∈T

P (s∗, s)
)
−
( ∑
s∈S′\T

P (s∗, s) · µ2(ps) +
∑
s∈T

P (s∗, s)
)∣∣∣

=
∣∣∣ ∑
s∈S′\T

P (s∗, s) · (µ1(ps)− µ2(ps))
∣∣∣

≤
∑

s∈S′\T

P (s∗, s) ·
∣∣µ1(ps)− µ2(ps)

∣∣
=

∑
s∈S′\T

P (s∗, s) · µ(ps)

≤ µ(ps∗) ·
∑

s∈S′\T

P (s∗, s)

≤ µ(ps∗) .

We conclude that
µ(ps∗) =

∑
s∈S′\T

P (s∗, s) · µ(ps) .

Since the inequality of µ1 and µ2 and the maximal property for s∗ imply µ(ps∗) > 0, the equations∑
s∈S′\T P (s∗, s) = 1 and µ(ps) = µ(ps∗) must hold for all s ∈ S′ \ T . By induction it follows that∑
s′∈S′\T P (s, s′) = 1 for all states s ∈ S′ \ T which are reachable from s∗ in D.
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Since all BSCCs of D contain target states, this holds also for the restriction of D to S′. Therefore there
is a path s0s1 . . . sn in D starting at s∗ = s0 such that si ∈ S′ for i = 0, . . . , n and either (i) sn ∈ T or
(ii) sn /∈ T and

∑
s′∈S′ P (sn, s

′) < 1. If sn ∈ T then with P (sn−1, sn) > 0 we get
∑
s′∈S′\T P (sn−1, s

′) <∑
s′∈S P (sn−1, s

′) ≤ 1, which is a contradiction. Thus sn /∈ T and
∑
s′∈S′\T P (sn, s

′) ≤
∑
s′∈S′ P (sn, s

′) < 1,
which again leads to a contradiction. Therefore our assumption µ1 6= µ2 was wrong. �

Now we prove the soundness and completeness of the SMT-formulation for reachability properties of
DTMCs:

minimize
∑
s∈S

xs (A.2a)

such that

∀s ∈ T :
(
xs = 0 ∧ ps = 0

)
⊕
(
xs = 1 ∧ ps = 1

)
(A.2b)

∀s ∈ S \ T :
(
xs = 0 ∧ ps = 0

)
⊕
(
xs = 1 ∧ ps =

∑
s′∈succD(s)

P (s, s′) · ps′
)

(A.2c)

psinit
> λ. (A.2d)

Lemma 3 The SMT formulation (A.2a)–(A.2d) is sound.

Proof. We prove that for each satisfying assignment ν of the SMT formulation (A.2a)–(A.2d) the DTMC
DS′ with S′ = {s ∈ S | ν(xs) = 1} is an MCS for D and P≤λ(♦ a) with ν(psinit) = PrsinitDS′ (♦ a).

Let ν be a satisfying assignment for (A.2a)–(A.2d) and S′ = {s ∈ S | ν(xs) = 1}.

1. We show that DS′ is a subsystem of D. From (A.2d) we can conclude ν(psinit) > λ ≥ 0, and therefore by
the satisfaction of (A.2b)–(A.2c) we have that ν(xsinit) = 1, i. e., sinit ∈ S′. The remaining conditions
for DS′ being a subsystem of D hold by the definition of DS′ .

2. We show that DS′ is critical with ν(psinit) = PrsinitDS′ (♦ a). The constraints (A.2b)–(A.2c) assure that (i)

ν(ps) = 0 for all s ∈ S \ S′ and (ii) ν(ps) = 1 for all s ∈ S′ ∩ T . Therefore, due to the satisfaction of
(A.2c), ν is also a satisfying assignment to

∀s ∈ S′ \ T : ps =
∑

s′∈S′\T

P ′(s, s′) · ps′ +
∑

s′∈S′∩T
P ′(s, s′) . (A.3)

Lemma 2 implies that this satisfying assignment is unique, mapping to each variable ps, s ∈ S′, the
probability PrsDS′ (♦ a). From (A.2d) we conclude that ν(psinit) = PrsinitDS′ (♦ a) > λ.

3. It remains to show that DS′ is minimal. Assume the opposite. Then there is some S′′ ⊆ S with
|S′′| < |S′| such that DS′′ is an MCS for D and P≤λ(♦ a). In (A.2a)–(A.2d) we syntactically replace xs
by 1 if s ∈ S′′ and by 0 otherwise. Lemma 2 applied to S′′ implies that the constraint system resulting
from the above substitution has a unique satisfying assignment. However, for this satisfying assignment
the number of positive xs variables is smaller than for ν, which contradicts our assumption that ν is a
satisfying assignment to the optimization problem. �

Lemma 4 The SMT formulation (A.2a)–(A.2d) is complete.

Proof. We prove that for each MCS for D and P≤λ(♦ a) with state set S′ there is a satisfying assignment
ν of the SMT formulation (A.2a)–(A.2d) with S′ = {s ∈ S | ν(xs) = 1} and ν(psinit) = PrsinitDS′ (♦ a).

Assume that D violates the property P≤λ(♦ a), and assume a DTMC with state set S′ that is an MCS for
D and the property P≤λ(♦ a). Then DS′ is also an MCS for D and the property (it has the same state set but
possibly more transitions). We define the assignment ν : Var→ R by (i) ν(xs) = 1 and ν(ps) = PrsDS′ (♦ a)

for s ∈ S′ and (ii) ν(xs) = ν(ps) = 0 otherwise. We show that ν satisfies the SMT constraints (A.2a)–(A.2d).
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1. By syntactically replacing the xs variables by their values under ν, the constraints (A.2b)–(A.2c) reduce
to ps = 0 for each s /∈ S′, ps = 1 for each s ∈ S′ ∩ T and

∀s ∈ S′ \ T : ps =
∑

s′∈S′\T

P (s, s′) · ps′ +
∑

s′∈S′∩T
P (s, s′) . (A.4a)

By Lemma 2, ν is the unique satisfying assignment for this constraint system. That means, ν is a
satisfying assignment to (A.2b)–(A.2c).

2. Since DS′ is critical, ν(psinit
) = Prsinit

DS′ (♦ a) > λ, therefore (A.2d) also holds.

3. If the defined assignment did not minimize the number of states, then there would be another satisfying
assignment that evaluates xs to 1 for a smaller number of states. Due to soundness of the SMT
formulation (Lemma 3), there would exist an MCS smaller than DS′ , which contradicts the minimality
assumption for DS′ . �

Theorem 3 The SMT formulation (A.2a)–(A.2d) is sound and complete.

Proof. The SMT formulation is sound by Lemma 3 and complete by Lemma 4. �

Appendix B. MILP-Formulation for Reachability Properties of DTMCs

In all our MILP encodings we require that the values of the probability variables ps are at most the probability
to go to a direct successor state times the ps value of the successor state. In contrast, the model checking
equations require equality at this place. Enforcing only an upper bound is necessary, as we have to assign
0 to ps if s is not part of the subsystem we want to compute. Therefore, we first show that the satisfying
assignments for the inequalities stay below the actual reachability probabilities.

Lemma 5 Let S′ ⊆ S with sinit ∈ S′. Then for each satisfying assignment ν of the constraint system

∀s ∈ S′ \ T : ps ≤
∑

s′∈S′\T

P (s, s′) · ps′ +
∑

s′∈S′∩T
P (s, s′) (B.1a)

we have that ν(ps) ≤ PrsDS′ (♦ a) for each s ∈ S′ \ T .

Proof. According to Lemma 2, the assignment ν with ν(ps) = PrsDS′ (♦ a) for each s ∈ S′ \ T is the unique

satisfying assignment fulfilling all constraints (B.1a) with equality.
Now we show that for each satisfying assignment µ of (B.1a) we have that µ(ps) ≤ ν(ps) for each

s ∈ S′ \ T . Assume that the converse is true. Then there exists a satisfying assignment µ∗ for (B.1a) such
that µ∗(ps∗) > ν(ps∗) for some s∗ ∈ S′ \ T . Let µ∗ be such an assignment and s∗ such a state, and let
ε = µ∗(ps∗). Then

maximize
∑

s∈S′\T

ps (B.2a)

such that

∀s ∈ S′ \ T : ps ≤
∑

s′∈S′\T

P (s, s′) · ps′ +
∑

s′∈S′∩T
P (s, s′) (B.2b)

ps∗ ≥ ε (B.2c)

has a satisfying assignment, since µ∗ is a satisfying assignment to (B.2b)–(B.2c) and the maximum under
all satisfying assignments exists because the variable domains are all bounded by closed intervals and all
involved constraints are non-strict (linear) inequalities. Let µmax be a satisfying assignment to (B.2a)–(B.2c).
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From (B.2c) we conclude that µmax 6= ν. Since ν satisfies all constraints (B.2b) with equalities and
µmax 6= ν, there exists at least one smax ∈ S′ \ T such that

µmax(psmax
) <

∑
s′∈S′\T

P (smax, s
′) · µmax(ps′) +

∑
s′∈S′∩T

P (smax, s
′) =: d .

Let smax be such a state. We define the assignment µ′max by µ′max(psmax) = d and µ′max(ps) = µmax(ps) for
all other states s ∈ S′ \ (T ∪ {smax}). Note that P (s, s′) ≥ 0 and µ′max(ps) ≥ µmax(ps) for all s, s′ ∈ S′ \ T ,
therefore µ′max also satisfies (B.2b)–(B.2c):

µ′max(psmax
) = d

=
∑
s′∈S′\T P (smax, s

′) · µmax(ps′) +
∑
s′∈S′∩T P (smax, s

′)

≤
∑
s′∈S′\T P (smax, s

′) · µ′max(ps′) +
∑
s′∈S′∩T P (smax, s

′)

∀s ∈ S′ \ (T ∪ {smax}) : µ′max(ps) = µmax(ps)
≤

∑
s′∈S′\T P (s, s′) · µmax(ps′) +

∑
s′∈S′∩T P (s, s′)

≤
∑
s′∈S′\T P (s, s′) · µ′max(ps′) +

∑
s′∈S′∩T P (s, s′)

µ′max(ps∗) ≥ µmax(ps∗)
≥ ε

(
= µ∗(ps∗)

)
.

However, µ′max yields a larger sum over the ps variable values than µmax, which contradicts the fact that
µmax is optimal with respect to (B.2a). That means, our assumption about the existence of µ∗ was wrong,
which proves the statement. �

Now we prove soundness and completeness of the MILP encoding for computing MCSs of D for P≤λ(♦ a):

minimize − 1

2
psinit +

∑
s∈S

xs (B.3a)

such that

∀s ∈ T : ps = xs (B.3b)

∀s ∈ S \ T : ps ≤ xs (B.3c)

∀s ∈ S \ T : ps ≤
∑

s′∈succD(s)

P (s, s′) · ps′ (B.3d)

psinit > λ. (B.3e)

Lemma 6 The MILP formulation (B.3a)–(B.3e) is sound.

Proof. We show that for each satisfying assignment ν of the MILP formulation (B.3a)–(B.3e) the DTMC DS′
with S′ = {s ∈ S | ν(xs) = 1} is an MCS of D for P≤λ(♦ a) with a maximal probability ν(psinit) = PrsinitDS′ (♦ a)

to reach T from the initial state sinit under all MCSs.

Let ν be a satisfying assignment for (B.3a)–(B.3e) and S′ = {s ∈ S | ν(xs) = 1}.

1. We show that DS′ is a subsystem of D. From (B.3e) we conclude 0 ≤ λ < ν(psinit), and therefore by
the satisfaction of (B.3b)–(B.3c) we have that ν(xsinit) = 1, i. e., sinit ∈ S′. The remaining conditions
for DS′ being a subsystem of D hold by the definition of DS′ .

2. We show that ν(psinit
) = Prsinit

DS′ (♦ a). The constraints (B.3b)–(B.3d) assure that (i) ν(ps) = 0 for all

s ∈ S \ S′ and (ii) ν(ps) = 1 for all s ∈ S′ ∩ T . Therefore, due to the satisfaction of (B.3d), ν is a
satisfying assignment to

∀s ∈ S′ \ T : ps ≤
∑

s′∈S′\T

P ′(s, s′) · ps′ +
∑

s′∈S′∩T
P ′(s, s′) . (B.4)
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Lemma 5 implies ν(psinit) ≤ Prsinit

DS′ (♦ a), and Lemma 2 implies that there is also a satisfying assignment

mapping Prsinit

DS′ (♦ a) to psinit
(satisfying the inequations with equalities). Since ν is a satisfying

assignment maximizing psinit
in (B.3a), ν(psinit) = PrsinitDS′ (♦ a) must hold.

3. We show that DS′ is critical. In (2) we have shown that ν(psinit) = PrsinitDS′ (♦ a). Combined with

0 ≤ λ < ν(psinit
) from (1) we get λ < PrsinitDS′ (♦ a).

4. We show that DS′ is minimal. Assume the opposite. Then there is some S′′ ⊆ S with |S′′| < |S′|
such that DS′′ is an MCS for D and the property P≤λ(♦ a). We define the assignment µ : Var → R
by (i) µ(xs) = 1 and µ(ps) = PrsDS′′ (♦ a) for s ∈ S′′ and (ii) µ(xs) = µ(ps) = 0 otherwise. Lemma 2

applied to S′′ implies that µ satisfies (B.3b)–(B.3d) (satisfying all constraints with equality). However,∑
s∈S µ(xs) <

∑
s∈S ν(xs), what contradicts our assumption that ν is optimal with respect to (B.3a).

5. It remains to show that the probability to reach T from sinit in DS′ is maximal under all MCSs. This
proof is analogous to the previous item. Assume the opposite. Then there is some S′′ ⊆ S such that DS′′
is an MCS for D and P≤λ(♦ a) with PrsinitDS′ (♦ a) < PrsinitDS′′ (♦ a). We define µ as above. Again, Lemma 2

for S′′ implies that µ satisfies (B.3b)–(B.3d) (satisfying all constraints with equality). Since DS′ and
DS′′ are both minimal,

∑
s∈S ν(xs) =

∑
s∈S µ(xs). From (2) we know that ν(psinit) = PrsinitDS′ (♦ a), i. e.,

ν(psinit) = PrsinitDS′ (♦ a) < PrsinitDS′′ (♦ a) = µ(psinit) .

Thus − 1
2µ(psinit

) +
∑
s∈S µ(xs) < − 1

2ν(psinit) +
∑
s∈S ν(xs), contradicting the optimality of ν. �

Lemma 7 The MILP formulation (B.3a)–(B.3e) is complete.

Proof. Assume that D violates the property P≤λ(♦ a), and assume a DTMC D′ with state set S′ that
is an MCS for D and P≤λ(♦ a) such that the probability to reach T from sinit in D′ is maximal under
all MCSs. We show that there is a satisfying assignment ν of the MILP formulation (B.3a)–(B.3e) with
S′ = {s ∈ S | ν(xs) = 1} and ν(psinit

) = Prsinit

DS′ (♦ a).

Notice that DS′ has the same state set but possibly more transitions than D′, therefore DS′ is also an
MCS for D and the given property with PrsinitD′ (♦ a) ≤ PrsinitDS′ (♦ a). We define the assignment ν : Var→ R
by (i) ν(xs) = 1 and ν(ps) = PrsDS′ (♦ a) for s ∈ S′ and (ii) ν(xs) = ν(ps) = 0 otherwise. We show that ν

satisfies the MILP constraints (B.3a)–(B.3e).

1. We show that ν satisfies (B.3b)–(B.3d). By syntactically replacing xs by ν(xs) for each s ∈ S, the
constraints (B.3b)–(B.3d) reduce to ps = 0 for each s ∈ S \ S′, ps = 1 for each s ∈ S′ ∩ T , and

∀s ∈ S′ \ T : ps ≤
∑

s′∈S′\T

P (s, s′) · ps′ +
∑

s′∈S′∩T
P (s, s′) . (B.5a)

By Lemma 2, ν is a satisfying assignment for this constraint system.
2. Since DS′ is critical, ν(psinit

) = Prsinit

DS′ (♦ a) > λ, therefore (B.3e) also holds.

3. We show that ν is optimal with respect to (B.3a).
If ν did not minimize

∑
s∈S xs, then there would be another satisfying assignment that evaluates xs to

1 for a fewer number of states. Due to soundness (Lemma 6), there would exist an MCS smaller than
DS′ , which contradicts the minimality assumption for the MCS DS′ .
Similarly, if ν did not maximize psinit , then there would be another satisfying assignment selecting
the same (minimal) number of states but mapping a larger value to psinit than ν does. By soundness
(Lemma 6), there would exist an MCS in that the probability to reach T from the initial state is larger
than in DS′ , which contradicts the assumption that DS′ maximizes the probability to reach a state in
T from sinit under all MCSs. �

Theorem 4 The MILP formulation (B.3a)–(B.3e) is sound and complete.

Proof. The MILP formulation is sound by Lemma 6 and complete by Lemma 7.
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Appendix C. Correctness of the Optimizations

Next we prove that the following optimizations are optional for both the SMT and MILP formulations for
reachability properties of DTMCs, i. e., they can be helpful to speed up the solution process but they do not
modify the set of optimal satisfying assignments.

Appendix C.1. Forward/Backward Constraints

∀s ∈ S \ T : −xs +
∑

s′∈succ(s)\{s}

xs′ ≥ 0 (C.1a)

∀s ∈ S \ {sinit} : −xs +
∑

s′∈pred(s)\{s}

xs′ ≥ 0 . (C.1b)

Lemma 8 The forward and backward cuts are satisfied by any satisfying assignment of either the SMT
formulation (A.2a)–(A.2d) or the MILP formulation (B.3a)–(B.3e).

Proof. Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP formulation
and let S′ = {s ∈ S | ν(xs) = 1}. For s ∈ S \ S′ we have ν(xs) = 0 and ν(xs′) ≥ 0 for all s′ ∈ S, therefore
the constraints are satisfied.

Assume that (C.1a) is violated by ν for a state s ∈ S′ \ T , i. e., ν(xs) = 1, but ν(xs′) = 0 for all
s′ ∈ succD(s) \ {s}. Then ν(ps) ≤

∑
s′∈succD(s) P (s, s′) · ν(ps′) =

∑
s′∈succD(s′)\{s} P (s, s′) · 0 +P (s, s) · ν(ps),

since ν(ps′) = 0 for all s′ ∈ S with ν(xs′) = 0. Since D has only a-relevant states (implying P (s, s) < 1),
the only solution is ν(ps) = 0. Therefore state s can be removed from the MCS DS′ without altering the
probability of the initial state. This contradicts the minimality of DS′ .

Assume now that (C.1b) is violated for a state s ∈ S′ \ {sinit}, i. e., ν(xs) = 1, but ν(xs′) = 0 for all
s′ ∈ predD(s) \ {s}. Then s is not reachable from sinit in DS′ , therefore DS′\{s} is a subsystem which is also
critical (having the same probability to reach T from sinit as DS′) but with a smaller state set, which is a
contraction to DS′ being an MCS. �

Appendix C.2. SCC Constraints

∀SCC C, sinit 6∈ C ∀s ∈ C \ In(C) : xs ≤
∑

s′∈In(C)

xs′ (C.2a)

∀SCC C,C ∩ T = ∅ ∀s ∈ C : xs ≤
∑

s′∈Out(C)

xs′ . (C.2b)

Lemma 9 The input and output SCC cuts are satisfied by any optimal satisfying assignment of either the
SMT formulation (A.2a)–(A.2d) or the MILP formulation (B.3a)–(B.3e).

Proof. Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP formulation
and let S′ = {s ∈ S | ν(xs) = 1}.

Assume an SCC C ⊆ S \ {sinit} which violates (C.2a). All paths in D from sinit to T passing through C
contain a state in In(C). If S′ ∩ In(C) = ∅ then there is no path in DS′ from sinit to T containing a state
from C. Therefore all states in C ∩ S′ 6= ∅ can be removed from DS′ without alternating the probability of
sinit, which contradicts the minimality of DS′ .

Now assume that (C.2b) is violated. With the same argument we can show that again all states in
C ∩ S′ 6= ∅ are irrelevant in DS′ , contradicting the minimality assumption. �
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Appendix C.3. Forward Reachability Constraints

Consider the forward reachability constraints with xs ∈ {0, 1} ⊆ Z, t→s,s′ ∈ {0, 1} ⊆ Z and r→s ∈ [0, 1] ⊆ R for
all s, s′ ∈ S:

∀s′ ∈ S \ {sinit} ∀s ∈ pred(s′) : t→s,s′ ≤ xs (C.3a)

∀s′ ∈ S \ {sinit} ∀s ∈ pred(s′) : r→s < r→s′ + (1− t→s,s′) (C.3b)

∀s′ ∈ S \ {sinit} :
∑

s∈pred(s′)

t→s,s′ = xs′ . (C.3c)

Lemma 10 For each optimal satisfying assignment ν of either the SMT formulation (A.2a)–(A.2d) or the
MILP formulation (B.3a)–(B.3e) there exists an extending satisfying assignment µ of (C.3a)–(C.3c) with
ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S}.

Proof. Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP formulation
and let S′ = {s ∈ S | ν(xs) = 1}. By the soundness of the SMT and MILP formulations (Theorems 3 and 6)
we know that DS′ is an MCS for D and P≤λ(♦ a).

We consider the tree which contains for each state s ∈ S′ one shortest path (in terms of the number of
states) from sinit to s. (This tree is well-defined, since minimality of the MCS DS′ implies that all states
in S′ are reachable from sinit in DS′ .) We define a function f : S′ \ {sinit} → S′ by assigning to each state
s ∈ S′ \ {sinit} the predecessor state of s in this tree. We fix the assignment µ by

• ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S},

• for all s, s′ ∈ S, µ(t→s,s′) = 1 if s′ ∈ S′ \ {sinit} and s = f(s′), and µ(t→s,s′) = 0 otherwise, and

• for all s ∈ S, µ(r→s ) = n/d where n is the length of a shortest path from sinit to s in DS′ , and d is the
maximum of the lengths of all shortest paths from sinit to any state in DS′ .

It is easy to see that µ satisfies the constraint system (C.3a)–(C.3c). �

We additionally show that, when seen in isolation, for all solutions for (C.3a)–(C.3c) all states in the selected
subsystem are reachable from the initial state.

Lemma 11 Let ν be a satisfying assignment of the forward reachability constraints (C.3a)–(C.3c). Then
for all s′ ∈ S, if ν(xs′) = 1 then there is a path s0s1 . . . sn = s′ from a state s0 = sinit to s′ with ν(xsi) = 1
for all 0 ≤ i ≤ n.

Proof. Constraint (C.3c) enforces that each state s′ ∈ S \ {sinit} with ν(xs′) = 1 has a predecessor state
s ∈ pred(s′) with t→s,s′ = 1. Constraint (C.3a) ensures that for this predecessor state ν(xs) = 1 holds.
Constraint (C.3b) finally ensures that ν(r→s ) < ν(r→s′ ).

Assume there is a state u0 ∈ S \ {sinit} such that the statement of the lemma is false. Then we
can construct an infinite sequence u0u1u2 . . . such that ui+1 ∈ pred(ui), ν(xui) = 1, ν(t→ui+1,ui) = 1, and
ν(r←ui+1

) < ν(r←ui ) for all i ≥ 0.
Since S is finite there are i < k with ui = uk. However ν(r←uk) < ν(r←ui ) holds, which is a contradiction.

Therefore our assumption was wrong and the lemma is valid. �

Remark 2 In constraint (C.3c) the equality sign can be replaced by “≥” without any change in the proof.
However, equality yields a stronger MILP formulation and is therefore preferred where possible.
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Appendix C.4. Backward Reachability Constraints

Consider the backward reachability constraints with xs ∈ {0, 1} ⊆ Z, t←s,s′ ∈ {0, 1} ⊆ Z and r←s ∈ [0, 1] ⊆ R
for all s, s′ ∈ S:

∀s ∈ S \ T ∀s′ ∈ succ(s) : t←s,s′ ≤ xs′ (C.4a)

∀s ∈ S \ T ∀s′ ∈ succ(s) : r←s < r←s′ + (1− t←s,s′) (C.4b)

∀s ∈ S \ T :
∑

s′∈succ(s)

t←s,s′ = xs . (C.4c)

Lemma 12 For each optimal satisfying assignment ν of either the SMT formulation (A.2a)–(A.2d) or the
MILP formulation (B.3a)–(B.3e) there exists an extending satisfying assignment µ of (C.4a)–(C.4c) with
ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S}.

Proof. Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP formulation
and let S′ = {s ∈ S | ν(xs) = 1}. By the soundness of the SMT and MILP formulations (Theorems 3 and 6)
we now that DS′ is an MCS for D and P≤λ(♦ a).

We consider a set Π of paths of DS′ such that Π is postfix-closed and it contains for each state s ∈ S′
exactly one shortest path from s to T in DS′ . (Such a set exists, since minimality of the MCS DS′ implies
that T can be reached from all states in DS′ .) We define the function f : S′ \ T → S′ by assigning to each
state s ∈ S′ \ T the unique successor state of s on the shortest path from s to T in Π. We fix the assignment
µ by

• ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S},

• for all s, s′ ∈ S, µ(t←s,s′) = 1 if s ∈ S′ \ T and s′ = f(s), and µ(t←s,s′) = 0 otherwise, and

• for all s ∈ S, µ(r←s ) = 1− n/d where n is the length of a shortest path from s to T in DS′ , and d is
the maximum of the lengths of all shortest paths from any state to T in DS′ .

It is easy to see that µ satisfies the constraint system (C.4a)–(C.4c). �

We additionally show that, when seen in isolation, for all solutions for (C.4a)–(C.4c) T is reachable from all
states in the selected subsystem.

Lemma 13 Let ν be a satisfying assignment of the backward reachability constraints (C.4a)–(C.4c). Then
for all s ∈ S, ν(xs) = 1 implies that there is a path s = s0s1 . . . sn from s to a state sn ∈ T with ν(xsi) = 1
for all 0 ≤ i ≤ n.

Proof. Constraint (C.4c) enforces that each state s ∈ S \T with ν(xs) = 1 has a successor state s′ ∈ succ(s)
with t←s,s′ = 1. Constraint (C.4a) ensures that for this successor state ν(xs′) = 1 holds. Constraint (C.4b)
finally ensures that ν(r←s ) < ν(r←s′ ).

Assume that there is a state u0 ∈ S\T such that the statement of the lemma is false. Then we can construct
an infinite path u0u1u2 . . . such that ui+1 ∈ succ(ui), ν(xui) = 1, ν(t←ui,ui+1

) = 1, and ν(r←ui ) < ν(r←ui+1
) for

all i ≥ 0.
Since S is finite there are i < k with ui = uk. However, ν(r←ui ) < ν(r←uk) leads to a contradiction.

Therefore our assumption was wrong and the lemma is valid. �

Remark 3 In constraint (C.4c) the equality sign can be replaced by “≥” without any change in the proof.
However the equality yields a stronger MILP formulation and is therefore preferred where possible.

Theorem 5 Both the SMT formulation (A.2a)–(A.2d) and the MILP formulation (2a)–(2e) together with
any (combination) of the three above optimizations is sound and complete.
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Proof. Since each satisfying assignment for the SMT or MILP formulation with optimization constraints is
also a satisfying assignment for the SMT or MILP formulation without optimization constraints, soundness
follows directly from the SMT and MILP formulations (Theorems 3 and 6).

For completeness assume an MCS. By the completeness results for the SMT and MILP formulations
(Theorems 4 and 7) we know that they have a satisfying assignment inducing the given MCS. Above we have
shown that thus satisfying assignment also satisfies the optimization constraints. �

Appendix D. MILP-Formulation for ω-Regular Properties of DTMCs

Let D = (S, sinit, P, L) be a DTMC, P≤λ(L) an ω-regular property, which is violated by D, and A =
(Q, qinit, 2

AP, δ, F ) a DRA with L(A) = L. We consider the product D⊗A of the DTMC D and the DRA A
as in Definition 8 with distribution function P ′, and assume that all irrelevant states have been removed.
To simplify notation we use U = S × Q and u = (s, q), u′ = (s′, q′), etc. as typical elements from U . Let
{T1, . . . , Tn} be the set of accepting BSCCs of D ⊗A and T =

⋃n
i=1 Ti. The MILP-formulation for an MCS

of D for P≤λ(L) is as follows:

minimize − 1

2
p(s,q)init +

∑
s∈S

xs (D.1a)

such that

p(s,q)init > λ (D.1b)

∀i = 1, . . . , n ∀u = (s, q) ∈ Ti : pu = xTi (D.1c)

∀i = 1, . . . , n ∀u = (s, q) ∈ Ti : xs ≥ xTi (D.1d)

∀u = (s, q) ∈ SD⊗A \ T : pu ≤ xs (D.1e)

∀u = (s, q) ∈ SD⊗A \ T : pu ≤
∑

u′∈succD⊗A(u)

P
(
u, u′

)
· pu′ . (D.1f)

In the soundness and completeness proofs for the above formulation we will make use of the following
fact.

Lemma 14 Let S′ ⊆ S with sinit ∈ S′ and let {B1, . . . , Bk} be the set of all accepting BSCCs of DS′ ⊗A.
Then {B1, . . . , Bk} = {Ti | i ∈ {1, . . . , n} ∧ Ti ⊆ S′}.

Proof. Let S′ and {B1, . . . , Bk} be as above. It is easy to see that each accepting BSCC Ti of DS ⊗A with
Ti ⊆ S′ is also an accepting BSCC of DS′ ⊗A.

For the other direction fix some j ∈ {1, . . . , k}. By definition, Bj is an accepting BSCC in DS′ ⊗A, i. e.,
Bj is strongly connected, maximal, bottom and accepting in DS′ ⊗ A. We show that Bj is an accepting
BSCC also in DS ⊗A, i. e., Bj is strongly connected, maximal, bottom and accepting in DS ⊗A.

• Strongly connected: Since DS′ is a subsystem of D, also DS′ ⊗A is a subsystem of DS ⊗A, therefore
Bj is a strongly connected state set also in DS ⊗A.

• Maximal: Since Bj is a bottom SCC in DS′ ⊗ A, we have that
∑
u′∈Bj P

′(u, u′) = 1 for all u ∈ Bj .
Thus Bj cannot be extended to any larger strongly connected state set in DS ⊗A, i.e., Bj is maximal
also in DS ⊗A.

• Bottom: The bottom property of Bj in DS′ ⊗A directly implies its bottom property in DS ⊗A.

• Accepting: As Bj is accepting in DS′ ⊗A, it is also accepting in DS ⊗A.

Thus Bj is an accepting BSCC in DS ⊗A. �
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Lemma 15 The MILP formulation (D.1a)–(D.1f) is sound.

Proof. We show that for each satisfying assignment ν of the MILP constraints (D.1a)–(D.1f) there is a
corresponding MCS of D for P≤λ(L) with state space S′ = {s ∈ S | ν(xs) = 1} and a maximal probability
ν(p(s,q)init

) = Prsinit

DS′ (L) to satisfy L under all MCSs.

Let ν be a satisfying assignment of the MILP constraints (D.1a)–(D.1f) and S′ = {s ∈ S | ν(xs) = 1}. Let
furthermore {B1, . . . , Bk} be the set of all accepting BSCCs of DS′ ⊗A and B = ∪kj=1Bj . Lemma 14 states
that each accepting BSCC Bj of DS′ ⊗ A is also an accepting BSCC of DS ⊗ A, i. e., Bj = Ti for some
i ∈ {1, . . . , n}. For simplicity, in the following we also write xBj to denote xTi with Bj = Ti, and define
B′ = {u ∈ Bj | j ∈ {1, . . . , k} ∧ ν(xBj ) = 1} ⊆ B to be the set of all states in selected accepting BSCCs of
DS′ ⊗A.

1. We show that DS′ is a subsystem of D. From (D.1b) we imply ν(p(s,q)init) > λ ≥ 0. Using (D.1c)–(D.1e)
we get that ν(xsinit

) = 1. The other conditions for DS′ being a subsystem of D are straightforward by
the definition of DS′ .

2. Now we show that no state from B \B′ is reachable from (s, q)init in DS′ ⊗A. Assume the opposite.
Then there is an accepting BSCC Bj of DS′ ⊗A that is reachable from (s, q)init in DS′ ⊗A such that
ν(xBj ) = 0. Assume a shortest path π = u0 . . . um from (s, q)init = u0 to Bj 3 um in DS′ ⊗ A, and

define ci = Πm−1
l=i P

′(ul, ul+1) > 0 for i = 0, . . . ,m (with cm = 1) to be the probabilities of the postfixes
of π starting at position i. We define an assignment µ by

• µ(xs) = ν(xs) for all s ∈ S,

• µ(xBj ) = 1 and µ(xTi) = ν(xTi) for Ti 6= Bj , and

• µ(pu) =


1, for u ∈ Bj ,
ν(pui) + ci, for u = ui, i = 0, . . . ,m− 1,

ν(pu), otherwise.

Note that µ(pu) ≥ ν(pu) for all u ∈ U . We show that µ is a satisfying assignment to (D.1b)–(D.1e).
The only interesting case is (D.1f). For those states from U \ T that are not on the path π, the
left-hand-side evaluates equal under µ and ν, and the right-hand-side evaluates under µ to a value at
least as large as under ν. For states ui, i = 0, . . . ,m− 1, on the path π we have the following relations:

µ(pui)
= ci + ν(pui)
= P ′(ui, ui+1) · ci+1 + ν(pui)
≤ P ′(ui, ui+1) · ci+1 +

∑
u′∈U P

′(ui, u
′) · ν(pu′)

= P ′(ui, ui+1) · ci+1 + P ′(ui, ui+1) · ν(pui+1) +
∑
ui 6=u′∈U P

′(ui, u
′) · ν(pu′)

= P ′(ui, ui+1) · (ci+1 + ν(pui+1
)) +

∑
ui 6=u′∈U P

′(ui, u
′) · ν(pu′)

= P ′(ui, ui+1) · µ(pui+1) +
∑
ui 6=u′∈U P

′(ui, u
′) · ν(pu′)

≤ P ′(ui, ui+1) · µ(pui+1
) +

∑
ui 6=u′∈U P

′(ui, u
′) · µ(pu′)

=
∑
u′∈U P

′(ui, u
′) · µ(pu′)

Thus (D.1f) is satisfied for all states from U \ T . However, having µ(p(s,q)init) = ν(p(s,q)init) + c0 >
ν(p(s,q)init

) and µ(xs) = ν(xs) for all s ∈ S, the objective function would have a smaller value for µ
than for ν, which contradicts the optimality of ν.

3. Now we are able to show that ν(p(s,q)init
) = PrsinitDS′ (L) holds. Let D′ be DS′⊗A without the unreachable

states B \B′ and their connected transitions and let A = (S′ ×Q) \ (B \B′) denote its state space. By
Theorem 1 and the above item (2) we have that

Prsinit

DS′ (L) = Pr
(s,q)init
DS′⊗A(♦B) = Pr

(s,q)init
D′ (♦B′) .
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By (D.1c)–(D.1e) it holds that ν(pu) = 0 for all u ∈ U \ A. Since ν satisfies (D.1f), we have for all
states u ∈ A of D′:

pu ≤
∑
u′∈U P

′(u, u′) · pu′
=

∑
u′∈A P

′(u, u′) · pu′
=

∑
u′∈A\B′ P

′(u, u′) · pu′ +
∑
u′∈A∩B′ P

′(u, u′) .

Using Lemma 5 we get that ν(pu) ≤ PruD′(♦B
′) for each u ∈ A. Lemma 2 furthermore states that

there is a satisfying assignment µ with µ(pu) = PruD′(♦B
′) for each u ∈ A. Since ν minimizes the

objective function (D.1a), it maximizes the value of p(s,q)init , therefore ν(p(s,q)init) = Pr
(s,q)init
D′ (♦B′).

4. Now it is easy to see that DS′ is critical: Item (1) above showed ν(p(s,q)init) > λ and item (3) showed
ν(p(s,q)init

) = Prsinit

DS′ (L), together implying PrsinitDS′ (L) > λ.

5. We show that DS′ is minimal. Assume the opposite. Then there is some S′′ ⊆ S with |S′′| < |S′| such
that DS′′ is an MCS for D and P≤λ(L). In (D.1a)–(D.1f) we syntactically replace xs by 1 if s ∈ S′′
and by 0 otherwise, and xTi by 1 if Ti ⊆ S′′ and Ti is reachable from (s, q)init in DS′′ ⊗A and by 0
otherwise. Lemma 2 applied to S′′ implies that the constraint system resulting from (D.1c)–(D.1f) by
the above substitution has a satisfying assignment; following the argumentation in item (3) above we
get that this assignment maps Prsinit

DS′′ (L) > λ to p(s,q)init , thus also satisfying (D.1b)). However, for

this satisfying assignment the number of positive xs variables is smaller than for ν, which contradicts
our assumption that ν minimizes the objective function.

6. It remains to show that the probability to satisfy L from sinit in DS′ is maximal under all MCSs. This
proof is analogous to the previous item. Assume the opposite. Then there is some S′′ ⊆ S such that
DS′′ is an MCS for D and P≤λ(L) with a higher probability to satisfy L in the initial state.
We apply the same replacement as above to (D.1a)–(D.1f) to get a satisfying assignment µ inducing DS′′ .
Since DS′ and DS′′ are both minimal,

∑
s∈S ν(xs) =

∑
s∈S µ(xs), however ν(p(s,q)init) < µ(p(s,q)init),

contradicting the optimality of ν. �

Lemma 16 The MILP formulation (D.1a)–(D.1f) is complete.

Proof. Let D′ with state space S′ ⊆ S be an MCS of D for P≤λ(L) with a maximal probability to satisfy
L under all MCSs. We show that there is a satisfying assignment ν of the MILP constraints (D.1a)–(D.1f)
such that ν(xs) = 1 iff s ∈ S′, and ν(p(s,q)init

) = PrsinitDS′ (L).

Note that DS′ is also an MCS for D and P≤λ(L) with the same state space and a maximal probability to

satisfy L under all MCSs. Let Π = {π ∈ Pathsinf
DS′ (sinit) |π � L} denote the set of infinite paths within the

subsystem that satisfy L. Since DS′ is a critical subsystem, Pr(Π) > λ holds.

For π = s0s1 . . . ∈ Π let π∗ = (s0, q0)(s1, q1) . . . with q0 = δ
(
qinit, L(sinit)

)
and qi+1 = δ

(
qi, L(si+1)

)
be

the unique extension of π to the product automaton D ⊗ A. Let Π∗ = {π∗ |π ∈ Π} and inf(π) the set of
states which occur infinitely often on π. Since all stepwise probabilities are preserved by the extension, we
have that PrD(Π) = PrD⊗A(Π∗) > λ.

We now consider the subsystem S′ ×Q of D ⊗A. Π∗ contains only paths in S′ ×Q. Let BSCC(D ⊗A)
denote the set of bottom SCCs of D⊗A. Then Pr{π ∈ Pathsinf

D⊗A((s, q)init) | inf(π) ∈ BSCC(D⊗A)} = 1 [38,

Theorem 10.27]. Contrarily, Pr{π ∈ Pathsinf
D⊗A((s, q)init) | inf(π) 6∈ BSCC(D ⊗A)} = 0. We can conclude:

0 ≤ Pr{π∗ ∈ Π∗ | inf(π∗) 6∈ BSCC(D ⊗A)}
≤ Pr{π∗ ∈ Pathsinf

D⊗A((s, q)init) | inf(π∗) 6∈ BSCC(D ⊗A)}
= 0

and

λ < Pr(Π∗) = Pr({π∗ ∈ Π∗ | inf(π∗) ∈ BSCC(D ⊗A)}) .

We now set C := {inf(π∗) |π∗ ∈ Π∗} ∩ BSCC(D ⊗A). We make the following observations:
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• all elements of C are BSCCs, and

• ∀c ∈ C ∃i ∈ {1, . . . , n} : (∀u ∈ c : Ri 6∈ L′(u)) ∧ (∃u ∈ c : Ai ∈ L′(u)), i. e., C contains only accepting
BSCCs. Otherwise the paths in Π∗ were not accepted.

We define the following variable assignment ν for the decision variables: ν(xs) = 1 iff s ∈ S′ and ν(xTi) = 1
iff Ti ∈ C. These assignments trigger the following implications in the MILP constraints above:

pu =


0, if u = (s, q), s 6∈ S′,
1, if u ∈ Ti ∈ C,∑
u′∈U
P ′(u, u′) · pu′ , otherwise.

Using Lemma 2, we can show that this linear equation system has a satisfying assignment ν which de-
scribes the probability of reaching a target state within the subsystem S′ × Q. Therefore ν(p(s,q)init) =

Pr
(s,q)init

D⊗A (♦ accept) ≥ PrD⊗A(Π∗) = PrD(Π) > λ.
We show that ν is optimal with respect to (D.1a).

• If ν did not minimize the number of states, then there would be another satisfying assignment that
evaluates xs to 1 for a fewer number of states. Due to soundness of the MILP formulation (Lemma 15),
there would exist an MCS smaller than DS′ , which contradicts the minimality assumption for DS′ .

• Similarly, if ν did not maximize psinit
, then there would be another satisfying assignment selecting

the same (minimal) number of states but mapping a larger value to psinit than ν does. By soundness
(Lemma 15), there would exist an MCS in that the probability to satisfy L in the initial state is larger
than in DS′ , which contradicts the assumption that DS′ maximizes this probability under all MCSs.�

Theorem 6 The MILP formulation (D.1a)–(D.1f) is sound and complete.

Proof. The MILP formulation is sound by Lemma 15 and complete by Lemma 16. �

Appendix E. Complexity of MCSs for MDPs

Theorem 7 ([5]) Let M be an MDP with M 6|= P≤λ(♦ a) and k ∈ N. The problem to decide whether there
exists a critical subsystem of M for P≤λ(♦ a) with at most k states is NP-complete.

Proof. (Adapted from [5]) The problem is in NP, since one can guess a scheduler and a subsystem of
M and verify in polynomial time (using the DTMC model-checking algorithms) that it is critical. The
NP-hardness follows from a reduction from the exact 3-cover (X3C) problem [49, Problem SP1]:

Let X be a set with |X| = 3r, r ∈ N, and C ⊆ 2X a collection with ∀c ∈ C : |c| = 3.
Question: does there exist B ⊆ C that exactly covers X?

Here, B covers X whenever the subsets in B are pairwise disjoint and
⋃
c∈B c = X. As B covers X by sets

of cardinality three, B is called an exact 3-cover of X. It is not difficult to see that an exact 3-cover B of X
with |X| = 3r has cardinality |B| = r.

The idea of the proof is to construct (starting from a set X with |X| = 3r) an MDP and a reachability
property such that there exists a critical subsystem of bounded size iff X has an exact 3-cover. Let the MDP
M = (S, sinit,Act , P, L) be as follows:

• S = X ∪̇ C ∪̇ {sinit, t} with L(t) = {a} and L(s) = ∅ otherwise.

• Act = {α} ∪̇ {αc | c ∈ C}, and

42



• P is given by

– P (sinit, α, x) = 1
3r for x ∈ X and P (sinit, α, y) = 0 for all y ∈ S \X,

– for x ∈ X we have P (x, αc, c) = 1 for c ∈ C and P (x, αc, y) = 0 for all y ∈ S \ C,

– for all c ∈ C we have P (c, α, t) = 1 and P (c, α, y) = 0 for all y ∈ S \ {t},
– P (t, α′, t) = 1 for all α′ ∈ Act .

For all actions in Act that are not explicitly mentioned in the definition of P for any state s ∈ S, we assume
that they form a self-loop at s with probability 1.

Let ϕ = P≤λ(♦ a) with λ = 1− 1
3r . As the maximal probability to reach t from sinit is one, M 6|= ϕ. We

show that there is a critical subsystem of size ≤ 2 + 4r iff X has an exact 3-cover.

“⇐” Let B ⊆ C be an exact 3-cover for X. Thus, |B| = r. Consider the subsystem with state space
{sinit, t} ∪̇X ∪̇B together with the following deterministic memoryless scheduler σ on M: σ(sinit) =
σ(c) = α for all c ∈ C and σ(x) = αc if c is the unique element of B such that x ∈ c.
Then for all x ∈ X there is a path with probability 1 from x to t. We have:

Prsinit

Mσ (♦ a) =
∑
x∈X

Pσ(sinit, x) · PrxMσ (♦ a)

=
∑
x∈X

Pσ(sinit, x) · 1 =
∑
x∈X

1

3r
· 1

= |X| · 1

3r
= 1.

Thus we have found a critical subsystem of M with 2 + |X|+ |B| = 2 + 4r states.

“⇒” Let M′ = (S′, sinit, P
′, L′) be a critical subsystem of M with state space S′ of size ≤ 2 + 4r. Then the

probability to reach t from s within M′ exceeds 1− 1
3r . Since the probability is a multiple of 1

3r , it
must equal 1. We can conclude that all x-states must be contained in M′ and that from each x-state
there is a path with probability 1 to t. Therefore for each x ∈ X there must be some c ∈ S′ ∪ C in
M′ such that x ∈ c. The number of c-states in S′ is at most 2 + 4r − |{s, t}| − |X| = r. Therefore
B = S′ ∩ C is an exact 3-cover of X.

�

Appendix F. MILP-Formulation for Reachability Properties of MDPs

Let in the following M = (S, sinit,Act , P, L) be an MDP, P≤λ(♦ a) a reachability property violated by
M, and T =

{
s ∈ S

∣∣ a ∈ L(s)
}

the set of target states. The MILP formulation for the reachability property
P≤λ(♦ a) of M is as follows:

minimize − 1

2
psinit +

∑
s∈S

xs (F.1a)

such that

psinit > λ (F.1b)

∀s ∈ T : ps = xs (F.1c)

∀s ∈ S \ T : ps ≤ xs (F.1d)

∀s ∈ S \ T :
∑
α∈Act

σs,α = xs (F.1e)
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∀s ∈ S \ T ∀α ∈ Act : ps ≤ (1− σs,α) +
∑

s′∈succM(s,α)

P (s, α, s′) · ps′ (F.1f)

∀(s, α) ∈ Act
probl(a)
M ∀s′ ∈ succM(s, α) : t←s,s′ ≤ xs′ (F.1g)

∀(s, α) ∈ Act
probl(a)
M ∀s′ ∈ succM(s, α) : r←s < r←s′ + (1− t←s,s′) (F.1h)

∀(s, α) ∈ Act
probl(a)
M : (1− σs,α) +

∑
s′∈succM(s,α)

t←s,s′ ≥ xs . (F.1i)

Lemma 17 The MILP formulation (F.1a)–(F.1i) is sound.

Proof. Let ν be a satisfying assignment of the MILP constraints (F.1a)–(F.1i) and let S′ = {s ∈ S | ν(xs) =
1}. We define the (partial) memoryless deterministic scheduler σ : S′ \ T → Act by σ(s) = α iff ν(σs,α) = 1.
The scheduler σ is well-defined, since constraint (F.1e) ensures that for each s ∈ S′ \ T there is exactly one
action α ∈ Act with σs,α = 1. We show that the DTMC DS′ = (S′, sinit, P

′, L′) with P ′(s, s′) = P (s, σ(s), s′)
and L′(s′) = L(s′) for all s ∈ S′ \ T and s′ ∈ S′ is an MCS of M for P≤λ(♦ a) having a maximal probability
to reach T under all MCSs.

1. We show that DS′ is a subsystem of M. From (F.1b) we conclude 0 ≤ λ < ν(psinit), and therefore by
the satisfaction of (F.1c)–(F.1d) we have that ν(xsinit) = 1, i. e., sinit ∈ S′. The remaining conditions
for DS′ being a subsystem of M hold by the definition of DS′ .

2. We show that all states of DS′ are relevant for a. By definition, from all unproblematic states

s ∈ S′ \ Sprobl(a)
M there is a path in Mσ′ to a target state for all schedulers σ′. This holds also for

each extension of the (partial) scheduler σ. Due to the backward reachability constraints (F.1g)–(F.1i),
from all states that are problematic in M an unproblematic state and therefore also a target state is
reachable in DS′ (cf. Remark 3 about the weaker formulation of backward reachability).

3. We show that ν(psinit
) = Prsinit

DS′ (♦ a). The constraints (F.1c)–(F.1d) assure that (i) ν(ps) = 0 for all

s ∈ S \ S′ and (ii) ν(ps) = 1 for all s ∈ S′ ∩ T . Therefore, due to the satisfaction of (F.1f) for the
actions selected by σ, the assignment ν satisfies the following constraint system:

∀s ∈ S′ \ T : ps ≤ (1− σs,σ(s)) +
∑
s′∈succM(s,σ(s)) P (s, σ(s), s′) · ps′

=
∑

s′∈S′\T
P ′(s, s′) · ps′ +

∑
s′∈S′∩T

P ′(s, s′) .

As shown in (2), all states of DS′ are relevant for a. Lemma 5 implies ν(psinit) ≤ PrsinitDS′ (♦ a), and

Lemma 2 implies that there is also a satisfying assignment mapping PrsinitDS′ (♦ a) to psinit (satisfying

the inequations with equalities). Since ν is a satisfying assignment maximizing psinit in (F.1a),
ν(psinit

) = Prsinit

DS′ (♦ a) must hold.

4. We show that DS′ is critical. In (3) we have shown that ν(psinit) = PrsinitDS′ (♦ a). Combined with

0 ≤ λ < ν(psinit
) from (1) we get λ < PrsinitDS′ (♦ a).

5. We show that DS′ is minimal. Assume the opposite. Then there is a scheduler σ′′ and a state set
S′′ ⊆ S with |S′′| < |S′| such that the DTMC DS′′ = (S′′, sinit, P

′′, L′′) with P ′′(s, s′) = P (s, σ′′(s), s′)
and L′′(s) = L(s) for all s, s′ ∈ S′′ is an MCS of M for P≤λ(♦ a).
Note that, since DS′′ is minimal, it has only a-relevant states, i. e., T is reachable from all of its states.
We consider a set Π of paths of DS′′ such that Π is postfix-closed and it contains for each state s ∈ S′′
exactly one shortest path from s to T in DS′′ . We define the function f : S′′ \ T → S′′ by assigning to
each state s ∈ S′′ \ T the unique successor state of s on the shortest path from s to T in Π.
Now we define an assignment µ : Var→ R by

• µ(xs) = 1 and µ(ps) = PrsDS′′ (♦ a) for s ∈ S′′, and µ(xs) = µ(ps) = 0 otherwise,

• µ(σs,α) = 1 if s ∈ S′′ and σ′′(s) = α, and µ(σs,α) = 0 otherwise,
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• for all s, s′ ∈ S, µ(t←s,s′) = 1 if s ∈ S′′ \ T and s′ = f(s), and µ(t←s,s′) = 0 otherwise, and

• for all s ∈ S, µ(r←s ) = 1− n/d where n is the length of a shortest path from s to T in DS′′ , and d
is the maximum of the lengths of all shortest paths from any state to T in DS′′ .

Lemma 2 applied to Mσ′′ and S′′ implies that µ satisfies the constraints (F.1f) with equality. The
satisfaction of the other constraints is easy to see.
However,

∑
s∈S µ(xs) <

∑
s∈S ν(xs), what contradicts our assumption that ν is optimal with respect

to (F.1a).

6. It remains to show that the probability to reach T from sinit in DS′ is maximal under all MCSs. This
proof is analogous to the previous item (5). Assume the opposite. Then there is a scheduler σ′′ and
some S′′ ⊆ S such that DS′′ defined as above is an MCS for M and P≤λ(♦ a) with PrsinitDS′ (♦ a) <

Prsinit

DS′′ (♦ a). We define µ as above. Again, with the help of Lemma 2 we can show that µ satisfies all

constraints. Since DS′ and DS′′ are both minimal,
∑
s∈S ν(xs) =

∑
s∈S µ(xs). From (3) we know that

ν(psinit) = Prsinit

DS′ (♦ a), i. e.,

ν(psinit
) = PrsinitDS′ (♦ a) < PrsinitDS′′ (♦ a) = µ(psinit) .

Thus − 1
2µ(psinit

) +
∑
s∈S µ(xs) < − 1

2ν(psinit) +
∑
s∈S ν(xs), contradicting the optimality of ν. �

Lemma 18 The MILP formulation (F.1a)–(F.1i) is complete.

Proof. Since M 6|= P≤λ(♦ a), there is a scheduler σ and a state set S′ such that the DTMC DS′ =
(S′, sinit, P

′, L′) with P ′(s, s′) = P (s, σ(s), s′) and L′(s) = L(s) for all s, s′ ∈ S′ is an MCS ofM for P≤λ(♦ a)
having a maximal probability to reach T under all MCSs. We show that there is a satisfying assignment ν of
the MILP formulation (F.1a)–(F.1i) with S′ = {s ∈ S | ν(xs) = 1} and ν(σs,α) = 1 iff σ(s) = α such that
ν(psinit

) = PrsinitDS′ (♦ a).

As in the proof of Lemma 12, we consider a set Π of paths of DS′ such that Π is postfix-closed and
it contains for each state s ∈ S′ exactly one shortest path from s to T in DS′ . (Such a set exists, since
minimality of the MCS DS′ implies that T can be reached from all states in DS′ .) We define the function
f : S′ \ T → S′ by assigning to each state s ∈ S′ \ T the unique successor state of s on the shortest path
from s to T in Π.

We define the assignment ν : Var→ R by

• ν(xs) = 1 and ν(ps) = PrsDS′ (♦ a) for s ∈ S′, and ν(xs) = ν(ps) = 0 otherwise,

• ν(σs,α) = 1 if s ∈ S′ and σ(s) = α, and ν(σs,α) = 1 otherwise,

• for all s, s′ ∈ S, ν(t←s,s′) = 1 if s ∈ S′ \ T and s′ = f(s), and ν(t←s,s′) = 0 otherwise, and

• for all s ∈ S, ν(r←s ) = 1− n/d where n is the length of a shortest path from s to T in DS′ , and d is the
maximum of the lengths of all shortest paths from any state to T in DS′ .

Lemma 2 implies that µ satisfies the constraints (F.1f) with equality. The satisfaction of the other constraints
is easy to show by replacing the variables by their values under ν (see also the proof of Lemma 7). �

Theorem 8 The MILP formulation (F.1a)–(F.1i) is sound and complete.

Proof. The MILP formulation is sound by Lemma 17 and complete by Lemma 18. �
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Appendix G. MILP-Formulation for ω-Regular Properties of MDPs

Let M = (S, sinit,Act , P, L) be an MDP, P≤λ(L) an ω-regular property which is violated by M, and
A = (Q, qinit, 2

AP, δ, F ) a DRA with F =
{

(Ri, Ai)
∣∣ i = 1, . . . , n

}
and L(A) = L.

We consider the product M⊗A of the MDP M and the DRA A as in Definition 8 with distribution
function P ′, and assume that all irrelevant states have been removed. To simplify notation we use U = S×Q
and u = (s, q), u′ = (s′, q′), etc. as typical elements from U .

Lemma 1 Let (Ri, Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act a scheduler, and
Mi ⊆ U a set of states with the following properties:

1. ∀u ∈Mi :
∑

u′∈succ(u,σ(u))∩Mi

P ′(u, σ(u), u′) = 1,

2. Mi ∩ (S ×Ri) = ∅, and

3. for each state u ∈Mi there is a path from u to a state in S ×Ai.

Then the probability of satisfying the acceptance condition F in M because of the pair (Ri, Ai) is 1 for all
u ∈Mi.

Proof. Since Mi is closed under successors w. r. t. scheduler σ, this set forms a sub-MDP of M. The
probability to reach a BSCC under scheduler σ is 1 for every state of Mi. Let M ′i ⊆Mi be such a BSCC. As
M ′i is strongly connected, it forms an end component of M. As a state out of S ×Ai is reachable from every
state of Mi, at least one state of S ×Ai has to be included in M ′i . Hence, M ′i is an accepting end component
of M. As this holds for every BSCC included in Mi, the probability to reach an accepting end component
inside Mi is one. �

The MILP-formulation for an MCS of M for P≤λ(L) is as follows:

minimize − 1

2
p(s,q)init +

∑
s∈S

xs (G.1a)

such that

• selection of at most one action per state:

∀u = (s, q) ∈ U :
∑
α∈Act

σu,α ≤ xs (G.1b)

• for all i = 1, . . . , n the definition of set Mi (closure w. r. t. succ(u, α) for α ∈ Act):

∀u ∈ U ∀α ∈ Act with
∑
u′∈U

P ′(u, α, u′) < 1 : mi
u ≤ 1− σu,α (G.1c)

∀u ∈ U ∀α ∈ Act : nu,α · (2−σu,α −mi
u) +

∑
u′∈succM⊗A(u,α)

mi
u′ ≥ nu,α (G.1d)

∀u ∈ S ×Ri : mi
u = 0 (G.1e)

• for all i = 1, . . . , n backward reachability of S ×Ai within Mi:

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : tiu,u′ ≤ mi
u′ + (1− σu,α) (G.1f)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : riu < riu′ + (1− tiu,u′) + (1− σu,α) (G.1g)

∀u ∈ S × (Q \Ai) ∀α ∈ Act : (1− σu,α) +
∑

u′∈succM⊗A(u,α)

tiu,u′ ≥ mi
u (G.1h)
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• probability computation:

p(s,q)init > λ (G.1i)

∀i = 1, . . . , n ∀u ∈ U : pu ≥ mi
u (G.1j)

∀u ∈ U : pu ≤
∑
α∈Act

σu,α (G.1k)

∀u ∈ U ∀α ∈ Act : pu ≤ (1− σu,α) +

n∑
i=1

mi
u +

∑
u′∈succM⊗A(u,α)

P (u, α, u′) · pu′ (G.1l)

• backward reachability of M =
⋃n
i=1Mi within the subsystem:

∀u = (s, q) ∈ U ∀α ∈ Act ∀u′ = (s′, q′) ∈ succM⊗A
(
u, α

)
: tMu,u′ ≤ xs′ + (1− σu,α) (G.1m)

∀u ∈ U ∀α ∈ Act ∀u′ ∈ succM⊗A(u, α) : rMu < rMu′ + (1− tMu,u′) + (1− σu,α) (G.1n)

∀u = (s, q) ∈ U ∀α ∈ Act : (1−σu,α) +

n∑
i=1

mi
u +

∑
u′∈succM⊗A

(
u,α
)tMu,u′ ≥ xs . (G.1o)

Lemma 19 The MILP formulation (G.1a)–(G.1o) is sound.

Proof. Assume a satisfying assignment ν of the MILP (G.1a)–(G.1o). We defineM′ = (S′, sinit,Act , P ′, L′)
with S′ = {s ∈ S | ν(xs) = 1},

P ′(s, α, s′) =

{
P (s, α, s′), if ∃q ∈ Q : ν(σ(s,q),α) = 1,

0, otherwise,

and L′(s) = L(s) for all s, s′ ∈ S′ and α ∈ Act . We show that M′ is an MCS of M for P≤λ(L), with a
maximal probability to satisfy L under all MCSs.

1. We show that M′ is a subsystem of M. From (G.1i) we imply ν(p(s,q)init) > λ ≥ 0. Using (G.1b) and
(G.1k) we get that ν(xsinit) = 1, i. e., sinit ∈ S′. The other conditions for M′ being a subsystem of M
are straightforward by the definition of M.

2. Using (G.1b) we observe that
∣∣{α ∈ Act | ν(σu,α) = 1}

∣∣ ≤ 1 for all u ∈ U . Therefore the deterministic
memoryless scheduler σ for M′ ⊗A with σ(u)(α) = ν(σu,α) for all u ∈ S′ ×Q is well-defined, and it
induces a DTMC D′ = (M′ ⊗A)σ with state set U ′ = S′ ×Q. In the following we use the notation
def(σ) = {u ∈ U ′ | ∃α ∈ Act : σ(u)(α) = 1}. We show that PruD′(♦ accept) = ν(pu) for all states in
u ∈ U ′ (where all states in all accepting end components of D′ are labeled with accept).
For i = 1, . . . , n let Mi = {u ∈ U | ν(mi

u) = 1} and M =
⋃n
i=1Mi. Using

ν(mi
u)

(G.1j)

≤ ν(pu)
(G.1k)

≤
∑
α∈Act

ν(σu,α)
(G.1b)

≤ ν(xs) (G.2)

for all u = (s, q) ∈ U and i = 1, . . . , n, we have that M ⊆ U ′.

• We first show PruD′(♦ accept) = ν(pu) = 1 for all u ∈M .

We show that all prerequisites of Lemma 1 on page 18 are satisfied for each Mi as state set and
the Ai-states in Mi as target states. The constraints (G.1j)–(G.1k) assure Mi ⊆ def(σ), i. e., that
the scheduler σ selects an action for all Mi-states, for which by (G.1c) it holds that∑

u′∈succM⊗A(u,σ(u))

P ′(u, σ(u), u′) = 1 .

47



Mi is closed under successors w. r. t. the actions selected by σ because of (G.1d). Furthermore,
Mi does not contain any Ri-states according to (G.1e). Given the assignment of σu,α, constraints
(G.1f)–(G.1h) are backward reachability constraints with the Ai-states as the target states.
According to Lemma 13 on page 38, an assignment ν is satisfying these constraints iff from
all states in Mi an Ai-state state is reachable inside Mi. Therefore by Lemma 1 it follows that
PruD′(♦ accept) = 1 for all states u ∈

⋃n
i=1Mi, which coincides with ν(pu) because of (G.1j). I. e.,

PruD′(♦ accept) = ν(pu) = 1 for all u ∈M .

• Now we show that PruD′(♦ accept) = ν(pu) for all u ∈ U ′ \M .

Constraints (G.1m)–(G.1o) assure that for all states u ∈ U ′ \M either u 6∈ def(σ) or a state in M
is reachable from u (cf. Lemma 13).

For states u ∈ U \ def(σ) without any action selected by σ, (G.1k) implies ν(pu) = 0 =
PruD′(♦ accept). Assume that these states and their connected (incoming) transitions are re-
moved from D′.
Note that for non-selected states u ∈ U \ U ′, the constraints (G.1b) and (G.1k) enforce ν(pu) = 0.
Remember furthermore that ν(pu) = 1 for each u ∈M . Therefore, for each u ∈ (U ′ \M) ∩ def(σ)
and α ∈ Act with σ(u) = α, according to (G.1l) it holds that

ν(pu) ≤
∑

u′∈(U ′∩def(σ))\M

P ′(u, α, u′) · ν(pu′) +
∑
u′∈M

P ′(u, α, u′) .

Lemma 5 applied to the state set U ′ ∩ def(σ) and target set M gives us ν(pu) ≤ PruD′(♦ accept).
According to the objective function (G.1a), ν maximizes the probability p(s,q)init . Lemma 2 states
that the maximal solution satisfies PruD′(♦ accept) = ν(pu) for all u ∈ (U ′ ∩ def(σ)) \M .

We conclude that ν(pu) = PruD′(♦ accept) for all u ∈ U ′.

3. Above we have shown that ν(p(s,q)init
) = Pr

(s,q)init
D′ (♦ accept), and by (G.1i) we have that ν(p(s,q)init) > λ.

Thus Pr
(s,q)init

D′ (♦ accept) > λ. Using Theorem 2 we get that PrsinitMσ (L) = Pr
(s,q)init
D′ (♦ accept) > λ, i. e.,

M′ is critical.

4. We show that M′ is minimal. Assume the opposite. Then there is an MCS M′′ for M and P≤λ(L)
with state set S′′ ⊆ S such that |S′′| < |S′|. Since M′′ is an MCS, there is a deterministic memoryless

scheduler σ for M′′ ⊗A such that Pr
(s,q)init
(M′′⊗A)σ (♦ accept) > λ.

In all constraints (G.1a)–(G.1o) we syntactically replace (i) xs by 1 if s ∈ S′′ and by 0 otherwise, (ii)
mi
u by 1 if u ∈ S′′ ×Q is in an end component of M′′ ⊗A accepting for the ith accepting condition

and by 0 otherwise, and σu,α by σ(u)(α) ∈ {0, 1}.
Lemma 2 applied to S′′ implies that the constraint system resulting from the above substitution has
a satisfying assignment; following the argumentation in item (2) above we get that this assignment
maps Prsinit

DS′′ (L) > λ to p(s,q)init
, thus also satisfying (D.1b)). However, for this satisfying assignment

the number of positive xs variables is smaller than for ν, which contradicts our assumption that ν
minimizes the objective function.

5. It remains to show that the probability to satisfy L from sinit in M′ is maximal among all MCSs. This
proof is analogous to the previous item. Assume the opposite. Then there is some MCS M′′ of D for
P≤λ(L) with state set S′′ ⊆ S such that the probability to satisfy L in the initial state is higher inM′′
as in M′.
We apply the same replacement as above to the constraint system (G.1a)–(G.1o) to get a satisfying
assignment µ inducing M′′. Since M′ and M′′ are both minimal,

∑
s∈S ν(xs) =

∑
s∈S µ(xs), however

ν(p(s,q)init
) < µ(p(s,q)init

), contradicting the optimality of ν. �

Lemma 20 The MILP formulation (G.1a)–(G.1o) is complete.

Proof. Let M′ = (S′, sinit,Act , P ′, L′) be an MCS of M for P≤λ(L), in which the probability to satisfy L
in the initial state is the highest among all MCSs.

48



Since the subsystem M′ is critical, there is a memoryless deterministic scheduler σ for M′ ×A such that

Pr
(s,q)init

(M′⊗A)σ (♦ accept) > λ. Let B be the set of accepting BSCCs of (M⊗A)σ and Mi =
⋃
{C ∈ B |C ∩Ri =

∅ ∧ C ∩Ai 6= ∅} for i = 1, . . . ,m.
We define the following partial assignment ν:

• ν(xs) = 1 iff s ∈ S′

• ν(σu,α) = 1 iff u = (s, q) ∧ s ∈ S′ ∧ σ(u)(α) = 1, and

• ν(pu) = Pru(M′⊗A)σ (♦accept),

• ν(mi
u) = 1 iff u ∈Mi.

Now we show that there is a total extension of this assignment that satisfies all constraints:

(G.1a) The defined assignment minimizes this function, since the MCS is minimal with maximal probability
to satisfy L under all MCSs.

(G.1b) This constraint is satisfied since we do not select any action for states u = (s, q) with s 6∈ S′ and σ
selects exactly one action for each state u = (s, q) with s ∈ S′.

(G.1c) Since all states of Mi are contained in a BSCC, and—for all states in a BSCC—the probability that
a successor state is also in a BSCC is 1, this constraint is fulfilled.

(G.1d) For states u outside Mi and for actions not chosen by σ, the constraint is satisfied because in these
cases (2−mi

u−σu,α) ≥ 1. For states u = (s, q) with s ∈ S′ and action α = σ(u), ν(mi
u′) = 1 is required

for all successor states u′ of u. This is the case since Mi is a union of BSCCs.

(G.1e) In the definition of Mi we have required that Mi ∩Ri = ∅. Therefore this constraint is fulfilled.

(G.1f)–(G.1h) Each accepting BSCC in Mi contains by construction a state from Ai. Since in a BSCC each
state is reachable from each state, we can apply Lemma 12 to obtain a satisfying assignment for these
backward reachability constraints.

(G.1i) ν(p(s,q)init
) = Pr

(s,q)init

(M′⊗A)σ (♦ accept) > λ holds since the subsystem is critical.

(G.1j) For target states, which are the states in the accepting BSCCs, the reachability probability is one.

(G.1k) Since for each deadlocking state u without any outgoing transition ν(pu) = Pru(M′⊗A)σ (♦ accept) = 0
holds, the inequality is trivially satisfied. For non-deadlocking states, this inequation puts no constraints
on the probability values, thus it holds also in that case.

(G.1l) For states from an Mi this constraint is fulfilled trivially, since the right-hand side evaluates at least to
one. The case for σ(u) 6= α is similarly straightforward. The reachability probabilities for the remaining
states which can reach the accepting BSCCs satisfy the equality

pu =
∑

u′∈succM′⊗A(u,α)

P ′(u, α, u′) · pu

and therefore satisfy also this constraint. For the remaining states ν(pu) = 0 holds, also satisfying the
constraint.

(G.1m)–(G.1o) These are the backward reachability constraints ensuring reachability of the accepting BSCCs.
We distinguish different cases:

• s 6∈ S′: Set ν(tMu,u′) = 0 for all q ∈ Q, u = (s, q), u′ ∈ succM′⊗A(u) and ν(rMu ) = 0. Then all three
constraints are fulfilled.
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• s ∈ S′, but from u no accepting BSCC can be reached. Choose ν(tMu,u′) = 0 and ν(rMu ) = 0 as in
the previous case. Since ν(σu,α) = 0 for all α ∈ Act , the three constraints are satisfied.

• s ∈ S′ and from u a BSCC can be reached. According to Lemma 12 we can find a satisfying
assignment for these backward reachability constraints.

We have shown that the constructed assignment ν satisfies all constraints of the MILP. �

Theorem 9 The MILP formulation (G.1a)–(G.1o) is sound and complete.

Proof. The MILP formulation is sound by Lemma 19 and complete by Lemma 20. �
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