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Abstract—Model checkers for concurrent probabilistic sys-
tems have become very popular within the last decade. The
study of long-run average behavior has however received only
scant attention in this area, at least from the implementation
perspective. This paper studies the problem of how to efficiently
realize an algorithm for computing optimal long-run average
reward values for concurrent probabilistic systems. At its
core is a variation of Howard and Veinott’s algorithm for
Markov decision processes, where symbolic and non-symbolic
representations are intertwined in an effective manner: the
state space is represented using binary decision diagrams, while
the linear equation systems which have to be solved for the
induced Markov chains to improve the current scheduler are
solved using an explicit state representation. In order to keep
the latter small, we apply a symbolic bisimulation minimiza-
tion algorithm to the induced Markov chain. The scheduler
improvement step itself is again performed on symbolic data
structures. Practical evidence shows that the implementation is
effective, and sometimes uses considerably less memory than
a fully explicit implementation.

I. INTRODUCTION

Model checking of concurrent probabilistic systems with

tools like PRISM [1] is very popular these days. One of

the core concurrency models in this context is the model of

probabilistic automata (PA), which are akin to Markov deci-

sion processes (MDPs) [2]. The study of long-run behavior

for such models has however received only scant attention,

especially from the implementation perspective. On the other

hand, the study of long-run behavior is well understood for

Markov chain models, and efficient implementations exist in

many tools.

This paper aims at filling this gap, and aims at calculating

minimum or maximum long-run average reward properties

for MDPs. The computation of such properties is important
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not only in the concurrent system context. Applications in-

volve models from such different areas as highway pavement

maintenance, inventory management, biological models [2],

and self-stabilizing systems [3]. Depending on the appli-

cation, long-run average rewards may correspond to the

maximum expected fraction of time a system is working

if it is scheduled in an optimal way, the minimum cost per

time unit on the long run if an optimal policy is used, the

extremal expected fractions of time a self-stabilizing system

is up and working, etc.

De Alfaro and Bianco [4], [5] have put forward techniques

to specify general properties based on average long-run

values within a probabilistic logic. Their algorithm is based

on solving an explicit-state problem via linear programming,

after a number of transformation steps. While this approach

is conceptually very elegant, we are not aware of attempts

to arrive at an efficient and scalable implementation that

solves the problems specified. When considering complex

systems comprising multiple components, the number of

states to consider grows rapidly, often exponentially with

the number of processes. Because of this, the applicability

of an explicit-state implementation of such an algorithm is

severely constrained by the available memory. To alleviate

such problems, symbolic, i. e., BDD-based techniques are

known to have potential. To the best of our knowledge

however, no symbolic approach to compute long-run average

reward properties for MDPs has been devised yet.

This paper develops an efficient algorithm for computing

long-run average reward properties for MDPs. It harvests ex-

perience gained in the combination of symbolic and explicit

algorithms [6], pioneered by the hybrid approach [7] used

within PRISM. Our symblicit approach combines symbolic

and explicit analysis steps in a sophisticated manner. As

an algorithmic basis, we employ a variant of the algorithm

of Howard and Veinott [8], [9], [2] to compute minimum

or maximum long-run average reward properties of MDPs.

The basic idea of our approach is as follows. We maintain



the MDP using a symbolic representation. However, certain

parts of our calculations are done for very small explicit

models. Doing so, we swap back and forth between the

symbolic and explicit world, exploiting the benefits of both.

This way we are able to handle very large models, which are

impossible to store in an explicit-state manner. Using a fully

symbolic approach instead is feasible, but is unfavorable

owed to time requirement for computing necessary solutions

of linear equation systems.

To illustrate our approach, we report on applications of

the symblicit algorithm to a number of case studies. Some

of these cases are well known from other publications [10],

[11], and one of them [12] is a protocol that arose in

the study of self-stabilizing algorithms [3]. For each case,

we compare runtime and memory usage with an explicit-

state implementation. The results are encouraging. With a

slight modification of the symblicit algorithm, we can also

compute unbounded reachability probabilities for MDPs [4]

in an effective way. However for unbounded reachability the

results turn out to be inconclusive, as we will discuss.

II. PRELIMINARIES

In this section we briefly restate the general theory of

Markov decision processes, the policy iteration algorithm for

optimal long-run average rewards by Howard and Veinott [8],

[9] as described by Puterman [2] and finally the symbolic

representation of our models.

A. Stochastic Models and Bisimulation

We denote the collection of all probability distributions on

(Borel) subsets of a set S as Distr(S).
Definition 1: A discrete-time Markov chain (MC) is a

tuple (S,P) where S is a finite set of states and P :
S × S → [0, 1] with

∑

s′∈S P(s, s′) = 1 (or equivalently

P : S → Distr(S) is a stochastic matrix).

An MC D together with an initial state s0 ∈ S is a

discrete-time stochastic process (XD,s0
(n))n∈N such that

P (XD,s0
(0) = s0) = 1 and P (XD,s0

(n + 1) = s′ |
XD,s0

(n) = s) = P(s, s′).
Definition 2: A Markov decision process (MDP) is a

tuple (S, A,P) where S is the finite state space, A is a finite

set of actions and P ⊆ S × A × Distr(S) is the transition

relation such that for every pair (s, a) ∈ S × A we have at

most one transition (s, a, π) ∈ P.

We say that an action a ∈ A is enabled in a state s ∈ S
if there exists a triple (s, a, π) ∈ P. We denote the set of

enabled actions in a state s ∈ S as As and require As 6= ∅.
In each state s ∈ S, we have a nondeterministic choice

between the enabled actions. To obtain a stochastic process,

this nondeterminism must be resolved by a scheduler.

Definition 3: A stationary deterministic scheduler is a

function σ : S → A mapping each state s to an enabled

action a ∈ As.

A scheduler σ selects a probability distribution for each

state. This induces an MC with transition matrix Pσ : S →
Distr(S) such that Pσ(s) = π with (s, σ(s), π) ∈ P.

To the choice of an action, we can assign a reward which

we can interpret as a cost or bonus.

Definition 4: Given an MDP (S, A,P), a reward function

R : S × A ⇀ R maps a combination of a state and an

enabled action to a real value.

A scheduler for an MDP also assigns a reward structure

Rσ : S → R to the states of the induced MC, such that

Rσ(s) = R(s, σ(s)).
For an MDP M, given a scheduler σ and a reward

function R, we can define the long-run average reward when

beginning in state s as the Cesàro limit

gσ(s) =

(

lim
N→∞

1

N

N−1
∑

i=0

P
i
σRσ

)

(s).

We are interested in the minimum and maximum average

rewards we can obtain in the long run. Other scheduler

classes than the ones from Definition 3 exist, which may

have more information, like the history of the stochastic

process, or which may take randomized decisions. However,

within the given conditions, there always exists a stationary

deterministic scheduler which minimizes or maximizes the

long-run average reward probability for all possible initial

states at the same time [2].

B. Computing long-run average rewards

The policy iteration algorithm given in Algorithm 1 works

by starting with an arbitrary scheduler and improving it

until a scheduler which yields the extremal average reward

is obtained. We have specified the algorithm for obtaining

maximal values. If minimal values are to be computed,

arg max in lines 4 and 7 has to be changed to argmin.
In line 1, an arbitrary initial scheduler is chosen. Then, in

lines 2–10, this policy is improved, until it is maximal or

minimal, respectively.

In line 3 we solve an equation system from which we

obtain the gain value gn under the current scheduler, as

well as a helper value bn, the bias. The gain corresponds

to the long-run average reward. To guarantee termination,

the equation system has to be equipped with an additional

constraint. We require that P
∗
σn

bn = 0 with P
∗
σn

=

limN→∞
1
N

∑N−1

i=0 P
i
σn

[2]. This restriction also allows us

to state the bias as bn(s) = Es {
∑∞

t=0 R(Xt) − gn(Xt)}.
Here, (Xt)t∈N is the stochastic process of the induced MC

and Es is the expectation under the condition that we start

(Xt)t∈N in s. Thus, we can interpret the bias as the expected

total difference between the reward and the long-run average

reward. As an illustrating example [2], consider the MC

D = ({s0, s1},P) with P(s0, s1) = P(s1, s0) = 1 and

reward structure R(s0) = 1 and R(s1) = −1. Starting in

state s0, the sequence of rewards is (1,−1, 1, . . .), leading
to a long-run average reward of 0, in the limit. The same

value is obtained for s1. When considering the bias, we see

that m 7→
∑m

t=0 R(Xt)−g(Xt) alternates between 1 and 0,
for the only path in the model when starting in s0. Thus, the

limit as well as the expectation in the bias interpretation for



s0 is 1/2 in this example. For s1 we obtain the value −1/2
since the sequence above alternates between −1 and 0.
In line 5 we try to locally improve the gain value, thus

obtaining an improved scheduler. If this is not possible

for any state, we try to locally improve the bias value

in line 7, also to obtain an improved scheduler. When

doing so, we must take care only to choose from actions

which also optimize the gain. If with neither of the above

an improvement is possible, we have found an optimal

scheduler and terminate the algorithm in line 10. Otherwise,

we restart by solving the equation system of the new induced

MC, try to improve the scheduler again, and so on.

Algorithm 1 Computing long-run average rewards [8], [9],

[2]

LongRunAverageReward(MDP M, Rewards R)

begin

n := 0, σ0 := arbitrary scheduler (1)

repeat (2)

Obtain gn and bn which satisfy (3)

(Pσn
− I)gn = 0

Rσn
− gn + (Pσn

− I)bn = 0

P
∗
σn

bn = 0.

Ās := argmax
a∈As

∑

s′∈S

P(s
a
−→ s′) · gn(s′), (4)

Choose σn+1 such that σn+1(s) ∈ Ās, (5)

setting σn+1(s) := σn(s) if possible.

if σn+1 = σn then (6)

Choose σn+1 such that (7)

σn+1(s) ∈ argmax
a∈Ās

(

R(s, a) +

∑

s′∈S

P(s
a
−→ s′) · bn(s′)

)

,

setting σn+1(s) = σn(s) if possible.

end if (8)

n := n + 1 (9)

until σn−1 = σn (10)

return (σn−1, gn−1) (11)

end

C. Lumping

The idea of bisimulation lumping [13], [14], [15] is to

subsume certain states which behave equivalently for the

class of properties under consideration. For our purposes, we

can use the following notion of equivalence of two states.

Definition 5: Let (S,P) be an MC and R : S → R

a reward structure on its states. A partition P of S is a

bisimulation if, for all s, t ∈ S such that s and t are

contained in the same block of P and all blocks C of P ,

the following holds:

R(s) = R(t) and P(s, C) = P(t, C),

where P(s, C) =
∑

s′∈C P(s, s′). Two states s, t ∈ S are

bisimilar (s ∼ t) if there exists a bisimulation P such that

s and t are contained in the same block of P .

Given a bisimulation, we can define the quotient of the

model, which is a minimized model equivalent to the orig-

inal one. Equivalence means that the quotient satisfies the

same transient and steady-state properties (including long-

run average rewards) as the original model [16].

Definition 6: Let (S,P) be an MC and P be a bisimula-

tion. The bisimulation quotient is the MC (P,P′) such that

P
′(C, C′) = P(s, C′) where s ∈ C and C, C′ ∈ P .

We transfer the reward function to the quotient of an MC by

assigning each of its states the value of one of its constituent

states. This notion can be lifted to MDPs. Usually, we are

interested in the unique largest bisimulation, which leads to

the smallest bisimulation quotient.

D. Symbolic Model Representation

Algorithms that rely on explicit state space representations

(e. g., sparse matrix representations) are severely limited by

the size of systems that they can handle. To circumvent this

problem, we employ symbolic data structures, in particular

(Multi-terminal) Binary Decision Diagrams ((MT)BDDs)

[17], [18], in our algorithm to represent data.

BDDs are a data structure for the compact representation

of binary functions of n binary variables, i. e., {0, 1}n →
{0, 1}. A BDD is a directed acyclic graph, consisting of

decision nodes, each labeled with one of the variables, and

two constant nodes, labeled with 0 and 1, respectively. One
node is marked as the root node. Decision nodes have two

edges, high referring to setting the associated variable to 1
and low for 0. The function value is given by the label of

the leaf reached by following the path that is induced by the

variable assignment.

MTBDDs [18] are a generalization of BDDs used to

represent functions of n binary variables, i. e., {0, 1}n → V
where V is a finite set. We use calligraphic letters to denote

(MT)BDDs.

By putting restrictions on the order in which the vari-

ables occur along paths and by removing redundant nodes,

resulting in so-called reduced ordered (MT)BDDs, we obtain

a canonical data structure for Boolean functions [17]. We

assume that all (MT)BDDs are ordered and reduced. We

denote the number of nodes (or the size) of an (MT)BDD

G by |G|.
A Markov decision process can be represented symbol-

ically using BDDs and MTBDDs as the tuple (S,A, T ):
the state space S is represented by a BDD S(s) such

that S(s) = 1 iff s ∈ S. For the set of actions which

are enabled in state s, we use a BDD A(s, a) such that

A(s, a) = 1 iff a ∈ As. For the transitions we use an

MTBDD T (s, a, t) such that T (s, a, t) = P(s
a
−→ t) if s

has an out-going a-transition, and 0 otherwise. The reward

function can be represented similarly by an MTBDD R(s, a)
such that R(s, a) = R(s, a).



A scheduler σ can be represented by a BDD Σ(s, a) such
that Σ(s, a) = 1 iff σ(s) = a. Given a Markov decision

process and a scheduler, we can compute the induced MC

and reward by

P(s, t) = Q+
a

(

T (s, a, t) · Σ(s, a)
)

and

U(s) = Q+
a

(

R(s, a) · Σ(s, a)
)

,

where Q⊙
x is the quantification operator w. r. t. an associative

and commutative operator ⊙:

Q⊙
x (A(x, y)) =

⊙

a∈{0,1}n

A(x := a, y).

In the formulae above,R(s, a)·Σ(s, a) yields an MTBDD in

which there is for each state s exactly one action a leading to

a non-zero value. Hence, summing over all possible actions

a, we obtain an MTBDD which assigns each state this

unique value. The same is done in the other formula.

Symbolic representation and computation of quotients

is more involved. To represent a partition of n blocks

C0, . . . , Cn−1, we introduce a vector v of (at least) m =
⌈log2 n⌉ new variables v = (v0, . . . , vm−1). The partition is

represented using the BDD

P(s, v) =
n−1
∨

i=0

encBin(i, v) ∧ Ci(s).

Here, Ci(s) is the BDD representing Ci and encBin(i, v)
returns the BDD for the binary encoding of the natural

number i using the variables v.
We start the refinement with a partition of the state space

where we relate all states to which the same reward is

assigned, i. e.,

Pinit =



















{

{s ∈ S |R(s) = R(t)}
∣

∣ t ∈ S
}

for MCs,
{

{s ∈ S |As = At ∧

∀a ∈ As : R(s, a) = R(t, a)}
∣

∣ t ∈ S
}

for MDPs.

We refine our partition until a fixed point is reached. After-

ward, we can easily transform the quotient (which is often

much smaller than the original model in particular in the case

of models that are constructed through parallel composition)

to an explicit form, e. g., using a sparse matrix representation.

A detailed description of our partition refinement algorithm

can be found in [19], [20].

III. SYMBLICIT COMPUTATION OF LONG-RUN AVERAGE

REWARDS

A. Basic Algorithm

The underlying principle of our symblicit algorithm is the

same as in Algorithm 1. The most important change is

the combination of symbolic and explicit data structures

in order to yield efficiency w. r. t. memory consumption

and runtime. We use a BDD-based representation of the

MDP, the schedulers, and the induced MCs. Solving linear

equation systems is much more efficient using an explicit

representation of the matrix, provided that they are small

enough to fit into memory [7], [21]. Therefore we apply

a symbolic lumping algorithm to the induced MC first

and convert the resulting – often much smaller – quotient

system to an explicit sparse matrix representation. Using

this representation we compute the gain and bias values

for the quotient system. These values are converted to a

symbolic BDD-based representation and transferred back

to the original (non-minimized) system. The update of the

scheduler is finally performed in a symbolic manner.

Algorithm 2 depicts the pseudo-code of this procedure. In

line 1 we choose an initial scheduler. This can easily be im-

plemented by setting σ = MAKEUNIQUE(A, cubea, ∅) (see
Algorithm 4). We improve the scheduler along lines 2–10.

In line 3, we compute the MC and reward structure induced

by the current scheduler, as described in Section II-D.

In lines 4 and 5 we generate the smallest bisimulation

quotient of the symbolic model and convert it to an explicit-

state form. Using the explicit state quotient, in line 6

we solve the equation system of Algorithm 1 line 3 to

obtain gain and bias values. Then, in line 7, we map these

values back to the symbolic model such that each state gets

assigned the values of the partition block it is contained in.

If P is the BDD of the bisimulation and g the vector of gain

values, this operation corresponds to the following formula:

g(s) := Q+
v

(

P(s, v) ·
n−1
∨

i=0

(

encBin(i, v) · leaf(g
(

Ci)
)

)

)

.

The function leaf(v) creates a new MTBDD leaf with value

v ∈ R.

The bias values b(s) for the original system can be

computed in the same way, replacing g by b in this formula.

We use the values g and b to improve the scheduler in

line 8. In Section III-B we give a detailed description of the

symbolic implementation of this update.

The validity of this method is justified by the following

lemma. The proof can be found in the extended version [22]

of this paper.

Lemma 1: Let D = (S,P) be an MC and D
′ its quotient

induced by a bisimulation P . Let g′ : P → R and b′ :
P → R be such that the equations of Algorithm 1 line 3

are fulfilled in D
′. Then, the gain and reward functions g :

S → R and b : S → R with g(s) = g′(C) and b(s) = b′(C)
where s ∈ C and C ∈ P also fulfill the given equations.

B. Improving Schedulers

For the update step (line 8 of Algorithm 2), we have to solve

the following problem: given a BDD A(s, a) specifying

which actions a are selectable in state s and an MTBDD

V(s, a) which assigns each action (of a superset ofA(s, a)) a
value, compute a BDD B(s, a) which contains for each state

s exactly one action that is selectable and that maximizes (or

minimizes, resp.) the value of V(s, a) among the selectable

actions of state s. Furthermore, the algorithm for long-run



Algorithm 2

LRAR SemiSymb(MDP M = (S,A, T ), Reward R)

begin

n := 0, Σn := ChooseInitialScheduler (1)

repeat (2)

(P ,U) := InducedMCAndRew(M,R, Σn) (3)

(P ′,U ′) := Lump(P ,U) (4)

(D′,R′) := Explicit(P ′,U ′) (5)

(g, b) := GainAndBias(D′,R′) (6)

(g, b) := MapValuesToSym(g, b) (7)

Σn+1 := ImproveScheduler(Σn, g, b) (8)

n := n + 1 (9)

until Σn−1 = Σn (10)

return (Σn, g) (11)

end

average rewards requires us to make the same choice as in

the previous iteration whenever possible.

A solution to this problem is given in Algorithm 3. First,

we determine the values of the selectable actions in line 1.

All non-selectable actions are thereby mapped to −∞ (when

maximizing) or +∞ (when minimizing). Then we traverse

V ′(s, a) and determine the optimal value vopt. In another

pass through this MTBDD we replace the leaf with value

vopt by 1 and all other leaves by 0. This yields a BDD

O(s, a) which assigns each state all selectable actions that

lead to the optimal value.

Algorithm 3

Select(BDD A, MTBDD V , BDD Σn)

begin

V ′ :=
(

V · A
)

+
(

¬A · leaf(±∞)
)

(1)

vopt := Maximum(V ′) (or Minimum(V ′), resp.) (2)

O := EqualValue(V ′, vopt) (3)

B := O ∧ Σn (4)

U := O ∧ ¬Q∨
a

(

B(s, a)
)

(5)

N := MakeUnique(U , cubea, ∅) (6)

B := B ∨ N (7)

return (O,B) (8)

end

If O permits the same choice as in Σn, we have to make

this choice again. Therefore we first intersect O(s, a) with

Σn(s, a). For the other states, stored in U , for which the old

choice is no longer optimal, we have to select a new action.

If we presuppose a variable order of the BDDs such

that the ai-variables precede the sj-variables, we can use

the function MAKEUNIQUE (see Algorithm 4) to make this

choice.1

1For the reverse variable order, in which the state variable precede the
action variable, a similar algorithm can be used.

Algorithm 4

MakeUnique(MTBDD F , BDD Ca, BDD& seen)
begin

if F = 0 then (1)

return 0 (2)

else if a 6= const then (3)

ai := topVar(Ca) (4)

high := MakeUnique(F|ai=1, C
a
|ai=1, seen) (5)

low := MakeUnique(F|ai=0, C
a
|ai=1, seen) (6)

result := FindOrCreate(ai, high, low) (7)

return result (8)

else (9)

result := F ∧ ¬seen (10)

seen := seen ∨ result (11)

return result (12)

end if (13)

end

MAKEUNIQUE takes three parameters: F is the BDD of

state/action pairs we have to make the selection from, Ca is

the cube (i. e., conjunction) of all action variables, and seen
contains all states for which we have already determined an

action. Please note that seen may be changed by recursive

function calls. Initially, seen is the empty set.

We traverse the top part of the BDD, which is labeled

with action variables, until we reach a node labeled with a

state variable (in this case Ca becomes constant). This node

represents all states for which the action that is encoded by

the path from the root node to the current node is optimal.

We remove from this sub-BDD all states for which we have

already determined an action and add the remaining states

to the seen states.

The function SELECT (Algorithm 3) can now be used to

perform the scheduler update operation. The details are given

in Algorithm 5. Lines 1 and 2 directly correspond to lines 4

and 5 of Algorithm 1. The same holds for lines 3–5 and

lines 6–7 of Algorithm 1.

Algorithm 5

ImproveScheduler(MDP M = (S,A, T ), BDD Σn)

begin

V(s, a) := Q+
t

(

T (s, a, t) · g(t)
)

(1)

(Ā, Σn+1) := Select(A,V , Σn) (2)

if Σn+1 = Σn then (3)

V(s, a) := R + Q+
t

(

T (s, a, t) · b(t)
)

(4)

(·, Σn+1) := Select(Ā,V , Σn) (5)

end if (6)

return Σn+1 (7)

end



C. Bisimulation Reuse

In order to speed up the algorithm, we try to improve

the repeated lumping of induced MCs by reusing already

computed partitions.

With the exception of the first few iterations, we expect

that the scheduler update does not change the induced

Markov chain substantially. Since the bisimulation minimiza-

tion is the most expensive step (see Section IV), we want

to reduce the minimization time by reusing bisimulation

partitions from previous iterations. This does not affect the

correctness, since the result is still a bisimulation relation,

although in general not the coarsest possible one.

The first possibility is to compute the bisimulations dur-

ing the first n iterations as before, but in the subsequent

iterations, to use the partition of the n-th iteration as initial

partition. Alternatively, we can use, from the (n + 1)-th
iteration on, the bisimulation from the previous partition as

starting point for refinement. Since the reward structure of

the induced MC also depends on the scheduler, we need

an extra refinement step to take the reward structure into

account if it has changed.

The hope is that only few iterations are then necessary

to reach the new fixed point, thereby saving computation

time. The drawback is that the bisimulation gets finer than

necessary. This results in time and space overhead and larger

equation systems for computing gain and bias values.

D. Unbounded Reachability

The algorithm for long-run average rewards can also be

used to compute probabilities for another important class of

properties, namely unbounded reachability properties of the

form ϕ1 Uϕ2. A path π = s0s1s2 . . . in an MDP satisfies

such a property if there is i ≥ 0 such that si satisfies ϕ2

and all states sk with k < i satisfy ϕ1.

Computing the probability to walk along such a path can

be reduced to computing the long-run average reward of a

system as follows: states which satisfy ¬ϕ1 ∨ ϕ2 are made

absorbing by removing all out-going edges and adding a

self-loop with probability 1 [23]. We define the following

reward function

R(s, a) =

{

1, if s satisfies ϕ2 and a ∈ As,

0, otherwise.

We refer the reader to the extended version [22] of this paper

for a proof that the long-run average reward of a state s and

the probability to walk along a path that satisfies ϕ1 Uϕ2

when starting in s agree.

IV. CASE STUDIES

We have implemented three different versions of the algo-

rithm for long-run average rewards in a prototypical imple-

mentation: the first version follows directly Algorithm 1 and

uses explicit sparse matrix representations. The second ver-

sion computes the bisimulation quotient of the MDP using

the symbolic signature-based algorithm [24], then converts

the quotient to the explicit sparse matrix representation, and

finally applies Algorithm 1. The third version is the symblicit

algorithm described in Section III (Algorithm 2).

For the (MT)BDDs we use the Colorado University deci-

sion diagram package (Cudd) [25]. We solve all linear equa-

tion systems using the SOR-method [26], with the relaxation

parameter ω set to 0.9 (except for a few cases where this

value prevented termination; then we used ω = 0.4).

All experiments (with one exception) were run on a

3.0 GHz Intel Core2 Duo processor with 3 GB of main

memory running Linux (Kubuntu 9.10). We stopped any

experiment which took more than 10 hours. For each

case study, we give a short description as well as a table

stating the resulting values and performance statistics for

several variants of the model. We give the number of states

(“States”) and transitions (“Trans.”) of the original MDP, as

well as time (“Time”) (in seconds) and memory (“Mem.”) (in

megabytes) for each of the three engines. For the symblicit

algorithm, we consider the basic version (“S-Basic”) as

well as the heuristic where we reuse existing partitioning

information, either using the bisimulation computed in the

first iteration as initial partition for the subsequent ones

(“S-First”) or always the bisimulation from the previous

iteration (“S-Last”). Information is given for both minimal

and maximal values (“Mode”).

As case studies we used a number of models most

of which are publicly available on the web page of the

PRISM model checker http://www.prismmodelchecker.org.

For a more exhaustive description of the case studies, we

refer to this website and the literature cited. We give results

and performance figures in Table I. At first, we consider

the case studies for which we compute long-run average

rewards.

Dining Philosophers (Lehmann, Rabin) [10]. We consider

a probabilistic extension of the classical dining philoso-

phers model by Lehmann and Rabin. The randomness is

introduced by having the philosophers pick up their left

or right spoon with a probability of one half each. A

scheduler nondeterministically allows one of the N different

dining philosophers to make his next move. We can prevent

participants from starving by restricting to fair schedulers.

However, we consider all schedulers and thus the minimum

average long-run number of philosophers eating is always

zero. This means that a nasty scheduler may decide to let

every philosopher die of hunger. The maximal number of

philosophers eating is about half the number of philosophers.

This is the case because a scheduler can decide to place as

many philosophers as possible in their eating phase. These

stay there, while the other philosophers starve.

The model size grows with increasing number of partici-

pants. For those instances where the explicit state implemen-

tation did not run out of memory, it is much faster than the

symbolic variants. The relatively large memory usage of the

symbolic techniques for the smallest model variant is due to

the overhead of BDDs when applying them on small state



Table I: Case Studies Performance Results (Long-run Average Rewards)
Dining Philosophers (Lehman)

N States Trans. Mode
Explicit MDP Min S-Basic S-First S-Last

Value
Time Mem. Time Mem. Time Mem. Time Mem. Time Mem.

5 93068 599600
max 3.80 20.67 101.83 201.39 3.33 40.79 6.62 51.33 3.36 42.84 2
min 1.29 20.43 100.65 201.17 0.03 8.24 0.03 8.24 0.02 8.24 0

6 917424 7092696
max 37.76 229.17 1617.24 2127.62 82.68 57.33 186.78 72.64 175.24 104.89 3
min 16.70 227.11 1606.10 2125.44 0.06 9.88 0.04 9.88 0.05 9.88 0

7 9043420 81568144
max 540.07 2513.61 – Memory out – 154.01 83.02 361.37 117.69 253.29 170.05 3
min 199.52 2493.07 – Memory out – 0.09 11.17 0.07 11.17 0.07 11.17 0

8 89144512 918913056
max – Memory out – – Memory out – 5330.52 614.64 10998.45 1210.20 – Memory out – 4
min – Memory out – – Memory out – 0.12 13.52 0.09 13.52 0.08 13.52 0

9 878732012 10190342448
max – Memory out – – Memory out – 5131.26 1099.93 10879.45 2297.83 – Memory out – 4
min – Memory out – – Memory out – 0.16 17.98 0.12 15.15 0.11 15.15 0

10 8662001936 111611282280
max – Memory out – – Memory out – – Memory out – – Memory out – – Memory out – 5
min – Memory out – – Memory out – 0.22 19.27 0.16 18.36 0.16 18.36 0

15 806171451829916 15581472413070480
max – Memory out – – Memory out – – Memory out – – Memory out – – Memory out – 7
min – Memory out – – Memory out – 0.73 34.80 0.48 34.80 0.49 34.80 0

Dining Philosophers (Duflot)

N States Trans. Mode
Explicit MDP Min S-Basic S-First S-Last

Value
Time Mem. Time Mem. Time Mem. Time Mem. Time Mem.

3 956 3048
max 0.11 0.15 0.19 9.44 0.54 9.25 1.10 10.06 0.53 9.41 0.842105
min 0.37 0.15 0.55 9.44 3.51 18.88 2.90 10.36 1.44 10.57 0.0169492

4 9440 40120
max 1.56 1.64 4.53 53.80 16.45 38.73 31.84 53.77 18.69 49.61 1.21429
min 2.25 1.65 6.07 53.80 77.70 59.08 68.46 60.19 32.81 56.97 0.010989

5 93068 494420
max 16.95 18.21 82.25 180.83 283.11 76.54 421.71 76.41 283.49 73.89 1.84211
min 32.23 18.30 89.45 180.92 2073.27 92.18 1895.02 103.11 821.04 107.06 0.00763359

6 917424 5848524
max 361.38 200.66 1262.60 1929.03 15393.95 236.33 9098.57 373.38 6267.19 590.17 2.19512
min 549.61 201.62 1388.16 1930.11 – Time out – – Time out – – Time out – 0.00507482

Minimal Spanning Tree

N L R States Trans. Mode
Explicit MDP Min S-Basic S-First S-Last

Value
Time Mem. Time Mem. Time Mem. Time Mem. Time Mem.

4 3 5 6087 31238
max 0.87 1.23 0.90 17.54 3.60 22.08 2.52 23.96 2.17 22.32 0.82022
min 2.84 1.40 1.69 17.54 3.76 21.50 3.12 20.68 2.34 20.70 0.666325

5 3 6 389163 3067562
max 181.17 95.23 62.77 66.52 128.15 65.23 109.95 64.67 90.10 64.36 0.807324
min 403.69 106.00 92.09 66.52 153.63 63.02 146.15 67.82 123.92 63.48 0.569486

5 4 6 283263 1879262
max 79.27 67.02 18.59 52.43 62.99 66.51 59.19 66.49 47.01 66.49 0.746579
min 343.81 69.17 32.26 52.43 85.58 66.48 76.65 66.49 62.11 66.49 0.595175

5 4 7 535263 3967262
max 201.03 121.28 22.14 66.89 123.99 66.31 127.08 65.53 89.40 65.55 0.759498
min 328.02 132.49 25.76 66.89 120.70 66.97 112.47 65.53 88.21 68.02 0.537119

6 5 7 20440893 167251772
max – Memory out – 692.84 177.77 1633.75 135.33 1499.91 175.40 1252.96 171.25 0.733402
min – Memory out – 686.29 178.34 1665.59 142.39 1427.16 163.54 1275.14 170.37 0.589117

7 6 8 2110978929 20601368048 max – Memory out – – Memory out – 1256380.25 10127.43 – – 0.59571

spaces, as they were not developed for such models. The

implementation minimizing the MDP is rather ineffective in

this case study, in both memory usage and speed, since the

application of bisimulation minimization to the MDP state

space does not reduce its size. In contrast, the symblicit

algorithm, which minimizes the induced MCs, is able to

handle much larger state spaces than the other versions.

Among the symblicit variants, the basic one performs best

since when reusing an already computed bisimulation, the

quotient system becomes much finer than necessary, causing

large memory and runtime overhead.

We were able to complete model variants with several

hundred millions of states. The analysis of minimal values

always succeeded and never took many resources, whereas

the analysis of maximal values was more involved. The

maximal value for N = 15 was obtained by manual analysis.

Dining Philosophers (Duflot et al.) [11]. This case study

by Duflot, Fribourg and Picaronny is a variant of the dining

philosophers model by Lehman and Rabin. This protocol

works correctly even under unfair schedulers. The difference

is that philosophers cannot be scheduled if their next transi-

tion is a loop. Because of this restriction, the extremal values

are less diverse than for the previous model.

Performance results are worse in that more time and mem-

ory was needed for models of the same size. We believe that

the reason for this is, that the restriction of the schedulers to

schedule only some philosophers breaks symmetries in the

model, leading to larger BDDs and quotient MCs.

In this model, the explicit-state engine performed better

than the symbolic and symblicit ones. For the symblicit

implementations, partition reuse resulted in a speed up of

the analysis, but lead to a significantly increased memory

usage. For the next larger instance (i. e., for n = 7), the
explicit tool, the variant which minimizes the MDP, and S-

Last run out of memory, while the S-Basic and S-First fail

due to the time limit.

Minimal Spanning Tree [12]. We model a self-stabilizing

distributed algorithm which computes a minimal spanning

tree in a network with N nodes. We compute the maximum

and minimum availability, i. e., the fraction of time in which



the system is in a safe state. Assuming absence of failures,

this number would be one [12]. However, due to, e. g.,

communication failures the system may leave the state where

a result has been computed, and recover after some time.

We have to take into account that nodes in principal work

in parallel, at equal speed, but do not work in a lock-step

manner. To obtain realistic results, we added restrictions on

the number of steps the scheduler can wait to schedule a

certain node. These scheduler classes refer to restrictions

on the relative clock drifts of the network nodes. We use

schedulers for which we have a lower bound L on the

number of steps a node may be delayed on scheduling,

as well as an upper bound R, in contrast to the dining

philosophers model of Lynch et al. [27], where only an upper

bound on the step number to wait is possible.
With decreasing L and increasing R, because of the

increased scheduling freedom, the minimum average reward

decreases while the maximum probability increases. An

increasing number of nodes leads to an increase in the

state spaces. The same also holds for decreasing L and

increasing R, because of the growing amount of information

the scheduler has to maintain. The explicit state implemen-

tation quickly runs out of memory for larger models. The

implementation which minimizes the MDP is faster than

the symblicit implementation, but needs more memory and

thus cannot be applied on the model variant with N = 7.
Concerning different heuristics of the symblicit algorithm

we observe a trade-off between time and space.
Notably, the analysis of the variant with N = 7 had to be

performed on a different architecture, namely a computation

server with four AMD Quad-Core Opteron processors with

2.3 GHz CPU frequency and 64 GB of main memory,

running in 64 bit mode. Because of the very large number

of states, the explicit state implementation as well as the

MDP minimizing implementation ran out of memory. The

symblicit implementation took considerable time, but was

finally able to compute maximum long-run average rewards.
To get a better feel of the various steps of the symblicit

approach, we studied the accumulated times for key opera-

tions over all benchmarks for which the symblicit algorithm

(without bisimulation reuse, i. e., “S-Basic”) was able to

compute the maximum or minimum long-run average re-

wards. The following table contains the fractions of the total

runtime spent for the different operations. The bisimulation

computation clearly dominates the runtime.

Operation Fraction of time

Bisimulation computation 90.81%

Quotient extraction 3.08%

Solution of linear equation systems 0.67%

Scheduler updates 4.01%

As described in Section III-D, we can also use the

symblicit approach to compute time-unbounded reachability

properties. To study the effectiveness of this approach, we

considered a number of case studies, comparing with a

standard implementation of unbounded reachability, imple-

mented in PRISM. The results are given in Table II.

Asynchronous Leader Election Protocol [28]. In this case

study, we consider an asynchronous ring of N processors

which use a protocol such that they will be able to elect

a leader (a uniquely designated processor) by sending mes-

sages around the ring. The exact content of messages is cho-

sen probabilistically. With a certain probability, processes be-

come inactive, until finally the leader is fixed. The protocol

is asynchronous in the sense that processes do not work in

lock step but for each time step the scheduler schedules one

of them. We consider the minimal and maximal probability

that one specific process finally becomes the leader. We see

that the probability is 1/n in both cases. Thus, it is guaranteed

that under all possible schedulers, each participant has the

same chance of becoming the leader finally.

In this setting, PRISM is considerably more effective in

solving the unbounded reachability problem, due to the large

memory usage of our implementation.

Mutual Exclusion Protocol (Rabin) [29]. We consider a

case study by Rabin et al. in which a number of N processes

compete with each other to enter a critical section. We

consider the minimal and maximal probability that a fixed

process, for instance the first one, enters the critical section

next. As on the PRISM homepage, we restrict to those states

where the values drawn by the other processes are below K .

Notably, our symblicit implementation is more or less

comparable to PRISM in this case, though not as efficient

in time and memory usage. The explicit and symbolic

implementations run out of memory rather early.

Dining cryptographers [30]. This case study considers a

group of N cryptographers which have dinner at a restaurant.

An agreement has been made that the dinner will be paid

anonymously. The cryptographers want to find out whether

one of them has to pay for the dinner, or whether their master

will pay it. In case one of the cryptographers has to pay for

the dinner, the group wants him to stay anonymous. The

problem is solved as follows: each member of the group

flips an unbiased coin and only tells the outcome to his right

neighbor. In case a cryptographer is not paying the bill, it

will tell “agree” if his coin and the one of his left neighbor

agree, and “disagree” else. However, if a cryptographer is

paying the bill, he will inverse the answers. Then, if N is

odd and an odd number of “agree” occur, the master pays the

bill. The same is the case if N is even as well as the number

of “agree”. In the other cases, one of the cryptographers pays

the bill. The nondeterminism results because there are N +1
possible persons to pay the bill, and from the unspecified

order in which the cryptographers toss their coins. The

property we consider here is the anonymity of the group

members. Anonymity is guaranteed if in the case that one

of the cryptographers pays, every possible combination of

“agree” and “disagree” along the group members has the

same probability, independent of the member who paid. To

check this, we compute the minimal and maximal probability

of each of the 2N−1 possible outcome under the condition



that a cryptographer pays. As we see from the result table,

anonymity is guaranteed.

Concerning performance, the general picture is like the

one of the mutual exclusion protocol case study.

General Observations. For the prime concern of this paper,

long-run average properties, our implementation performed

well for a number of case studies. Especially for some large

cases, our symblicit technique outperforms both the explicit

state implementation as well as an implementation which

is based on minimizing the MDPs directly. For the ones

where it failed, we observed in many cases that the first

policy improvement steps where effective, but later steps

lead to excessive memory usage, prematurely terminating

the run. To avoid such problems, we are planning to tune the

policy selection algorithm such that from the legal policies

the policy which leads to the smallest memory usage will be

selected. In addition, the approach could profit very much

from heuristics leading to an improved choice of the initial

scheduler.

Unbounded reachability analysis generally performed

worse when using the symblicit implementation compared to

when using PRISM. One reason is that our prototypical im-

plementation uses more memory in some places than would

be necessary. Furthermore, we are currently using strong

bisimulation when calculating unbounded reachability, while

weak bisimulation would also be sufficent to preserve the

unbounded reachability probabilities, but allows to subsume

more states. This would lead to smaller quotients, and thus

a decreased memory usage.

V. CONCLUSION

This paper has introduced a new algorithmic approach to

compute long-run average properties for Markov decision

processes. The symblicit algorithm combines symbolic and

explicit computation steps in a way that exploits the respec-

tive benefits. We have shown the correctness of the approach

and have reported on empirical evidence that the symblicit

technique outperforms for large models both the explicit-

state implementation as well as an implementation which

is based on minimizing the MDPs directly. The algorithm

has applications in many diverse areas, among them long-

run stability assessment of self-stabilizing systems. We are

focusing especially on this application context. Further al-

gorithmic work will especially focus on improved memory

consumption in the directions identified in the experimental

studies.
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