
Symbolic Partition Refinement with Dynamic
Balancing of Time and Space

Ralf Wimmer∗

Institute of Computer Science, Albert-Ludwigs-University Freiburg, Germany
wimmer@informatik.uni-freiburg.de

Salem Derisavi†

IBM Toronto Software Lab, Canada
derisavi@ca.ibm.com

Holger Hermanns∗

Department of Computer Science, Saarland University, Germany
hermanns@cs.uni-sb.de

Abstract
Bisimulation minimization is one of the classical means
to fight the infamous state space explosion problem in
verification. Particularly in stochastic verification, nu-
merical algorithms are applied, which do not scale be-
yond systems of moderate size. To alleviate this prob-
lem, symbolic bisimulation minimization has been used
effectively to reduce very large symbolically represented
state spaces to moderate size explicit representations.
But even this minimization may fail due to time or
memory limitations. This paper presents a symbolic
algorithm which relies on a hybrid symbolic partition
representation. It dynamically converts between two
known representations in order to provide a trade-off
between memory consumption and runtime. The con-
version itself is logarithmic in the partition size. We
show how to apply it for the minimization of Markov
chains, but the same techniques can be adapted in a
straightforward way to other models like labeled transi-
tion systems or interactive Markov chains.

1 Introduction
Bisimulation equivalence [21, 20] equates two systems
if their stepwise behavior is indistinguishable. Since
bisimilar systems satisfy the same CTL∗ and µ-calculus
formulae, bisimilar systems can be used interchange-
ably in compositional model construction [22] and

∗This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS). See www.avacs.org for more
information.

†Part of this work was done while the co-author was at Car-
leton University in Ottawa, Canada.

model checking [8]. In particular one can switch from
the original to the minimal size quotient system un-
der bisimulation when verifying some system property,
in order to fight the infamous state space explosion.
Efficient algorithms for bisimulation minimization are
available [23, 17, 6]. This minimization generalizes
symmetry reduction, but at a higher computational
cost. While it has been reported that bisimulation min-
imization is not favorable to speed up verification of in-
variance properties [12], it does pay off in many other
areas of system verification, such as compositional ap-
plications [11, 13] where large systems are constructed
from smaller building blocks, or when checking behav-
ioral equivalence, or multiple system properties.

For some areas of quantitative verification, espe-
cially model checking of stochastic systems, bisimu-
lation minimization appears almost indispensable. In
this context, numerical algorithms are applied to calcu-
late satisfaction probabilities of system properties [24],
and these algorithms do not scale to large systems,
since no effective technique is known to avoid the need
to store at least one floating-point value per state.
Thus, one strives for a reduction of the state spaces
as much as possible before model checking, and bisim-
ulation minimization does therefore pay off consider-
ably [18]. This motivates the renaissance of work on
bisimulation minimization algorithms. Rooted in the
work of Blom and Orzan [2, 3, 4], who developed a dis-
tributed algorithm for (strong and branching) bisimu-
lation, effective symbolic algorithms have been devel-
oped [28, 10, 9] and applied to models of sizes other-
wise far out of reach of contemporary stochastic model
checkers [5]. Here, the transition system is first con-

structed as an (MT)BDD, then it undergoes an aggres-
sive minimization (using branching or stochastic bisim-
ulation), before undergoing stochastic model checking.

While the above symbolic algorithms are similar in
spirit, they have conceptual and practically relevant
differences. The work of [28] utilizes a “fast” partition
representation that makes it possible to have a very
efficient algorithm in terms of computation time, but
in particular for large numbers of equivalence classes it
consumes considerable memory. On the other hand,
the “compact” partition representation of [10] stays
very small in terms of space requirements, but its draw-
back is that performing operations on the representa-
tion can become quite expensive timewise. The dif-
ference is caused by drastically different representation
techniques for encoding the state space partitions as
BDDs, which are accessed and refined by the algorithm.

To further push the limits of this technology, this pa-
per investigates a combination of the two approaches.
We develop an algorithm which is memory efficient by
using the compact partition representation of [10] and
runtime efficient by using the fast partition represen-
tation and refinement algorithm of [28]. Our “hybrid”
approach offers a “spectrum” of representations whose
extremes are the fast representation on one side and the
compact representation on the other. It provides us a
parameter by which we can control where in the spec-
trum a specific instance of the representation stands.

The contributions of the paper are 1) an algorithm
that converts between fast and compact partition rep-
resentations in a logarithmic number of BDD opera-
tions, 2) a simple but effective algorithm that auto-
matically changes the parameter mentioned above to
balance the time and space requirements of the algo-
rithm such that the refinement works at maximal speed
without exceeding the available memory, and 3) an im-
plementation of the conversion and parameter selection
algorithms into the principal refinement algorithm. We
experimentally evaluate the benefits of our algorithm,
and compare its performance with the algorithms of [9]
(that uses the fast representation of [28]) and [10].

The entire work is presented here in the context of
continuous-time Markov chain minimization. However,
there is a much broader spectrum of possible applica-
tions, since the techniques are straightforwardly adapt-
able to labeled transition systems, discrete-time or in-
teractive Markov chains, etc. The core contribution of
this paper is thus a general, fast, and memory efficient
algorithm for symbolic bisimulation minimization.

Organization of the paper: In the next section, we will
briefly review the foundations of our hybrid algorithm.
We will then present, in Section 3, our new hybrid al-
gorithm. We will show our experimental results in Sec-
tion 4 demonstrating the effectiveness of our approach.
We finally conclude in Section 5.

2 Background
In this section, we first review the concepts of
continuous-time Markov chains and stochastic bisim-
ulation. We then give a brief account of the general
principle of signature-based bisimulation minimization
algorithms, to set the ground for the new algorithm de-
veloped in this paper. We finally review symbolic data
structures and their use to represent various entities
appearing in our context, like matrices and partitions.

2.1 MCs and Stochastic Bisimulation
A continuous-time Markov chain (MC) M is a pair
M = (S,R) where S is a finite non-empty set of states
and R : S×S → R≥0 is the transition rate matrix such
that R(s, s) = 0 for all s ∈ S. The generator matrix
Q : S×S → R is defined as Q(s, s) = −

∑
s′∈S R(s, s′)

and Q(s, t) = R(s, t) for all s, t ∈ S with s 6= t.
A partition P of a set S is a set of pairwise disjoint,

non-empty subsets of S, such that their union equals
S. Elements of P are called blocks of P . In the sequel,
a subpartition is a subset of a partition. For elements
s and t in the same block of P , we write s ≡P t. Let
P and P ′ be partitions of S. P is called a refinement
of P ′ (or conversely P ′ coarser than P), denoted by
P v P ′, if ∀B ∈ P ∃B′ ∈ P ′ : B ⊆ B′.

For a matrix A and B,B′ ⊆ S, we define
A(B,B′) =

∑
s∈B

∑
s′∈B′ A(s, s′). For s ∈ S and B ⊆

S, we use A(s,B) and A(B, s) instead of A({s}, B)
and A(B, {s}) respectively.

Definition 1 Let M = (S,R) be an MC with gen-
erator matrix Q. A partition P of S is a stochastic
bisimulation if Q(s,B) = Q(t, B) for all blocks B of P
and all states s, t ∈ S satisfying s ≡P t.

2.2 Bisimulation Minimization using
Signature-based Refinement

Most bisimulation minimization algorithms in the lit-
erature use iterative partition refinement such that, in
each iteration, the current partition is refined w. r. t. a
block retrieved from a list of potential splitters. Blom
and Orzan were the first to devise an iterative algo-
rithm that, in each iteration, refines the current parti-
tion w. r. t. all blocks simultaneously [2]. Their algo-
rithm works by computing, in each iteration, the sig-
nature of all states w. r. t. the current partition (as
opposed to the current splitter in conventional algo-
rithms). Defined formally in Eq. (1), the signature of
a state with respect to a partition is the total transi-
tion rate from the state to each block of the partition.
States are kept in the same block iff they have the
same signature. The algorithm stops once the signa-
tures reach a fixpoint, i. e., a partition that will not be
split any further.

This signature-based principle is independent of the
type of representation (i. e., explicit or symbolic) used.

Originally designed for an explicit distributed algo-
rithm for branching bisimulation minimization of non-
probabilistic transition systems, Wimmer et al. [28]
and Derisavi [9] used it to develop symbolic minimiza-
tion algorithms for non-probabilistic and probabilistic
systems, respectively.

In the following, we present a signature-based algo-
rithm, which computes the coarsest stochastic bisimu-
lation that refines an initial partition, possibly induced
by atomic labels, rewards, etc. attached to states.

For a given MC M = (S,R) with generator matrix
Q and initial partition P (0) of S, the signature-based
algorithm is given as:

P (i+1) = sigref(P (i)) for i ≥ 0
sigref(P) ={

{s ∈ S | sig(P, s) = sig(P, t) ∧ s ≡P (0) t} | t ∈ S
}

sig(P, s) = {(r, B) ∈ R× P | r = Q(s,B)} (1)

Starting with the given initial partition P (0) (or P (0) =
{S} if no initial partition is explicitly given), the al-
gorithm iteratively applies the sigref-operator until a
fixpoint is reached. Theorem 1 guarantees that the fix-
point is the coarsest stochastic bisimulation of the MC.
For a proof, we refer the reader to [9].

Theorem 1 There exists f ≤ |S| − |P (0)| such that
P (f+1) = P (f) and P (f) is the coarsest refinement of
P (0) that is also a stochastic bisimulation on M .

2.3 (Multi-terminal) Binary Decision Di-
agrams

Algorithms that rely on explicit state space representa-
tions (e. g., sparse matrix representations) are severely
limited by the size of systems that they can handle.
To circumvent this problem, we employ symbolic data
structures, in particular (Multi-terminal) Binary Deci-
sion Diagrams ((MT)BDDs) [7, 1] in our algorithm to
represent data.

BDDs are a data structure for the compact repre-
sentation of binary functions of h binary variables, i. e.,
{0, 1}h → {0, 1}. MTBDDs are a generalization of
BDDs used to represent functions of h binary variables,
i. e., {0, 1}h → A where A is a finite set. We use cal-
ligraphic letters to denote MTBDDs. We assume that
all (MT)BDDs have a fixed variable ordering and are
reduced. We denote the number of nodes of (or the
size of) an MTBDD G by |G|. In the following, we ex-
plain how to use them to represent sets, matrices, and
in particular, partitions and signatures.

Set representation Let N ⊆ {0, 1}n be a set of
boolean vectors. It can be represented symbolically by
an MTBDD N (x) such that N (x) = 1 if x ∈ N and 0
otherwise.

Matrix representation We use MTBDDs to effi-
ciently represent transition matrices of MCs. A matrix

R : {0, 1}h × {0, 1}h → R can be represented using
an MTBDD R with 2h binary variables. The first h
variables encode the row index and the other h vari-
ables the column index. We use an interleaved vari-
able ordering in which each row variable is immedi-
ately followed by its corresponding column variable or
vice-versa. An interleaved variable ordering often leads
to small MTBDDs for MCs which are generated from
high-level models [14].

Partition representation The representation of
state space partitions appearing in the refinement al-
gorithm is a crucial aspect of the setting considered
in this paper. We are aware of four distinct tech-
niques for the symbolic representation of a partition
P = {B1, . . . , Bn}. For the third and fourth tech-
nique, we presuppose an arbitrary, but fixed order on
the blocks of each represented partition.

1. To use a BDD P to represent the corresponding
equivalence relation ≡P such that P(s, t) = 1 iff
s ≡P t. This representation is used, e. g., in [6],
which pioneered symbolic bisimulation minimiza-
tion.

2. To use one BDD per block. A partition represen-
tation is then a set {B1, . . . ,Bn} of BDDs such
that Bi(s) = 1 iff s ∈ Bi.

3. To use an extra set of BDD variables to denote
the block index. The partition is represented by
a BDD P such that P(s, k) = 1 iff s ∈ Bk. This
representation was introduced in [28] to compute
branching bisimulation on transition systems.(FR)

4. To use a vector of d = dlg ne BDDs (B0, . . . ,Bd−1)
such that Bj(s) = 1 iff s ∈ Bi and the jth bit of i is
one. In other words, Bj is the union of all blocks
whose indices have 1 in their jth bit. This rep-
resentation technique was introduced in [10], for
symbolic computation of stochastic bisimulation
in Markov chains. (CR)

These four representations differ in terms of their time
and space efficiency when applied in a symbolic im-
plementation of a refinement algorithm. We report on
detailed experiments in Section 4, but provide a pre-
view here for the sake of the exposition.

The first representation is inefficient in terms of its
memory requirements (see Section 4) and that leads
to its inefficiency in performing partition operations as
well [28]. As shown in Section 4 by a number of ex-
ample models, the second representation is not space-
efficient in practice either.

We classify the third technique as the one that en-
ables us to implement the key operations of the algo-
rithm very efficiently in terms of running time. We
therefore call it the fast representation (FR). One dis-
advantage of the fast representation is its size: the size

BisimMin(P(0))

1 P ′ := P(0)

2 repeat
3 P := P ′

4 σ(s, k) := Q+
t (R(s, t) · P(t, k))−D(s) · P(s, k)

5 P ′ := SigRefine(σ)
6 until (P = P ′)
7 return P

Figure 1: The Original Bisimulation Minimization Al-
gorithm using Signature-based Refinement

of BDD P is at least linear in the number of blocks.
More precisely, |P| = Ω(|P |), and that makes it un-
suitable for partitions with large number of blocks. The
fourth technique, in turn, is considerably slower to use,
but almost always has the smallest number of nodes
among the four representations. Therefore, we call it
the compact representation (CR) hereafter.

Signature representation We use an MTBDD
σP (s, k) to represent the signature of states in S w. r. t.
a partition P which is defined as follows: σP (s, k) = r
iff (r, Bk) ∈ sig(P, s).

2.4 Symbolic Implementation of the Re-
finement Algorithm

Fig. 1 shows the symbolic implementation of the
signature-based algorithm explained in Section 2.2.
Line 4 computes the MTBDD representation of the sig-
natures and SigRefine, in line 5, returns the partition
refined w. r. t. the signatures. More details follow.

LetQ be the MTBDD of the generator matrix and P
be the compact representation of the current partition.
We then compute the MTBDD representation σ(s, k)
of the signatures as follows:

σ(s, k) = Q+
t

(
Q(s, t) · P(t, k)

)
(2)

in which Q�
x is the quantification operator w. r. t. an

associative and commutative operator �:

Q�
x (A(x, y)) =

⊙
a∈{0,1}h

A(a, y)

The problem with Eq. (2) is that |Q| might be ex-
cessively large due to the non-zero diagonal elements.
To tackle this problem, we rewrite Eq. (2) as follows:

σ(s, k) = Q+
t (R(s, t) · P(t, k))−D(s) · P(s, k) (3)

in which D(s) = Q+
t (R(s, t)) and R is the MTBDD

representation of the transition rate matrix. Remark-
ably, |D| often is very small.

To implement the refinement operation sigref sym-
bolically, we exploit the following observation. As-
sume that we have a variable order in which all state

variables precede the block number variables. Then,
each state corresponds to a path in the MTBDD which
ends in a node that represents the signature of that
state. Furthermore, since we use reduced MTBDDs,
the paths of all states with the same signature must
lead to the same node. To obtain the refined partition,
we simply replace the nodes representing signatures by
new block numbers. For more details, see [28].

Function SigRefine implements the sigref operator,
takes σ(s, k) as input, and runs in O(|σ|) time.

To take an arbitrary initial partition into account,
we have two possibilities: either we refine only one
block of the initial partition at a time [27] or we add an
extra entry to each signature such that the signatures
of states belonging to different blocks of the initial par-
tition cannot be identical [9].

3 Hybrid Representation
Section 2.3 has presented four different partition rep-
resentations two of which have desirable properties:
the compact representation (CR) is very efficient in
terms of memory requirement, but partition manipula-
tion (such as adding and removing a block) is relatively
expensive. On the other hand, the fast representation
(FR) enables us to perform the operation sigref very
efficiently in terms of speed but its space requirement
is high for partitions with a large number of blocks.

3.1 Overall Idea
To get the best of both representations, our concep-
tual innovation is to provide a “hybrid” representation
of the partition that uses FR for computation and CR
for storage. Recall that the core computational step, in
each iteration, is computing the signature of all states
w. r. t. the current partition. Our key idea is to use
CR to represent the current partition, but to repre-
sent the subpartition of states for which the signature
is computed in FR, and to convert that into CR after
signature-based refinement. To enable this, we do not
necessarily compute the signatures of all states simul-
taneously as in BisimMin.

Instead, we do that in a number of steps. In each
step, the signatures of all states in a chunk are com-
puted. A chunk is a collection of blocks of the current
partition. This leads to a time-space trade-off depend-
ing on the number of blocks we convert to FR for refine-
ment. For the approach to be effective, it is important
that the additional overhead due to conversion is low.

The pseudocode of BisimMinHybrid, the hybrid
algorithm, is given in Fig. 2. Its outer loop corresponds
to the main loop of BisimMin. In each iteration of the
inner loop of BisimMinHybrid, Chunk computes a
chunk consisting of csize blocks of the current partition
PCR. Then, Signature computes the signatures of all
states in the chunk. Based on the signatures, SigRe-
fine refines the chunk into a subpartition in FR, and

(a) BisimMinHybrid(P(0)
CR, csize)

P ′
CR := P(0)

CR

repeat
PCR := P ′

CR; P ′
CR := ∅; firstBlkIdx := 0

for i := 0 to
˚
|PCR|/csize

ˇ
− 1

Ci := Chunk(PCR, csize, i)
σi(s, k) := Signature(Ci)
P ′

FR,i := SigRefine(σi,firstBlkIdx)
P ′

CR,i := ConvertFR2CR(P ′
FR,i)

P ′
CR := Union(P ′

CR,P ′
CR,i)

firstBlkIdx := firstBlkIdx + |P ′
i |

until (PCR = P ′
CR)

return PCR

(b) Chunk(PCR, csize, i)
C := S
if |PCR| > csize

cbits := lg2 csize
for j := 0 to (d− 1)− cbits

if jthbit of i = 1

C := C ∩ Pj+cbits
CR

else

C := C ∩ (S \ Pj+cbits
CR)

return C
(c) Signature(Ci)

C′i(s) :=
ˆ
t → s

˜`
Q∨

s (T (s, t) · Ci(s))
´

A(s, k) := BlockToFR(C′i(s))
R′(s, t, k) := (R(s, t) · Ci(s)) · A(t, k)
D′(s, k) := D(s) · Ci(s) · A(s, k)
σi(s, k) := Q+

t (R′(s, t, k))−D′(s)
return σi

Figure 2: Bisimulation Minimization Algorithm using
Hybrid Partition Representation

ConvertFR2CR converts the subpartition into com-
pact representation. Finally, Union adds it to P ′

CR,
the compact representation of the (new) refined sub-
partition computed so far.

The hybrid version of the algorithm consumes less
memory because it avoids representing both the sig-
natures of all states and also the complete partition
using FR (σ, P, and P ′ in BisimMin). Instead, at
each point of time only one chunk (Ci), signatures of
its states (σi), and its refinement represented as FR
(P ′

FR,i) are stored. Since the number of nodes in the
last two MTBDDs grows at least linearly with csize, we
can adjust the memory consumption of the algorithm
and achieve various time-space trade-offs by varying
csize. That enables the hybrid algorithm to handle
MCs out of reach of the original FR-based algorithm
due to memory limitations.

The extraction of the quotient system after bisim-
ulation computation can be performed exactly as de-
scribed in [10], since the final partition is given in CR.

3.2 Signature Refinement in the Hybrid
Representation

In the following, we will explain in detail how each of
the steps of BisimMinHybrid is performed.

Computing the chunks As mentioned above,
BisimMinHybrid partitions the state space into
chunks and then it refines each chunk separately.
Chunk(PCR, csize, i) computes the ith chunk consist-
ing of csize blocks of P represented compactly as PCR.
In other words, it returns the union of blocks of P with
indices i · csize through min((i + 1) · csize, |P |)− 1.

Fig. 2(b) shows the pseudocode of Chunk. The
variable d is the number of MTBDDs of the compact
representation of P . We restrict csize to be a power of
2, which enables us to perform Chunk using O(lg |P |)
symbolic operations.

Conversion from FR to CR Let PFR(s, k) be the
fast representation of the partition P = {B1, . . . , Bn}
and (P0

CR, . . . ,Pd−1
CR) be its compact representation.

Recall that Pj
CR is the union of all blocks Bi such that

the jth bit of i is one. Consequently, S \ Pj
CR is the

union of all blocks Bi such that the jth bit of i is zero.
Therefore, to convert PFR to the compact represen-

tation, we have

Pj
CR(s) = Q∨

k

(
PFR(s, k)|kj=1

)
. (4)

Observe that the conversion takes only O(d) =
O(lg |P |) symbolic operations. Notably, the conversion
from CR to FR can also be done in a logarithmic num-
ber of steps, but is not needed for the algorithm.

Computing the signatures Signature(Ci) (see
Fig. 2(c)) computes the signatures of all states in Ci,
the ith chunk of the current partition PCR. In Signa-
ture, T is the MTBDD of the 0-1 transition matrix,
i. e., T (s, t) = 1 if there is a transition from s to t, and
T (s, t) = 0 otherwise. We first compute C′i the set of
successor states of Ci. Then, BlockToFR attaches
to each state in Ci its block number and stores it in
A, i. e., A(s, k) = 1 iff s ∈ Bk ∩ C ′

i, and A(s, k) = 0
otherwise. We explain below how this is performed
efficiently. The remaining three lines provide the re-
striction of the source states in the generator matrix
Q(s, t) to the current chunk Ci, and replace the target
states therein with their block numbers. As discussed
in 2.4 for Eq. (3), we avoid the representation of the
generator matrix in this computation.

The central novelty in Signature is Block-
ToFR(U). It computes the fast representation of
the restriction of a partition on the set U ⊆ S.
The straightforward approach to do so is to compute
PFR(s, k) · U(s). However, that necessitates the gen-
eration of the fast (and possibly large) representa-
tion of P which we want to avoid. BlockToFR ex-
ploits the compact representation and performs only

O(d) = O(lg |P |) symbolic operations to do so:

BlockToFR(U) =
d−1∧
j=0

(
kj ∧ (Pj

CR ∩ U)
)
∨

(
kj ∧

(
(S \ Pj

CR) ∩ U
))

(5)

The intuition behind Eq. (5) is that kj ∧ (Pj
CR ∩ U)

(resp. kj ∧ ((S \ Pj
CR) ∩ U)) sets to 1 (resp. 0) the jth

block index variable of all states in U that belong to a
block whose index has 1 (resp. 0) in its jth bit.

Computing the union of two partitions In
BisimMinHybrid, we refine a chunk using the signa-
tures of its states resulting in P ′

CR,i, a partition of the
chunk. Then, Union computes a new subpartition that
contains all blocks of P ′

CR,i and P ′
CR, the computed

subpartition of the state space. In the new subparti-
tion, all the blocks have the same index as they had in
P ′

CR or P ′
CR,i.

Lemma 1 forms the basis of the Union operation:

Lemma 1 Let P be a partition of U ⊆ S and {P ′, P ′′}
be a partition of P . Furthermore, let (P0, . . . , Pd−1),
(P ′

0, . . . , P
′
d−1), and (P ′′

0 , . . . , P ′′
d−1) be the CR of P , P ′,

and P ′′ respectively. Then,

Pj = P ′
j ∪ P ′′

j . (6)

If the CR of P ′ and P ′′ have different lengths,
we append empty sets to the shorter representation
to bring them to the same length. Using Eq. (6),
Union(P ′, P ′′) takes only lg(|P ′| + |P ′′|) symbolic
union operations.

To make Lemma 1 applicable and perform
Union(P ′

CR,P ′
CR,i) efficiently, we need to assign the

block numbers carefully. In particular, we need the in-
dices of P ′

CR and P ′
CR,i to be disjoint and also not to

have “holes” (i. e., to have consecutive block indices).
Hence, we only have to compute the union of the cor-
responding BDDs. To facilitate this, we always make
the indices of blocks of P ′

CR start from zero in each it-
eration of the outer loop. When we want to index the
blocks of P ′

FR,i, we set our starting index to be |P ′
CR|,

i. e., the next available index in P ′
CR. That is reflected

in the second parameter of SigRefine in Fig. 2(a).

3.3 Optimizations
Avoiding unnecessary conversions During the ini-
tial iterations of the outer loop of BisimMinHybrid,
the number of blocks of P is normally smaller than
the chunk size csize. That means the whole partition
consists only of one chunk. In that case, we completely
avoid the overhead of the conversions by only using FR
until the number of blocks exceeds csize. Only then do
we start the refinement with the hybrid partition rep-
resentation.

As a result, the algorithm dynamically switches the
partition representation from FR to hybrid only when
it is necessary. The advantage is that the algorithm
achieves the efficiency of the algorithm in [9] (solely
based on FR) as long as the resulting bisimulation does
not exceed csize.

Automatic selection of csize As explained above,
csize enables us to change the time–space balance of
the algorithm. As we increase csize, the running time
of the algorithm decreases and its space consumption
increases. Therefore, it is important to be able to au-
tomatically choose an appropriate value for csize. In
the following, we present an algorithm to do so.

Our goal is to use as much of the available physical
memory as possible, thereby minimizing the computa-
tion time. There are ample possibilities to deal with
the time–space trade-off behind the chunk size. We
implemented the following.

We let the user provide a memory limit. Initially,
we set csize = 2dlog2 |S|e (upper bound) such that
all blocks fit into one chunk. Therefore, the algo-
rithm starts using only FR. If the memory limit is
exceeded, we set csize = 2dlog2 |P |e−1 where P is the
last successfully computed partition. The algorithm is
then restarted using P as the initial partition. Since
csize < |P |, the algorithm uses a hybrid of CR and FR,
thereby reducing the memory consumption at the price
of higher runtime. Afterwards, each time the memory
limit is exceeded, the chunk size is divided by two and
the algorithm is restarted using the last successfully
computed partition as the initial partition.

If the chunk size becomes smaller than one, the
bisimulation computation cannot be completed within
the given memory bound. Either the algorithm has to
be aborted or the memory limit has to be increased.

4 Experimental Study
4.1 Example Models and Implementation
We have implemented our hybrid algorithm in C++
using the CUDD package [26] as the MTBDD library.
To generate the MTBDD representations of the input
MCs, we used the probabilistic model checking tool
PRISM [15]. All the code involved in the experiments
was compiled using gcc 4.1.2. The experiments were
conducted on a Dual Core AMD OpteronTM 2.4 GHz
CPU with 4 GB of main memory running Linux in
32 bit mode. We have stopped any experiment that
takes more than 2000 seconds.

We consider three different example models from
the literature to study the performance of the al-
gorithm: A fault-tolerant parallel computer system
(FPCS) [25], a peer-to-peer (P2P) protocol based on
BitTorrent (studied in [19]), and a cyclic server polling
system [16]. For the first model, we converted the
SAN (Stochastic Activity Network) specification to the

 1000

 10000

 100000

 1e+06

polling-16

polling-15

polling-14

polling-13

polling-12

p2p-5-5

p2p-4-5

p2p-3-5

fpcs-3-2

fpcs-3-1

fpcs-2-5

fpcs-2-4

fpcs-2-3

fpcs-2-2

fpcs-2-1

no
de

s

compact representation
one BDD per block

equivalence relation
fast representation

Figure 3: Sizes of the partitions using various representation techniques

PRISM input language. We obtained the PRISM spec-
ifications of the other two models from http://www.
prismmodelchecker.org/casestudies/index.php.

The first two models have two parameters. For
FPCS, they denote the number of computers in the
system and the number of memory modules in each
computer, respectively. For P2P, they represent the
number of clients and the number of blocks of the file to
be transmitted, respectively. The third model has only
one parameter which denotes the number of servers.

4.2 Results
Partition sizes We first computed the coarsest bisim-
ulation partition for the example models and converted
them to the four partition representations described in
Section 2.3 to compare their sizes.

For the representation of the equivalence relation we
used an interleaved variable order, since an interleaved
variable order often leads to small (MT)BDDs [14]. For
the fast representation we used a variable order such
that the block number variables are placed at the end
of the order (i. e. at the bottom of the BDD). We
need such a variable order to be able to perform the
refinement operation efficiently (see Section 2.4).

Fig. 3 shows the result of this experiment. Note that
the scale of the vertical axis is logarithmic.

For FPCS and Polling models, the compact rep-
resentation, shown using left-most (red) bars of each
benchmark, deserves its name, while the other repre-
sentations are, in some cases, significantly larger. The
exception is P2P for which CR is slightly, but not pro-
hibitively, larger than FR. The reason is that P2P
models exhibit a large degree of symmetry, resulting
in quite small bisimulation partitions (in the order of a
few hundred blocks). In this case, the overhead intro-
duced by the block number variables in FR is marginal
and the MTBDD size is dominated by other effects.

Effect of the chunk size To evaluate the effect
of the chunk size on the time and space requirements
of the hybrid algorithm from Section 3, we applied it

to the three models, varying the chunk size from one
block per chunk to a size such that all blocks fit into one
chunk. The maximal number of BDD nodes which have
to be stored in memory simultaneously (peak number
of nodes) is depicted in the left-hand side of Fig. 4 while
the runtime is shown in the right-hand side.

We observe that for the FPCS and Polling bench-
marks the memory requirement grows drastically as the
chunk size increases. For P2P, the memory require-
ment slightly decreases or stays more or less constant
depending on the configuration. That is because the
compact representation for the P2P model accounts for
the major part of the memory requirement of the algo-
rithm, as reflected in Fig. 3.

Moreover, the runtime of the algorithm for all
benchmarks decreases significantly when chunk size in-
creases. The sensitivity of the runtime is milder for
P2P examples because the chunk size has only little in-
fluence on the size of the partition representation.

Because of the optimization explained in Section 3.3,
when csize is larger than the size of the bisimulation
partition (i. e., the final result), the hybrid algorithm
behaves exactly like the pure-FR algorithm (that only
uses FR). That is the reason why the runtime and space
requirement of the hybrid algorithm eventually stabi-
lizes when the chunk size exceeds a specific threshold.

In general, the experiments show that we can indeed
have a time–space trade-off. The smaller the chunk
size, the less memory and the more time the algorithm
consumes. That property enables us to have a sim-
ple and automatic chunk size selection algorithm, de-
scribed in Section 3.3.

Evaluation of the automatic chunk size selec-
tion algorithm We ran the algorithm once without
limiting the available memory, i. e., it was allowed to
use as much physical memory as needed. In the other
experiments, we limited the available memory to 75,
50, 30, and 15 MB for the MTBDDs. The results are
shown in Table 1.

For each set of experiments, we give the running

Table 1: Runtime and memory consumption of the hybrid algorithm with automatic chunk size selection for
different memory limitations

unlimited memory 75 MB 50 MB 30 MB 15 MB
Model Time Mem. cbits Time Mem. cbits Time Mem. cbits Time Mem. cbits Time Mem. cbits
fpcs-2-1 0.04 10.25 11 0.04 10.25 11 0.04 10.25 11 0.04 10.25 11 0.04 10.25 11
fpcs-2-2 0.32 18.29 15 0.34 18.29 15 0.30 18.29 15 0.34 18.29 15 0.34 18.29 15
fpcs-2-3 1.62 50.02 19 1.56 50.02 19 1.54 50.02 19 1.62 38.64 19 19.41 19.40 11
fpcs-2-4 6.51 62.93 23 6.32 62.94 23 6.66 55.93 23 34.66 37.20 11 19.96 20.45 9
fpcs-2-5 44.83 96.32 27 149.03 79.66 13 40.81 65.00 12 102.74 41.56 10 memout
fpcs-3-1 0.80 29.45 16 0.84 29.46 16 0.84 29.45 16 0.78 29.46 16 0.94 19.76 16
fpcs-3-2 19.78 105.66 22 64.41 80.08 12 28.57 63.08 12 47.06 40.41 9 30.94 25.05 8
fpcs-3-3 220.00 520.70 28 329.63 89.27 10 296.09 61.61 8 445.03 51.19 7 memout
p2p-3-5 0.07 10.49 15 0.07 10.49 15 0.08 10.49 15 0.07 10.49 15 0.08 10.49 15
p2p-4-5 0.92 33.55 20 0.90 33.55 20 0.91 33.55 20 0.93 33.55 20 1.16 19.41 20
p2p-5-5 6.94 63.68 25 6.99 63.67 25 6.22 54.65 25 25.62 35.26 25 memout
p2p-6-5 227.86 62.72 30 230.57 62.72 30 152.97 56.51 30 memout memout
polling-12 24.92 60.07 17 23.76 60.08 17 23.53 56.85 17 24.74 40.02 17 49.63 20.73 11
polling-13 169.73 116.95 18 228.19 83.13 16 248.88 64.42 15 237.77 36.66 14 490.47 20.61 11
polling-14 260.64 110.79 19 391.42 87.13 14 350.88 68.61 13 297.24 50.51 12 466.23 24.95 9
polling-15 710.72 231.48 20 789.63 85.47 13 802.45 66.48 12 826.32 48.64 11 memout
polling-16 1868.24 433.97 21 1965.46 83.67 12 2525.20 68.51 11 3566.04 46.14 8 memout
polling-18 15610.48 1814.29 24 memout memout memout memout

time, the memory usage of the nodes, and the num-
ber of chunk bits (cbits = lg2 csize) with which the
bisimulation computation succeeded without violating
the memory limit1. We have marked the number of
chunk bits using a bold font if it was automatically de-
creased by the chunk size selection algorithm to adhere
to the memory limit. An entry “mem out” means that
the bisimulation computation failed since the memory
limit was exceeded in spite of a chunk size of 1.

We observe that as we decrease the physical memory
available to the algorithm, it adapts itself by decreasing
the chunk size as much as necessary. This adaptation
comes with a cost in the running time which in the
worst case grows only by a small factor (< 2.5).

One would expect that the running time grows as
the available memory decreases in each row of the table.
However, there are a few exceptions. This is due to the
caching behavior of the MTBDD package. If CUDD
runs short of available memory, garbage collection is
executed more frequently to free nodes which are no
longer used. Furthermore, the size of internal caches
is reduced to save memory. Both can influence the
runtime in unpredictable ways. These memory saving
strategies of CUDD are also the reason why sometimes
less memory is used although the chunk size has not
been decreased (see e. g., polling-12).

Comparing the hybrid algorithm with algo-
rithms of [9] (pure FR-based) and [10] (pure
CR-based) To have a fair comparison of the effective-
ness of the three algorithms, we apply them to different
models while we set an equal memory limit (75 MB)
and time limit (2000 s) for all of them.

Table 2 shows the results of our experiments. We

1The actual memory requirement is slightly higher than the
limit, since the limit is placed on the memory used by the MTB-
DDs. The memory requirement of the program code and of other
data structures than MTBDDs are not taken into account for the
limit.

observe that the hybrid algorithm finishes several ex-
periments successfully for which the FR-based and the
CR-based algorithms fail due to memory limits and
time limits, respectively. For all experiments that both
hybrid and FR-based algorithms finish successfully, the
hybrid algorithm is at most 2 % slower. Moreover, for
all experiments that both hybrid and CR-based algo-
rithms finish successfully, the hybrid algorithm is ex-
tremely faster than the CR-based one.

Thus, our hybrid algorithm provides us with the core
advantages of both representations/algorithms with a
negligible running time penalty.

5 Conclusion
In this paper, we have developed a general, fast and
memory efficient algorithm for symbolic bisimulation
minimization. The algorithm is presented in the con-
text of continuous-time Markov chains, but is easily
adaptable to labeled transition systems, Kripke struc-
tures, discrete-time or interactive Markov chains, etc.

The particular strength of this algorithm is that it
exploits the true potential of BDD-based representa-
tion with respect to time and space, in a way that so
far was unavailable. Based on experimental analysis of
different partition representation techniques, we have
devised an algorithm that (1) exploits the compactness
of the CR representation and (2) uses the efficiency
of the FR representation for an iterative signature-
based refinement of partition chunks. The algorithm is
parametric in the chunk size it processes at once. We
have also devised and evaluated a strategy that auto-
matically chooses an appropriate value for the chunk
size. Thanks to our hybrid representation and auto-
matic chunk size selection, severe memory limitations
caused only a worst case slowdown by a factor of 2.5 in
running time compared to unlimited available memory.
Moreover, given the same memory limits, the hybrid al-
gorithm works virtually as fast as pure-FR algorithm

Table 2: Comparison of the hybrid algorithm with the algorithms based only on FR [9] and on CR [10].
hybrid algorithm

pure FR-based algorithm with automatic csize pure CR-based algorithm
Model Runtime Node peak Runtime Node peak Runtime Node peak
fpcs-2-1 0.04 36411 0.04 37228 0.14 8685
fpcs-2-2 0.36 192342 0.34 194100 2.43 30114
fpcs-2-3 1.56 646403 1.56 649118 27.31 56076
fpcs-2-4 6.24 1740601 6.32 1744309 148.07 153937
fpcs-2-5 mem out 149.03 3479910 669.45 365859
fpcs-3-1 0.82 429480 0.84 433907 9.41 74562
fpcs-3-2 mem out 64.41 3471734 785.16 501825
fpcs-3-3 mem out 329.63 3499328 time out
p2p-3-5 0.07 35439 0.07 35548 0.95 39144
p2p-4-5 0.93 173396 0.90 173545 11.46 223080
p2p-5-5 6.84 502239 6.99 502428 88.75 684236
p2p-6-5 226.79 1064528 230.57 1064757 320.89 1554417
polling-12 23.51 853853 23.76 854632 175.13 129042
polling-13 mem out 228.19 3478888 time out
polling-14 mem out 391.42 3507504 1788.61 452243
polling-15 mem out 789.63 3483998 time out
polling-16 mem out 1965.46 3462536 time out

while drastically outperforming the pure-CR algorithm
for models for which pure-FR runs out of memory.

References
[1] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic decision diagrams
and their applications. FMSD, 10(2/3):171–206, 1997.

[2] S. Blom and S. Orzan. Distributed branching bisimulation
reduction of state spaces. In Proc. of PDMC, vol. 89 of
ENTCS, pp. 99–113. Elsevier, 2003.

[3] S. Blom and S. Orzan. A distributed algorithm for strong
bisimulation reduction of state spaces. STTT, 7(1):74–86,
2005.

[4] S. Blom and S. Orzan. Distributed state space minimiza-
tion. STTT, 7(3):280–291, June 2005.

[5] E. Böde, M. Herbstritt, H. Hermanns, S. Johr,
T. Peikenkamp, R. Pulungan, R. Wimmer, and B. Becker.
Compositional performability evaluation for statemate. In
Proc. of QEST, pp. 167–178, 2006.

[6] A. Bouali and R. de Simone. Symbolic bisimulation min-
imisation. In Proc. of CAV, vol. 663 of LNCS, pp. 96–108,
1992.

[7] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang,
and X. Zhao. Multiterminal binary decision diagrams: An
efficient data structure for matrix representation. FMSD,
10(2/3):149–169, 1997.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.

[9] S. Derisavi. Signature-based symbolic algorithm for opti-
mal Markov chain lumping. In Proc. of QEST, pp. 141–150,
Sept. 2007.

[10] S. Derisavi. A symbolic algorithm for optimal Markov chain
lumping. In Proc. of TACAS, LNCS, pp. 139–154, 2007.

[11] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu,
L. Mounier, and M. Sighireanu. CADP: A Protocol Valida-
tion and Verification Toolbox. In Proc. of CAV, vol. 1102
of LNCS, pp. 437–440, 1996.

[12] K. Fisler and M. Y. Vardi. Bisimulation minimization and
symbolic model checking. FMSD, 21(1):39–78, 2002.

[13] J. F. Groote and A. Ponse. The syntax and semantics of
µCRL. In Algebra of Communicating Processes ’94, Work-
shops in Computing Series, pp. 26–62, 1995.

[14] H. Hermanns and M. Siegle. Bisimulation algorithms for
stochastic process algebras and their BDD-based imple-
mentation. In 5th Int’l AMAST Workshop on Real-Time

and Probabilistic Systems (ARTS’99), vol. 1601 of LNCS,
pp. 144–264, 1999.

[15] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. of TACAS, vol. 3920 of LNCS, pp. 441–
444, 2006.

[16] O. Ibe and K. Trivedi. Stochastic Petri net models of
polling systems. IEEE Journal on Selected Areas in Com-
munications, 8(9):1649–1657, 1990.

[17] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite
state processes, and three problems of equivalence. Infor-
mation and Computation, 86(1):43–68, 1990.

[18] J.-P. Katoen, T. Kemna, I. Zapreev, and D. N. Jansen.
Bisimulation minimization mostly speeds up probabilistic
model checking. In Proc. of TACAS, vol. 4424 of LNCS,
pp. 87–101, 2007.

[19] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry re-
duction for probabilistic model checking. In Proc. of CAV,
vol. 4114 of LNCS, pp. 234–248, 2006.

[20] K. G. Larsen and A. Skou. Bisimulation through probabilis-
tic testing. In 16th Annual ACM Symposium on Principles
of Programming Languages (POPL), pp. 344–352, 1989.

[21] R. Milner. A modal characterisation of observable machine-
behaviour. In 6th Colloquium on Trees in Algebra and Pro-
gramming (CAAP), vol. 112 of LNCS, pp. 25–34, 1981.

[22] R. Milner. Lectures on a calculus for communicating sys-
tems. In Seminar on Concurrency, vol. 197 of LNCS, pp.
197–220, 1985.

[23] R. Paige and R. E. Tarjan. Three partition refinement
algorithms. SIAM J. Comp., 16(6):973–989, 1987.

[24] D. Parker. Implementation of Symbolic Model Checking
for Probabilistic Systems. Phd thesis, University of Birm-
ingham, Great Britain, 2002.

[25] W. H. Sanders and L. M. Malhis. Dependability evalua-
tion using composed SAN-based reward models. J. Parallel
Distr. Comp., 15(3):238–254, July 1992.

[26] F. Somenzi. CUDD: Colorado University decision dia-
gram package. public software, Colorado University, Boul-
der, http://vlsi.colorado.edu/∼fabio/, 2007.

[27] R. Wimmer, M. Herbstritt, and B. Becker. Optimization
techniques for BDD-based bisimulation minimization. In
ACM Great Lakes Symposium on VLSI, pp. 405–410, 2007.

[28] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and
B. Becker. Sigref – A symbolic bisimulation tool box. In
Proc. of ATVA, vol. 4218 of LNCS, pp. 477–492, 2006.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 5 10 15 20

m
ax

im
al

 n
u

m
b

er
 o

f
li

v
e

n
o

d
es

lg csize

FPCS-2-1
FPCS-2-2
FPCS-2-3
FPCS-2-4
FPCS-2-5
FPCS-3-1
FPCS-3-2
FPCS-3-3

(a) FPCS (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n

ti
m

e
[s

]

lg csize

FPCS-2-1
FPCS-2-2
FPCS-2-3
FPCS-2-4
FPCS-2-5
FPCS-3-1
FPCS-3-2
FPCS-3-3

(b) FPCS (Running time)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 5 10 15 20

m
ax

im
al

 n
u

m
b

er
 o

f
li

v
e

n
o

d
es

lg csize

P2P-3-5
P2P-4-5
P2P-5-5
P2P-6-5

(c) P2P (Peak # of nodes)

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

ru
n

ti
m

e
[s

]

lg csize

P2P-3-5
P2P-4-5
P2P-5-5
P2P-6-5

(d) P2P (Running time)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 5 10 15 20

m
ax

im
al

 n
u

m
b

er
 o

f
li

v
e

n
o

d
es

lg csize

Polling-12
Polling-13
Polling-14
Polling-15
Polling-16

(e) Polling system (Peak # of nodes)

 0

 500

 1000

 1500

 2000

 0 5 10 15 20

ru
n

ti
m

e
[s

]

lg csize

Polling-12
Polling-13
Polling-14
Polling-15
Polling-16

(f) Polling system (Running time)

Figure 4: Maximal number of alive nodes and running times of the hybrid algorithm for different chunk sizes

