Reachability Analysis for Incomplete Networks
of Markov Decision Processes”

Ralf Wimmer§, Ernst Moritz Hahni, Holger Hermannsi, and Bernd Becker?

§Albert—Ludwigs—Universiz‘y Freiburg, Germany
{wimmer, becker}@informatik.uni-freiburg.de
YSaarland University, Saarbriicken, Germany
{emh, hermanns}@cs.uni-saarland.de

Abstract—Assume we have a network of discrete-time
Markov decision processes (MDPs) which synchronize via
common actions. We investigate how to compute probability
measures in case the structure of some of the component
MDPs (so-called blackbox MDPs) is not known. We then extend
this computation to work on networks of MDPs that share
integer data variables of finite domain. We use a protocol which
spreads information within a network as a case study to show
the feasibility and effectiveness of our approach.

I. INTRODUCTION

Markov decision processes (MDPs) have been applied
successfully to reason about quantitative properties in a
large number of areas, in particular network protocols.
In addition to probabilistic choices as in Markov chains,
MDPs also contain nondeterministic choices. To obtain a
stochastic process, the nondeterminism has to be resolved.
Given a property, we are usually interested in minimal and
maximal probabilities that the property holds where the
minimum (maximum) is taken over all resolutions of the
nondeterminism. This paper is about networks of MDPs in
which for some components we only know the interface to the
environment, but not their behavior. We denote such processes
as blackboxes. A network of MDPs without blackboxes is
again an MDP, and can be analyzed as such. In our setting
however, because of this incomplete specification, we can
only consider upper and lower bounds for both minimal
and maximal probabilities, when considering all possible
implementations of the blackboxes.

The problem studied here is motivated by the intention
to formally analyze the behavior of peer-to-peer distributed
hash table architectures, such as Pastry [1] or Chord [2].
These architectures are designed to be scalable, fault tolerant,
and self-organizing. This is achieved by distributing and
replicating the hash entries over a network of nodes, together
with effective lookup and maintenance protocols. The indi-
vidual nodes participating in, say, Chord can faithfully be

*This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS) (see

www.avacs.org for more information).

modelled as MDPs, properly connected to reflect the link
structure. Blackbox MDPs can then be used as very natural
means to reflect a Byzantine faulty node, and also as an
abstraction for entire subnetworks. Indeed we experiment
with simple scenarios of Chord-like communication networks
in the experimental section.

There exist a number of related areas in which blackboxes
have been used successfully before. Nopper, Scholl, and
Becker [3], [4] considered circuits in which some components
are blackboxes of which only input and output interfaces
are known. They consider two questions: (1) whether there
exists an implementation such that a given CTL specification
is fulfilled (realizability), and (2) whether the specification is
fulfilled for all possible implementations (validity). Because
of the potentially infinite state space of the blackboxes,
these problems are undecidable. In turn, the authors consider
approximate methods in a symbolic implementation. Their
work is motivated by the advantages of using formal methods
in early design phases, as well as the possibility to speed up
the model checking process when exact implementations of
system parts are not relevant for certain properties.

In [5], [6] a SAT-based bounded model checking (BMC)
method was developed for such incomplete circuits. The
task of this method is to prove that a given invariant
property is violated for all possible blackbox implementations
(non-realizability). Recently these BMC methods were also
extended to incomplete networks of timed automata [7]. The
assumption there is that in a network of timed automata which
communicate via channels, common clocks, and integer
variables, only the communication interface is available for
a subset of the automata, but not their internal structure. The
authors also strive for the falsification of invariant properties.

In [8], the compositional verification of (complete) net-
works of MDPs is considered. The idea is to avoid con-
structing the very large state space of the complete network
to verify a given property. Instead, properties of individual
processes are proven, and the correctness of the overall
network is shown by assume-guarantee reasoning. This way,
the behavior of network components is substituted by partial
formulae, such that some information about the behavior

of some processes is lost. This can be considered as a
greybox variation of the setting considered by us, and,
similar to our setting, the method may only derive lower and
upper bounds for extremal probabilities. Because a priori
all network components are known, by choosing the partial
formulae accordingly, tighter bounds can be obtained than
in our method. However, the analysis of [8] involves a
substantial degree of manual intervention, needed to construct
the appropriate partial formulae. In addition, it does not
consider communication via shared integer variables as we
do.

Organization of the paper. In the following section we will
provide the definitions of MDPs and networks of MDPs. In
Section III we will consider incomplete networks and show
how bounds on the probabilities of reachability properties
can be derived. In Section IV and Section V we do the
same for integer-decorated MDPs. In Section VI we will
present experimental results for a case study from the
computer network domain. Section VII concludes the paper
and presents ideas for future work.

II. NETWORKS OF MARKOV DECISION PROCESSES

In this section we introduce discrete-time Markov decision
processes and networks thereof.

Let Distr(S) denote the set of probability distributions on
a finite set S and 0, € Distr(S) the probability distribution
which assigns 1 to s € S, and 0 to all other elements.

Definition 1 A discrete-time Markov decision process
(MDP) is a tuple M = (S, sy, A, P) such that S is a finite,
non-empty set of states of which sy € S is the initial state, A
is a finite set of actions and P C S x A x Distr(S) is a set
of transitions, which assign a probability distribution over
the successor states to state/action-pairs. We assume that for
each s € S and a € A there is at most one tuple (s,a,d) in P,
i.e, Vs€ SVae A: |{de Distr(S)|(s,a,d) € P}| < L.

We denote the set of actions among which can be chosen in
the state s € S by Ay = {a € A|3d € Distr(S) : (s,a,d) €
P}. We assume in the following that Ag # () for all s € S.

Markov decision processes combine nondeterministic and
probabilistic behavior. Being in state s € S, first one of the
actions in Ay is chosen nondeterministically. According to
the probability distribution of the chosen action, the successor
state is determined probabilistically.

An infinite path in M is an infinite sequence sy —%
51 2% s 22 ... such that there is (s;,a;,d;) € P with
d;(s;+1) > 0 for all ¢ > 0. A finite path is a finite sequence
S0 20y gy Ay go 22y arly s, with di(si+1) > 0 for all
0 < i < n.The (i+1)" prefix of 7, i.e., s % - - - RN
is denoted by 71%. For a finite path 7, the last state of
7 is denoted by last(w). The length |7| of a finite path

=50 =% ... L, is n. We write Pathsj;;(s) for all
finite paths that start in state s € S.

It is only possible to assign probabilities to paths if
the nondeterminism has been resolved. This is done by
an entity called scheduler. A scheduler o for an MDP
M = (S,s1,A, P)isafunction o : (SxA)**xS — Distr(A)
such that, for all finite paths m, o(m)(a) > 0 implies
a € Ajasi(r)- The set of all schedulers for M is denoted
by Schedys. Given a scheduler o, the probability Prf, ()
of a finite path @ = 59 —% ... N given
by Pr,(n) = [12) o(m1)(a;) - di(siy1), provided that
(si,ai,d;) € P for all 0 <4 < n, and 0 otherwise. For sets
of infinite paths, a probability measure can be defined as
follows: Let 7 be a finite path. The cone C () consists of all
infinite paths that have 7 as a prefix. We define its probability
by Pr{;(C(m)) = Pr{,(r). The probability space of M is
then the smallest o-algebra that contains the cones of all
finite paths starting in the initial state.

An important class of properties are reachability properties.
Given a set of target states 77 C S in an MDP M =
(S, sr, A, P), the question is: starting in state s € .S, what is
the probability to walk along a path which contains a state
of T?

Let reachps(s,T) = {so 20y g ool gnty Sy €
Pathsﬁ?(s) | sp € TA-Fi:0<i<nAs; €T} be the set
of finite paths that start in s and end in 7" without visiting
T in between. For a fixed scheduler o we have

Prg, (s, T) = Z Prq, (7).
mereach (s,T)

In order to answer the above question independently from
the scheduler, one is normally interested in the maximal and
minimal probability over all schedulers, which we denote by

min _ . o
Priy" (s, T) = ,cin, Prq;(s,T) and
Priex(s, T) = P, (s, T
(s, T) S (s, T),

respectively. This allows to decide, e. g., whether the probabil-
ity to reach a safety-critical state is below a given threshold.

A broader class of properties is described by the probabilis-
tic computation tree logic PCTL [9]. To be able to perform
PCTL model checking, it is sufficient to compute reachability
properties for all states of an MDP. Since this requirement
is fulfilled by the algorithms we are going to present in
the following, we restrict our presentation to computing
probabilities for reachability properties.

Typically large systems are not modeled as monolithic MDPs.
Instead, MDP models for the individual components are
created, which communicate via common actions. This is
called a network of MDPs. Formally, a network of MDPs is
aset M = {M,...,M,} of MDPs M; = (S;,s%, A;, P})
whose sets of actions do not need to be disjoint. We use

the typical interleaving semantics with synchronization: If
an action a is executed, all MDPs with « in their action set
must simultaneously execute a transition labeled with a. The
other MDPs with a ¢ A; remain idle. This is captured in
the following definition:

Definition 2 Let M; = (S;,s%, A;, P;) for i = 1,2 be two
MDPs. The composition M, || Ms = (S, s, A, P) is an MDP
with

« S = Sl X 52,

* SI= (S}aS%)’

o« A= AU Ay and

. ((51,52),a,d) € Piff

— either a € A1 N As and there are (s1,a,d1) €
Py and (s2,a,ds) € P such that d((tl,tg)) =
dl(tl) . dg(tg) for all (tl,tg) €S,

— ora € A1\ A and there is (s1,a,dy) € Py such
that for all t, € Sy holds: d((tl, 32)) =d;(t1) and
forall ty € So\{s2} and all t € Sy: d((t],12)) =
0,

— ora € As \ Ay and there is (sa,a,ds) € Py such
that for all to € S holds: d((s1,t2)) = da2(t2) and
forallty € S1\{s1} and all t}, € S5: d((tl,t’Q)) =
0.

This composition is commutative and associative. It can
be used to construct an MDP for the whole system from the
MDPs of the individual components.

III. INCOMPLETE NETWORKS OF MDPSs

In this paper, we consider the problem to derive information
about a network of MDPs if only a subset of the components
is available. We call this an incomplete network of MDPs.
In an incomplete network, the internal structure of some of
the MDPs may not be available. The only knowledge we
have about the unavailable MDPs is the interface via which
they interact with their environment. In our communication
model, this interface is given by the set of actions that are
used for synchronization with other (available) MDPs of the
network.

Now assume that {Mq,..., M,} is the set of available
components of an incomplete network M of MDPs. Since the
composition defined above is commutative and associative,
we may compose the available MDPs first. In the following,
we therefore assume that the available part of the network
is given as a single MDP M = M||Ms]---||M, =
(8,51, A, P) together with a set A® C A of actions that
are used by the unavailable part of the network for synchro-
nization with M. Please note that a transition (s,a,d) € P
with a € A® may only be taken if all blackbox MDPs with
a in their action set simultaneously take a transition that
is labeled with a. The blackbox blocks the execution of a
common action a € AY if the current state of the blackbox-
MDP does not have an out-going transition labeled with
a.

We use the notation M || BB to denote the network for a
fixed implementation BB of the blackboxes.

Our goal is to compute bounds on the minimal and
maximal probability of a given reachability property. For
an incomplete network M, the target set 1" is given only
for the available parts. For a corresponding complete net-
work M| BB with Spp being the states of the blackbox
implementation, the according target set is 7' X Spp.

The extension of these reachability properties to PCTL
requires a three-valued variant thereof, which was defined,
e.g., in [10]. This is due to the fact that we are only able
to derive bounds on probabilities. Hence, there are cases
where we can neither verify nor refute that the probability
of a certain property is within a given bound. The extension
of our algorithms to three-valued PCTL model checking is
however straightforward.

When computing bounds on the minimal reachability
probability we encounter the following problem: If we allow
arbitrary schedulers, there are some which only choose
actions that are local to the blackboxes. Therefore, the
available part of the network never executes a step, and
the bounds on the minimal probability of a given reachability
property are always 0 (except if we already start in the target
set). It is highly unrealistic for practical systems that parts
of the system never execute a step. In order to avoid this
problem, we introduce a very weak notion of fairness, which
is a special case of existing notions [11]. For the computation
of bounds on the maximal values this problem does not occur,
since it is desirable for optimal schedulers to make progress
in the available components.

Definition 3 Let o be a scheduler for a network M| BB
with A being the action set of M. We call o BB-fair iff the
probability to walk along a path on which infinitely often an
action from A is taken equals 1. The set of BB-fair schedulers
is denoted by Schedffﬁ BB-

We define

min .
Pririss(s, T x Spp) = min

BB
UESchch”BB

Priyss(s,T x SpB)

as the minimal probability with which a state of 7" X Spp
is reached in the network M|/ BB when starting in state
(s,spp) where spp is an arbitrary state of the blackbox.
Analogously, with

max _ o
Priiss(s, T x Spp) = max Pris55(s,T % Spp)
aESchedM”BB

we denote the maximal probability thereof. We can formulate
our goal as follows: For an incomplete network (M, A“)
of MDPs, compute values Priy;™" (s, T), Pry;™ (s, T),
Pri"®% (s, T), and Priy™~ (s, T) such that for all imple-
mentations BB of the blackboxes the following inequalities

min
PrMHBB(S T x Spp

PI‘T/FHXBB(S,T X SBB)
|

T
0 Py (s, T)

max,

)
f
Pr (s, T) Priy

Figure 1.

hold (cf. Fig. 1):
Pri™ (s, T) < Priipp(s, T x Spp) < Priy™* (s, 1),

Priy ™ (s,T) < Priyfipp(s, T x Spp) < Priyft (s, 7).
()

Definition 4 Let M = (S,s;,A,P) be an incomplete
network of MDPs with A€ being the set of actions for com-
munication with the blackboxes. Let | M | be the network that
is obtained from M by removing all transitions whose action
label is contained in A°, i.e., C(S sp, A\ A9, |P])
with | P = {(s,a,d) €P|a6A\A

Accordingly, we denote by [M the network which results
from M by ignoring the restrictions the blackbox implemen-
tation may impose on the executability of transitions. Hence
[M] = M, but we neglect that synchronization with the
blackbox can happen.

The construction of Definition 4 is only intended to be
used for the computation of probability bounds over all
possible blackbox implementations. It should not be involved
in further composition operations.

Then, on the one hand, | M | is an under-approximation of
the behavior of M| BB for any possible implementation
of the blackboxes. On the other hand, [M] is an over-
approximation thereof.

Theorem 1 The probabilities computed from | M | and [M]
have the following relation:

Pr‘r’}éﬁ(T) < Prrj\’}iﬁBB(s T x Spp) < Pr‘LTl r)(s, 1),

P37 (s, T) < Prifisg(s, T x Spp) < Priy (s, T).
2

Proof: Given a finite path m = (s§, s3) =% (s}, 57) 2
(53,83) 25 ... 2225 (51, 52) of the composition of two
models M ||M,, we define proj,, () := sj =% s <5

for ¢ = 1,2. For a scheduler o on

as Ap—1
M7 || Mo, we define projMi (o) such that

sh “H . s s
projas, (@)(m)(a) == Y Priy (™) o(@)(a).

{7’ | proj M, (n")=m}

Assume the blackbox implementation is BB =
(SpB, 855, App, Ppp) and the non-blackbox part is M =
(8,51, A, P). The set of common actions A is given by
A = AN App. We define M’ := (S,s;, AU Agp, P')
with P'(s,a)(s’) :== P(s,a)(s') if a € A, P'(s,a)(s) :=1

T
“(s,T) Priy % (s, T) 1

Over- and under-approximating probabilities for incomplete networks of MDPs

ifa € App \ A and 0 else. This way, M’ extends [M] by
introducing self-loops labeled with actions which are actions
of the blackbox only.

Consider a fair scheduler o in M| BB which yields
the minimal probability of reaching 7', i.e., for which
Prispe(s,T x Spp) = PrrA‘}iﬁ‘BB(s,T x Spp). The paths
that reach T' x Spp in M||BB can be partitioned according
to their projections on M’. Each path that reaches a target
state in M || BB uniquely belongs to one path that reaches a
target states in M’. Hence, due to the definition of M’, we
have

reachM”BB(s,T X SBB) =

\H {#" € reachaspp(s, TxSpp) | proju (x') = 7}

mEreach ;. (s,T)

Let o’ := proj,, (o). Then, for 7 € reachp; (s, T)
Pig () = 3 P15 ():

{n’€reach;pp(s,TxSpp) | projy (n')=m}

From this, it follows that Pr%;, (s, T) = P15y 55(S,T x
Sp Ef)' There exists/ a non-randomized fair scheduler " with
Pr%, (s, T) < Prq, (s, T) [11]. In M’, actions of App \ A
can only lead to self-loops with probability 1, which may in
turn only be taken a finite number of times. Because of this,
taking or not taking such self-loops does not influence the
reachability probability. Thus, without loss of generality, we
assume ¢’ to only choose actions of A. Then, ¢’ is also a
scheduler in [M], and has the same reachability probability
in this model. So, Prrf““} (s,T) < Prﬁ\‘}iﬁ‘BB(&T X Spp).
Now consider a scheduler o of [M | with Pr{y (s, T) =

Pr’f}\ijlj(s,T). We define ¢’ such that for s; € S
and s € Spp we have o'((s1,s2)) = o(s1). We
have Pri/ pp(s,T x Spp) = Prfy (s,T) and thus

Prﬁ\r}lﬁBB(s T x Spp) < Prf}\‘/}‘J(,T).

Thus, we have shown both parts of the inequation for
minimal reachability. The proof for maximal reachability
works analogously. []

This means we can compute the bounds that we are looking
for from [M7] and | M| using the standard methods for
MDPs. These are the tightest bounds we can obtain for an
incomplete network of MDPs, because there are implementa-
tions of the blackboxes that actually yield these probabilities:
Let BB, = ({t]}, tr, AC U {CLBB}, {(tb aBRB, 6t1)}) and
BB, ({t;},tI,AC,{(tI,a,étI)|a S AC}> be two
implementations of the blackbox, both consisting of a single
state with self-loops. Then the probability of reaching a target

state in | M | coincides with the probability in M ||BB;, and
the probability in [M] coincides with that in M ||BB,,.

IV. EXTENDING MDPS WITH BOUNDED INTEGER
VARIABLES

In order to have more flexibility for modelling, systems are
often decorated with variables with finite domains. This does
not increase the principal modeling power of MDPs, but leads
to more compact and more natural models. In this section we
consider networks of MDPs with common bounded integer
variables. These integer variables control the executability of

actions. They may be assigned new values during a transition.
im } be a set of bounded integer variables.

LetI:{il,...,
For each i; € I, range(i;) C Z denotes the (finite) domain
of i;. The initial value of each integer variable is given by
init(z;) € range(i;).

The set of variable constraints is given by the following
context-free grammar with initial symbol ®:

O = true | f(i1,...,im) ~c| (PAD) | =P

with a constant ¢ € Z, variables 41,...,%4,, € I, a
function f : Z™ — Z, and a comparison operator ~ &€
{<, <, =, #, >, >}. The set of variable constraints over
I is denoted by ®(I).

A variable assignment for I is a function v : I — 7Z such
that for all ¢ € I the condition v(%) € range(i) holds. The
set of all variable assignments for I is denoted by 2A(I). We
extend v to functions f : Z™ — Z by v(f(i1,...,im)) =
f(v(i1),...,v(im)). That a variable assignment v satisfies
a variable constraint ¢ (written v F ¢) can be defined as
follows:

v E true,
VE fi1, ... im) ~c & v(f(iv, ... im)) ~c,
vE (o1 A p2) & vE @1 and v F g,
vE ¢ & vE .

For two sets A and B, we denote the set of total functions
from A to B by F(A, B), and the set of partial functions by
Fp(A, B). Furthermore, we identify a tuple (vi,...,0n) €
Z™ with the variable assignment v € ((I) that satisfies
v(ij) =wvj forall j=1,... . m. If f: I — F(Z™,Z)is a
partial function, v/[f] denotes the variable assignment with

JLFI() = {f(z")(y(il), s v(im)), if f is defined for i,

otherwise.

v(i),
Let f,g € Fp(A,B) be partial functions such that f is

defined on a set Af C Aand gon Az C A with AfﬂAg = 0.

Then we write f W g for the function with

f(a)v if a € Af:
(fwg)(a) = { g(a), if a € A,,
undefined, otherwise.

Figure 2. TIllustration of a transition in an IMDP

Definition 5 An integer-decorated MDP (IMDP) is a tuple
M = (S, s;, A, I, P) such that S is a finite, non-empty
set of states, s; € S the initial state, A a finite set of
actions, I a finite set of bounded integer variables and P C
S x A x ®(I) x Distr (S x F, (I, F(Z™,Z))) the transition
probabilities. For the elements (s,a,g,d) € P, we require
that, if d(t, f) > 0 and [is defined for i € I, then f() €
f(range(u) X «++ x range(in,), range(i)).

The last condition ensures that only values from range(7)
are assigned to each integer variable <. This implies that
the probability distributions assign a positive value to only
finitely many alternatives.

A transition of an IMDP is illustrated in Fig. 2. The action
label of this transition is a and its guard i + j > 2. This
means the transition is only enabled if the sum of the values
of 7 and j is at least 2. With probability 0.5 the successor
state is s. The values of the variables do not change in
this case. With probability 0.4 the next state is s; and the
value of ¢ is updated to the current value of j plus one.
With probability 0.1, however, the successor state is also si,
but the new value of 7 is the current value of j minus one.
Variables that are not explicitly updated on a transition keep
their value.

Every IMDP can be transformed into an ordinary MDP
by putting the integer variables into the state space.

Definition 6 (Integer elimination) Let M =
(S,s1,A, I, P) be an extended MDP with I = {iy,...,im}.
M = (S,51, A, P) is an equivalent ordinary MDP with

e S =S xrange(ii) x - - X range(in,).

o 8r = (sr,init(iy),. .., mit(in))
« A=A))
o ((s,v1,...,um),a,d) € P iff there is a transition

(s,a,g,d) € P such that (v1, ...,

(Z(S/, vlla cee ,’U;n) - Z d(sla f)
feF, (1,7@m m))

('Ul‘r“'vUM)[f]:(Ui1"'7"):71)

Um) E g and

The sum in the definition of d is needed because different
update functions can lead to the same values of the integer
variables. Their probabilities are accumulated for the new
transition.

A (complete) network of IMDPs is a set M =
{Ml, ey Mn} of IMDPs Mz = (57,7 837 Ai, Ii7 Pz) We
assume that the guards of the transitions depend on variables
from a set I with I; C I for all 1 < 7 < n. In order to
avoid write conflicts on the integer variables, we assume
that I; contains those variables which may be assigned new
values in M; and that all I; are pairwise disjoint. That means
each variable can be read by all processes but written by
only one of them. The concepts for incomplete networks that
we develop in the sequel can, however, also be applied to
arbitrary strategies for resolving write conflicts.

Definition 7 Let for i = 1,2 M; = (Si,st, Ay, I;, P))
denote an IMDP. The composition M| M is an IMDP
M = (S,s5,A, I, P) such that

. 5151XS2,
o s1=(s1,57),
e A=A UA,
e I=1UI,

e= ((31752),a,g,d) € P iff either

—a € Ai N Ay and there are transitions e; —
(siya,9i,d;) € E; for i = 1,2 such that g =
(917 g2) and d(f, (t1,12)) = di(f1,t1) - da(fa, t2)
for partial functions f; € Fp (Ii,}'(Zm,Z)) with
f=f1¥fa or

- a € Ay \ Ay and there is a transition ey =
(s1,9,a,d1) € Py such that for all f, €
fp (Il,.Z:(Zm, Z)) itis d(fl, (tl, 82)) = dl(fl,tl)
and d(f7 (tl,tg)) = 0 otherwise, or

- a € Ay \ Ay and there is a transition ey =
(s2,9,a,d2) € Py such that for all fg €
Fp(Io, F(Z™, 7)) itis d(f2, (s1,t2)) = da(fo, t2)
and d(f, (tl,tg)) = 0 otherwise.

For each network of IMDPs, one can construct a single
ordinary MDP by first computing the composition of all
components and then eliminating all integer variables.

V. INCOMPLETE NETWORKS OF IMDPS

With these preparations we can now define incomplete
networks of IMDPs.

Definition 8 An incomplete network of integer-decorated
MDPs, communicating via common actions and common
integer variables, is given by a set {My,...,M,} of
available IMDPs, a set A€ of actions used by the blackbox
MDPs for synchronization, and a set I€ of integer variables
which may be written by the blackboxes.

In networks of IMDPs, blackboxes not only have the power
to block the execution of common actions, but also to change
the values of variables on which they have write access in
an arbitrary way. In incomplete networks we can therefore
neglect all updates to the blackbox integer variables from 1<,

since between any two steps of the visible part a transition in
a blackbox can be scheduled that updates the integer variables
in 1¢.

Without limitation of generality, we assume that the
available part of the network is given as a single IMDP
M = (S,s7, A, I¢ P). If more than one component is
available, we can construct their composition, resulting in a
single IMDP. After composition all integer variables which
are not blackbox variables, i. e., the variables in T\ T € can be
eliminated. We again restrict our presentation to reachability
properties. Hence we assume that a set 7' C S of target
states is given and that our task is to compute the probability
of eventually reaching a state in 7. However, the techniques
we are going to present in the following, can be applied to
other properties as well.

In principle we can proceed in the same way as for
incomplete networks of ordinary MDPs without integer
variables. We declare all transitions with a blackbox action
and all transitions whose guard depends on a variable from
I€ as unsafe. To obtain the outer bounds in Fig. 1, we replace
the guards of all unsafe transitions by true and treat their
actions as non-blackbox actions. For the inner bounds, we
remove all unsafe transitions. This method allows to use the
standard techniques for computing the desired probabilities
on MDPs.

Tighter approximations, however, can be obtained by our
second approach. It is based on the idea to maximize and
minimize the probability over all values that the blackbox
integer variables can take to obtain upper and lower bounds
respectively. For complete networks of MDPs, the probability
of reachability properties can be computed by solving an
equation system that involves either maximum or minimum
operators, ranging over all actions that are selectable in a
state. For the solution of these equation systems, a technique
called value iteration is typically applied.

We will first give equation systems that characterize the
four probability bounds for incomplete networks and show
afterwards how value iteration can be adapted for these
equation systems.

The lower bound on the maximal probability (i.e.,
Pryf 7 (s,T)) is the solution of the following equation
system:

0T =1, if seT,
max,— : IIlaX —
T = min max d(t)
s veA(IC) ((s,a,g9,d)EP: ZS ’
vEghag AC ¢
if s¢T.
3)

The upper bound on the maximal probability (i.e.,
Pri*%(s,T)) is characterized by replacing min by max

in Eq. (3):
:::2“*‘"’+ =1, ifseT,
max,+ _ a (a d(t) - max+>’
2" max (S,J,Igl,dfep;(;s (t) -)
if s¢T.
(€]

In an analogous way, the bounds Priy;™ (s,T) and
Pr™ ¥ (s,T) on the minimal probability can be character-
ized. The correctness of these bounds could be shown along
the lines of the proof for Theorem 1, that is by mapping
schedulers from one side of the inequation to the other, while
maintaining probability bounds.

In order to arrive at an efficient algorithm for solving
these equation systems, we first make the observation that
it is not necessary to take into account all possible variable
assignments.

Let v € A(]) be a variable assignment and s € S a state.
By

E(s,v)={e€ Ele=(s,a,9,d) AvE g}

we denote the set of out-going transitions of s whose guard
is satisfied by v. We partition the assignments according to
the sets of enabled transitions:

s)={{veA)|E(s,v) =E(s,V)} |V € A()}.

We define the corresponding sets of transitions that are
enabled by all assignments in C € II(s) as

E(s,C)={ec Ele=(s,9,a,d) A\Yv e C :vE g}

For computing the probability bounds it is sufficient to
take into account one assignment per block of II(s). When
computing the inner bounds in Fig. 1 we can restrict ourselves
to those blocks of II(s) such that the set of enabled transitions
is minimal. Contrarily, for the outer bounds only those blocks
have to be considered whose corresponding set of enabled
transitions is maximal. Therefore we set

™0 (s) = {C € I(s) | AC" € () : £(s,C") G E(5,O)},

Hmax() {CEH HQC’/eH) 5(5,0/) 25(370)}
Then we can write Equations (3) and (4) as follows:
x;nax.,— =1 if s € T,
™7 = min (max d(t) - pmex—)7
Cellmin(s) (S,gymd)Eg(Svc)(; (®): !)
AagA®
if s¢T.
(%)
xrsnax7+ =1, ifseT,
max,+ __ ma (ma. d max +)7
Ts Cenmg’i(s) (s,9,a,d E}é(s C) Z
if s¢T.
(6)

Algorlthm 1 Value Iteration for Pry/™ (-, T)

1: procedure VALUEITERATION(M = (S,s;, A, I, P),
A€, IC T
2 for all s € S do
3 if s € T then 20 + 1.0
4 else 70 < 0.0
5 end for
6: n<+0
7 repeat
8 for all s € S do
9: if s € T then z"*! + 1.0
10: else
11: PR
CeTmin(s) <<s,g,ﬁ?§6<0> (240)
NagAC
12: end if
13: end for
14: n<n+1
150 until |27 — 277! <eforal se S
16: return (z7)scs

17: end procedure

The corresponding equations for the bounds on the minimal
probability are:

mint 1 ifseT,
min4 _ (. d(t) - min,+)
2" max min x ’
Cellmin(s) (s,g,a,d)ef(s,C)(g) !)
if s T.
(7
i 1, ifseT,
:L,rnin - _ min ‘rEmlm ’
S cGHmax(s) ((979 a d)6£(9 C) ZS !))
Aag A
if s T.
)

Reachability probabilities for MDPs can be determined
efficiently using a technique called value iteration [12]. An
adaption of the value iteration technique for our incomplete
networks of IMDPs is shown in Algorithm 1. The given
variant computes Pr'y/™ ™ (-, T'). For the other three bounds,
only the update step in line 11 has to be adapted.

Theorem 2 Algorithm 1 terminates for all ¢ > 0. For
all states s € S the sequence (x7)nen converges to
Pl (s, T) for n — oo.

For a proof of this theorem consider [13]. This paper states
the correctness of value iteration for various variants of
stochastic games. Computing the probabilities for an incom-
plete network of IMDPs corresponds to solving alternating
stochastic games in which one player chooses the variable

Table I
CHORDS OF DIFFERENT SIZES (BUFFER SIZE K = 1)

n |S] |T| Pr™ax Time [s]
11 2031 19014 0.7987 0.33
12 4079 42058 0.7987 0.68
13 8175 91950 0.7987 1.40
14 16367 199474 0.7987 3.06
15 32751 429872 0.7987 6.39
16 65519 921394 0.7987 13.96
17 65537 1005572 0.8000 0.80
18 262111 4316646 0.7997 63.90
19 524255 9141686 0.7997 135.31
20 1048543 19299802 0.7997 283.18

assignment for the integer variables and the other one an
enabled transition of the current state. Therefore Theorem 2
directly follows from the results for alternating stochastic
games.

VI. CASE STUDY

To evaluate our approach we implemented the value iteration
technique for incomplete networks of IMDPs, which we
have presented in the previous section. Our tool is able to
read models which are specified using the guarded command
language that is used by the probabilistic model checker
PRISM [14]. We applied it to a case study which models
information spread in a computer network.

Assume we have a computer network consisting of n nodes
each of which has a message buffer with a capacity of K
messages. This results in a potential state space of (K + 1)
states, but some of them may be unreachable. One node of
the network serves as the sender node which initially has
a single message in its message buffer. The buffers of all
other nodes are empty. A second node is the receiver node
that should eventually obtain the message. If the buffer of a
node contains at least one message and at least one of the
neighbors’ buffers has not reached its capacity limit yet, the
following step is executed with probability p > 0: One of the
messages is placed in the buffers of all neighbor nodes that
are not full yet. After sending a message, the node decreases
the number of messages in its buffer by one. With probability
1 —p a message is discarded. An example of such a network
with three nodes together with the input file for PRISM is
shown in Fig. 3. We want to compute the probability that
finally a message is placed in the buffer of the receiver node,
i.e., P—o(trueld x,, > 0).

We modelled Chord networks [2] of different sizes with
this formalism. A Chord network is a ring structure with
additional shortcut links. If Ng,..., N,,_1 are the nodes of
such a Chord network of size n, then the set of successor

nodes of NV; is {N;|j =i+2?P mod n A0 < p < [logy n]}.

In our experiments, the sender node is [Ny, the receiver node
Np_1.

We put different nodes into blackboxes and computed
Pr"®™ to answer the question: “Is there a possibility that

the message is received with a probability of at least p
— independently of the behavior of the blackboxes?” The
answer is yes if Pr™*“ ™ (s;,T) > p holds for the initial
state s; where T is the set of all states in which the target
node has received a message.

The experiments were run on an Intel Core2Duo processor
with 2 GHz clock frequency and 4 GB of main memory under
Kubuntu 10.04 Linux. We want to be able to handle chord
networks with a non-trivial number of nodes. Therefore the
buffer capacity of all nodes is set to the smallest reasonable
value K = 1 because the size of the state space grows rapidly
with increasing buffer capacity. The forwarding probability
was set to p = 0.8. The results for the complete Chord
networks are contained in Table I. One can observe that the
size of the state space and the runtimes for the computations
grow exponentially in the size of the network. The probability
Pr™®, which we focus on, is approximately 0.8 for all
instances. For the value iteration we set ¢ = 1075,

For the evaluation of our algorithm, we put one and two
nodes of the Chord networks, respectively, into blackboxes,
allowing them to behave in an arbitrary way. Due to
restrictions in our prototypic implementation we were only
able to add two blackboxes for n < 16. We restricted our
selection of blackbox nodes to those which are not directly
connected to the receiver node because this would lead
to Pr'™®™ = (0. The reason for this behavior is that the
blackbox node would gain direct write access to the buffer
of the target node and would be able to remove all messages
from there. Furthermore we left out all combinations which
would cause all paths from the sender to the receiver node
to pass a blackbox node. Also in this case the computed
probability would be 0.

Table II contains the results for a number of different
blackbox configurations, including the configurations for
which the smallest and the largest bound were obtained.
We can observe that the required time for computing the
probabilities is considerably smaller than for the complete
network because of the smaller state space. It further
decreases if a second node is put into a blackbox. The
probabilities we were able to derive using our method are
close to the probabilities of the complete networks. For
example consider the Chord network with 16 nodes. The
probability for the complete network is 0.7987. If we treat
node N7 as a blackbox module, we can derive a lower bound
of 0.7654, and with N5 as an additional blackbox of 0.7595.
We can observe that the gap between the derived bound and
the actual probability increases with the number blackboxes
growing.

VII. CONCLUSION

In this paper we have shown how bounds on reachability
probabilities can be derived from networks of Markov
decision processes which are only partially available. The
processes communicate via messages or via shared integer

mdp

const int K = 3;

const double p = 0.8;
global x0 : [0..K] init 1;
global x1 : [0..K] init O;
global x2 : [0..K] init O0;

module node0
[T (xO > 0) & (x1 < K) —>
p: (x0' x0 - 1) &
+ (1 - p): ;
endmodule

module nodel

[T (x1 > 0) & ((x0 < K) | (x2 < K)) —>
p: (x17 =x1 - 1) & (x2'
+ (1 - p): (x1" = x1 - 1);
endmodule
Figure 3.

buffer zo.

variables. Value iteration is used to derive the probability
bounds. We have applied our technique to Chord networks
where we allowed arbitrary behavior for a subset of the
nodes, and studied lower bounds on the maximal probability
of message delivery. Our experiments show that we are able
to arrive at bounds close to the actual probability of message
delivery in the complete network. This is both interesting and
encouraging. As future work we are planning to investigate
bounded model checking based on stochastic satisfiability
problems (SSMT) [15]. This will have the advantage that
we do not have to construct the composition and perform
integer elimination prior to computing bounds. We hope that
this enables us to handle significantly larger models.

REFERENCES

[1] A. L. T. Rowstron and P. Druschel, “Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-
peer systems,” in Int’l Conf. on Distributed Systems Plat-
forms (Middleware), ser. Lecture Notes in Computer Science,
R. Guerraoui, Ed., vol. 2218. Springer-Verlag, 2001, pp.

329-350.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup service for Internet applications,”
IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp.
17-32, 2003.

[3] T. Nopper and C. Scholl, “Approximate symbolic model

checking for incomplete designs,” in 5™ Int’l Conf. on Formal
Methods in Computer-Aided Design (FMCAD), ser. Lecture
Notes in Computer Science, A. J. Hu and A. K. Martin, Eds.,
vol. 3312. Springer-Verlag, 2004, pp. 290-305.

= min(x2 + 1, K)) &

(x1’ = min(x1 + 1, K))

(x0’ = min(x0 + 1, K))

An example network consisting of three nodes, nodeg being the sender node and nodes the receiver node, which is only implicitly given by its

[4] T. Nopper, C. Scholl, and B. Becker, “Computation of minimal
counterexamples by using black box techniques and symbolic
methods,” in Int’l Conf. on Computer-Aided Design (ICCAD),
G. G. E. Gielen, Ed. San Jose, CA, USA: IEEE Computer
Society, Nov. 2007, pp. 273-280.

[5] M. Herbstritt, B. Becker, and C. Scholl, “Advanced SAT-
techniques for bounded model checking of blackbox designs,”
in 7" Int’l Workshop on Microprocessor Test and Verification
(MTV), M. S. Abadir, L.-C. Wang, and J. Bhadra, Eds. IEEE
Computer Society, 2006, pp. 37-44.

[6] C. Miller, S. Kupferschmid, M. D. T. Lewis, and B. Becker,
“Encoding techniques, Craig interpolants and bounded model
checking for incomplete designs,” in 13" Int’l Conf. on Theory
and Applications of Satisfiability Testing (SAT), ser. Lecture
Notes in Computer Science, O. Strichman and S. Szeider,
Eds., vol. 6175. Springer-Verlag, 2010, pp. 194-208.

[7] C. Miller, K. Gitina, C. Scholl, and B. Becker, “Bounded
model checking of incomplete networks of timed automata,”
in 11™ Int’l Workshop on Microprocessor Test and Verification
(MTV). 1EEE Computer Society, 2010.

[8] M. Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu,
“Assume-guarantee verification for probabilistic systems,” in
16™ Int’l Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. Lecture Notes in
Computer Science, J. Esparza and R. Majumdar, Eds., vol.
6015. Springer-Verlag, 2010, pp. 23-37.

[9] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5,
pp- 512-535, 1994.

[10] H. Fecher, M. Leucker, and V. Wolf, “Don’t know in
probabilistic systems,” in 13th Int’l SPIN Workshop on Model

(1]

(12]

[13]

Table II
RESULTS FOR CHORDS WITH BLACKBOXES (BUFFER SIZE K = 1)

n | BBs Pr™®~ Time [s]| BBs Pr™®%~ Time [s]| BBs Pr™#%~ Time [s]

11 N1 0.7629 0.10 Ny 0.6400 0.10 Ns 0.7833 0.08
N1, N5 0.7424 0.07

2 N 0.7591 0.17] Ny 0.7554 0.18] N3 0.7902 0.18

Ng 0.7594 0.18 | N1, N5 0.7459 0.11 | N2, Ng 0.6095 0.11

13 Ny 0.7680 0.34 No 0.7616 0.35 N3 0.7909 0.34

Ng 0.7627 0.34 N7 0.7604 0.36 | N1, No 0.6400 0.20

N1, N3 0.6400 0.20 | N1, Ng 0.6400 0.19 | Na, N3 0.7130 0.24

14 N1 0.7614 0.72 No 0.7569 0.71 N3 0.7908 0.74

Ny 0.7591 0.73 N7 0.7664 0.72 Ng 0.7555 0.56

N1, N2 0.5120 0.44 | N1, Ng 0.4017 0.41| N2, N3 0.7332 0.44

No, Ny 0.5120 0.44 | No, Ng 0.5120 0.33 | N3, N4 0.6659 0.50

15 N1 0.7615 1.53 No 0.7601 1.54 N3 0.7911 1.52

Ny 0.7601 1.59 N5 0.7978 1.54 Ng 0.7613 1.52

No, N3 0.7109 0.98 | Na, N4 0.4830 1.01 | N3, N4 0.7249 1.01

N3, N5 0.7697 0.98 | N4, Ng 0.4649 1.06 | N5, Ng 0.7713 1.02

16 N1 0.7654 3.37 No 0.7610 3.31 N3 0.7910 3.36

Ny 0.7601 3.34 N5 0.7980 3.42 Ng 0.7907 3.36

N1, N3 0.6282 2.24 | N1, N5 0.7595 2.27| N3, Ny 0.7109 2.25

N3, N5 0.7690 2.25| N3, Ng 0.4697 2.22 | N5, Nog 0.7856 2.34

17 No 0.8000 6.36 N3 0.8000 6.40 Ny 0.8000 6.39

Ns 0.8000 6.45 Ng 0.8000 6.53 N~ 0.8000 6.49

18] N3 07934 14.14] N4 07680 13.84| Nj 0.7986 14.13

Ng 07925 1030| N7 0.7986 14.14| Ng 07912 14.11

19 N1 0.7932 30.57 Ny 0.7680 30.43 Ns 0.7984 30.58

Ng 0.7987 30.84 N~ 0.7935 30.36 Ng 0.7997 30.73

20 N1 0.7933 66.97 No 0.7929 66.44 N5 0.7986 67.12

Ng 0.7933 66.78 N~ 0.7987 67.63 No 0.7997 67.48

Checking Software, ser. Lecture Notes in Computer Science, [14] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker,

A. Valmari, Ed., vol. 3925. Springer-Verlag, 2006, pp. 71-88.

C. Baier and M. Z. Kwiatkowska, “Model checking for a
probabilistic branching time logic with fairness,” Distributed
Computing, vol. 11, no. 3, pp. 125-155, 1998.

R. E. Bellman, “A Markovian decision process,” Journal of
Mathematics and Mechanics, vol. 6, pp. 679-684, 1957.

K. Chatterjee and T. A. Henzinger, “Value iteration,” in 25
Years of Model Checking — History, Achievements, Perspectives,
ser. Lecture Notes in Computer Science, O. Grumberg and
H. Veith, Eds., vol. 5000. Springer-Verlag, 2008, pp. 107-138.

[15]

“PRISM: A tool for automatic verification of probabilistic
systems,” in 12th Int’l Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), ser. Lecture
Notes in Computer Science, H. Hermanns and J. Palsberg,
Eds., vol. 3920. Springer-Verlag, 2006, pp. 441-444.

M. Frinzle, H. Hermanns, and T. Teige, “Stochastic satisfia-
bility modulo theory: A novel technique for the analysis of
probabilistic hybrid systems,” in 11th Int’l Conf. on Hybrid
Systems: Computation and Control (HSCC), ser. Lecture Notes
in Computer Science, M. Egerstedt and B. Mishra, Eds., vol.
4981. Springer-Verlag, 2008, pp. 172-186.

