
Symbolic Counterexample Generation for
Large Discrete-Time Markov Chains

Nils Jansena,∗, Ralf Wimmerb, Erika Ábraháma, Barna Zajzona, Joost-Pieter Katoena, Bernd Beckerb,
Johann Schusterc

aRWTH Aachen University, Germany
bAlbert-Ludwigs-University Freiburg, Germany

cUniversity of the Federal Armed Forces Munich, Germany

Abstract

This paper presents several symbolic counterexample generation algorithms for discrete-time Markov chains
(DTMCs) violating a PCTL formula. A counterexample is (a symbolic representation of) a sub-DTMC that
is incrementally generated. The crux to this incremental approach is the symbolic generation of paths that
belong to the counterexample. We consider two approaches. First, we extend bounded model checking and
develop a simple heuristic to generate highly probable paths first. We then complement the SAT-based
approach by a fully (multi-terminal) BDD-based technique. All symbolic approaches are implemented, and
our experimental results show a substantially better scalability than existing explicit techniques. In particular,
our BDD-based approach using a method called fragment search allows for counterexample generation for
DTMCs with billions of states (up to 1015).

Keywords: Markov Chain, Counterexample, Model Checking, Binary Decision Diagram

1. Introduction

Model checking is a very successful technique to automatically analyze the correctness of a system. During
the last two decades, a lot of work has been done to develop model checking techniques for different kinds of
systems like digital circuits and hybrid or probabilistic systems.

An important feature which made model checking for digital circuits a standard technology in industry is
the ability to deliver a counterexample if a desired property is violated. Counterexamples, which provide an
explanation for the violation, are indispensable for reproducing and fixing errors in the design. They are
also crucial for so-called CEGAR (counterexample-guided abstraction refinement) frameworks [1–3], where a
system is verified on an abstraction, which is gradually refined using (possibly spurious) counterexamples.
The importance of counterexamples was stated by the Turing award winner Edmund Clarke in his talk at
the celebration of 25 years of model checking [4]:

IThis work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative
Research Center AVACS (SFB/TR 14), the DFG project CEBug (AB 461/1-1), the EU-FP7 IRSES project MEALS, and by
the Netherlands Organisation for Scientific Research (NWO) as part of the DFG/NWO Bilateral Research Programme ROCKS.
Also funded by the Excellence Initiative of the German federal and state government.
∗Corresponding author:

Nils Jansen
RWTH Aachen University, Computer Science II
Ahornstraße 55, D-52056 Aachen, Germany
Phone: +49 241 8021243, Fax: +49 241 8022243

Email addresses: nils.jansen@informatik.rwth-aachen.de (Nils Jansen), wimmer@informatik.uni-freiburg.de (Ralf

Wimmer), abraham@informatik.rwth-aachen.de (Erika Ábrahám), barna.zajzon@rwth-aachen.de (Barna Zajzon),
katoen@informatik.rwth-aachen.de (Joost-Pieter Katoen), becker@informatik.uni-freiburg.de (Bernd Becker),
johann.schuster@unibw.de (Johann Schuster)

Preprint submitted to Science of Computer Programming February 22, 2014

It is impossible to overestimate the importance of the counterexample feature. The counterexamples
are invaluable in debugging complex systems. Some people use model checking just for this feature.

This paper addresses counterexample generation for probabilistic systems modeled as discrete-time Markov
chains (DTMCs) and properties formalized in probabilistic computation tree logic (PCTL) [5]. PCTL model
checking of DTMCs has been widely studied and has successfully been employed for applications from
distributed computing, security, hardware, and systems biology, to mention a few. Standard model checking
algorithms for PCTL properties of DTMCs are based on probabilistic reachability analysis: the probability
of reaching a given set of states is computed by solving a linear equation system [6]. These methods are
implemented in popular probabilistic model checkers like Prism [7] or Mrmc [8].

However, if a PCTL property is violated, e. g., if the probability to reach a set of unsafe states is larger
than a certain value, these model checking algorithms are not able to provide further information about this
violation. Therefore, in the last years intensive research was carried out to develop methods which allow
to generate counterexamples for PCTL properties of DTMCs. For digital circuits, a single execution that
leads from an initial state to a safety-critical state suffices as a counterexample. Contrary, for DTMCs a set
of such executions is required whose accumulated probability mass exceeds the maximally tolerated value.
Some of the available counterexample generation methods [9–12] represent counterexamples as sets of paths.
Since the number of paths can be extremely large (or even infinite), alternative representations have been
devised like regular expressions [12], winning strategies for probabilistic games [13, 14], or subsets of the
state space [15–17]. Some of these approaches have been implemented in tools like DiPro [18], COMICS [19],
and LTLSubsys [17], but scalability remains a serious issue.

Practically relevant systems are often too large to be represented explicitly, i. e., by enumerating their
states and transitions. To overcome this problem, symbolic model checking using a representation by binary
decision diagrams (BDDs) [20, 21] was introduced [22]. Sets of states and transitions are encoded by acyclic
directed graphs, representing the elements in a set by paths in the graph. Symbolic model checking has been
successfully established for DTMCs [23, 24]. For most of the available large case studies, as provided by
Prism [7], symbolic representations are smaller by orders of magnitude than explicit ones.

Given the enormous success of symbolic model checking techniques, our aim is to adopt these techniques for
counterexample generation for DTMCs. In order to take full advantage of efficient symbolic representations,
the applied path search methods should make full use of symbolic data structures, even for intermediate results.
Some preliminary attempts towards this have been done [9–11], but they still rely on explicit representations
at some points. For very large systems, these approaches are not scalable, as a counterexample may consist
of a very huge or even infinite number of paths.

These partially symbolic approaches can be divided into two groups: Wimmer et al. [9, 10] apply bounded
model checking [25] as path search method. Thereby the existence of a path of a certain length leading from
the initial state to a target state is formulated as a satisfiability problem, which is solved by an appropriate
solver. The drawback is that the computed paths are enumerated explicitly. Thus this method scales only to
large systems, if the number of paths required for a counterexample is small. An alternative symbolic path
search algorithm was introduced in [11]. This algorithm uses a BDD-based representation of the DTMC under
consideration and calculates the k most probable paths using an algorithm similar to Dijkstra’s shortest path
algorithm [26]. The number k of paths is thereby adapted on the fly until a counterexample has been found.
This approach enables a fully symbolic counterexample generation, but suffers from an exponential blow-up
because the underlying graph essentially doubles for each found path by introducing two new BDD variables
per path. Therefore it is also restricted to counterexamples consisting of few paths.

We show that also in counterexample generation, symbolic techniques can boost the scalability by several
orders of magnitude. The central contribution of this paper is thus the development of fully symbolic
algorithms, which overcome the main disadvantages of previous approaches:

• No explicit representation of states is needed during the counterexample generation.

• As in [15, 16], the counterexample is not represented by an enumeration of paths, but as a subsystem
of the input DTMC, which yields a counterexample that is smaller by orders of magnitude.

2

• In comparison to other approaches we are now able to generate counterexamples for systems with
billions of states.

In detail our technical contributions are as follows:
We first adapt SAT-based bounded model checking to support the search algorithms presented in [16]

and suggest a heuristic for SAT-solving that allows to influence the SAT search to find more probable paths
first, without the need to invoke SMT-solving. Furthermore, we do not restrict the search to paths of a fixed
length as suggested by standard bounded model checking, but search for paths whose length is between a
given lower and upper bound.

As a second approach, we propose novel fully symbolic methods for the generation of counterexamples for
DTMCs and PCTL properties. Our methods take as input a DTMC which is symbolically represented by
BDDs. We propose a symbolic version of the so-called global search approach [16] to compute a symbolically
represented subsystem of the original DTMC, whose paths form a counterexample. For this we adapt the
symbolic k-shortest path search presented in [11] to find most probable paths of a DTMC. As this method
suffers from very high memory consumption, we present an improved global search method which avoids the
exponential blow-up of the symbolic k-shortest path search [11]. As our best approach, we adapt the idea for
fragment search, also presented in [16]: Instead of searching for most probable paths from the initial state to
a target state, we search for most probable path fragments extending the current subsystem. This scales as
well as the improved global search, but yields typically more compact counterexamples.

We give a detailed experimental evaluation of all proposed algorithms. This includes a comparison to
explicit methods considering the quality of results, running times, and the memory consumption. As the
experiments will show, we were able to generate counterexamples for DTMCs of up to 1015 states, which
poses a very difficult task even for mere model checking.

This paper is an extended version of the conference paper [27]. The extension encompasses the more
extensive treatment of the foundations and an ongoing example. Most importantly, we present an improved
version of the symbolic global search method which avoids an exponential blow-up of the underlying graph
as well as an improved version of the symbolic fragment search. We give a more detailed experimental
evaluation, comparing our approaches with the available explicit methods.

In Section 2 we introduce some theoretical foundations. Section 3 describes the general framework of
our symbolic methods for counterexample generation. The usage of SAT-based path search is described
in Section 4 and the application of BDD-based graph search algorithms in Section 5. Related work and
connections or differences to other approaches are discussed in Section 6. All approaches are evaluated
experimentally on a number of case studies in Section 7 including a detailed comparison with other tools and
methods. We conclude our work and discuss future work in Section 8.

2. Preliminaries

We start with introducing some basic definitions and concepts used in this paper. For more details we refer
to, e. g., [6, Chapter 10].

2.1. Discrete-time Markov Chains

Discrete-time Markov chains are a widely used formalism to model probabilistic behavior in a discrete-time
model. State changes are modeled by discrete transitions whose probabilities are specified by discrete
probability distributions as follows.

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M = (S, sI , P, L) with S being a finite set
of states, sI ∈ S the initial state, P : S × S → [0, 1] ⊆ Q1 a matrix of transition probabilities such that∑
s′∈S P (s, s′) ≤ 1 for all s ∈ S, and L a labeling function with L : S → 2AP with AP a denumerable set of

atomic propositions.

1In theory, the definition of a DTMC allows probabilities from [0, 1] ⊆ Q. However, due to algorithmic reasons we use only
values from Q.

3

Please note that we generalize the standard definition and allow sub-stochastic distributions
∑
s′∈S P (s, s′) ≤

1 for all s ∈ S. Usually, these sums of probabilities are required to be exactly 1. This can be obtained by
defining the transformation αs⊥ of M as the DTMC αs⊥(M) = M ′ = (S′, s′I , P

′, L′) with

• S′ = S ∪̇ {s⊥} for a fresh sink state s⊥ /∈ S,

• s′I = sI ,

• P ′(s, s′) =


P (s, s′) for s, s′ ∈ S,
1−∑s′′∈S P (s, s′′) for s ∈ S and s′ = s⊥,

1 for s = s′ = s⊥,

0 otherwise (for s = s⊥ and s′ ∈ S),

and

• L′(s) = L(s) for s ∈ S and L′(s⊥) = ∅.

According to the DTMC semantics below, the reachability probabilities in M and αs⊥(M) are equal for
the states from S. The advantage of allowing sub-stochastic distributions is that a subsystem of a DTMC,
determined by a subset of its states, is again a DTMC.

Assume in the following a DTMC M = (S, sI , P, L). We say that there is a transition (s, s′) from a state
s ∈ S, the source, to a state s′ ∈ S, the target, iff P (s, s′) > 0. A path of M is a finite or infinite sequence
π = s0s1 . . . of states si ∈ S such that P (si, si+1) > 0 for all i ≥ 0. We say that the transitions (si, si+1)
are contained in the path π, written (si, si+1) ∈ π. Starting with i = 0, we write πi for the ith state si on
path π; the position i is called its depth. The length |π| of a finite path π = s0 . . . sn is the number n of its
transitions. The last state of π is denoted by last(π) = sn.

By PathsMinf we denote the set of all infinite paths of M , by PathsMinf (s) those starting in s ∈ S. Similarly,

PathsMfin is the set of all finite paths of M , PathsMfin(s) those starting in s ∈ S, and PathsMfin(s, t) those starting

in s ∈ S and ending in t ∈ S. A state t ∈ S is reachable from another state s ∈ S iff PathsMfin(s, t) 6= ∅.
We follow the standard way [28] to define for each state s ∈ S a probability space (ΩM

s ,FMs ,PrMs) on
the infinite paths of a DTMC starting in s. The sample space ΩM

s is the set PathsMinf (s). The set FMs
of events is defined as follows: The cylinder set of a finite path π of M is defined as Cyl(π) = {π′ ∈
PathsMinf |π is a prefix of π′}. The set FMs of events is the unique smallest σ-algebra that contains the

cylinder sets of all finite paths in PathsMfin(s). PrMs (or short Pr) is the unique probability measure on FMs
such that the probabilities of the cylinder sets are given by

Pr
(
Cyl(s0 . . . sn)

)
=

n−1∏
i=0

P (si, si+1) .

For finite paths π we set Prfin(π) = Pr
(
Cyl(π)

)
. For sets of finite paths R ⊆ PathsMfin(s) we define

Prfin(R) =
∑
π∈R′ Prfin(π) with R′ = {π ∈ R | ∀π′ ∈ R. π′ is not a proper prefix of π}.

2.2. Probabilistic CTL and Critical Subsystems

Probabilistic computation tree logic (PCTL) [5] enriches CTL with an operator P arguing about the total
probability of paths satisfying some properties. The syntax of PCTL is given by the following context-free
grammar:2

Φ ::= true | p | ¬Φ | (Φ ∧ Φ) | PCλ(ΦU Φ)

for (state) formulae Φ with p ∈ AP , λ ∈ [0, 1] ⊆ Q, and C ∈ {<, ≤, ≥, >}. For a PCTL state formula
ϕ we define the “finally”-operator ♦ as PCλ(♦ϕ) = PCλ(true U ϕ) and the “globally”-operator � as
PCλ(�ϕ) = PB1−λ(true U ¬ϕ) where B is >, ≥, ≤, < if C is <, ≤, ≥, >, respectively.

2In this paper we do not consider properties involving bounded reachability.

4

We define a state s of the DTMC M to satisfy a PCTL formula ϕ, written M, s � ϕ, recursively as
follows:

M, s � true always,
M, s � p ⇔ p ∈ L(s),
M, s � ¬ϕ ⇔ M, s 2 ϕ,
M, s � (ϕ1 ∧ ϕ2) ⇔ M, s � ϕ1 and M, s � ϕ2,

M, s � PCλ(ϕ1 U ϕ2) ⇔ Pr
(
{π ∈ PathsMinf (s) | ∃i ≥ 0. (M,πi � ϕ2 ∧ ∀0 ≤ j < i. M, πj � ϕ1)}

)
C λ .

A DTMC M satisfies a PCTL-Formula ϕ, written M � ϕ, if its initial state sI does, i. e., if M, sI � ϕ.

The model checking and counterexample generation problems for P≤λ(ϕ1 U ϕ2) can be reduced to a
reachability problem as follows: We transform the DTMC M = (S, sI , P, L) to a DTMC M ′ = (S, sI , P

′, L)
by removing all outgoing transitions from states satisfying ¬ϕ1 ∨ ϕ2, i. e., for all s ∈ S we have P ′(s, s′) = 0
if s satisfies ¬ϕ1 ∨ ϕ2 and P ′(s, s′) = P (s, s′) otherwise. Then M satisfies P≤λ(ϕ1 U ϕ2) iff M ′ satisfies
P≤λ(♦ϕ2). In the following we concentrate on this reduced problem and also write P≤λ(♦T) instead of
P≤λ(♦ϕ2), where T = {s ∈ S |M, s � ϕ2} is the set of those target states that satisfy ϕ2.

Checking properties P≤λ(♦T) consists of (1) computing the set of states T = {s ∈ S |M, s � ϕ2} which
satisfy ϕ2, and (2) computing for each state s ∈ S the probability ps to finally reach a state in T . These
probabilities are the unique solution of the linear equation system [6, Theorem 10.19]:

ps =


1 if s ∈ T ,
0 if T is unreachable from s,∑
s′∈S

P (s, s′) · ps′ otherwise,
(1)

containing one equation for each s ∈ S.
Consider a DTMC M = (S, sI , P, L) and a PCTL property P≤λ(♦T) specifying an upper bound on the

probability that, starting from the initial state, a state from T will be reached. If this property is violated, a
counterexample is a set C ⊆ PathsMfin(sI) of finite paths starting in sI such that all paths of the cylinder sets
satisfy ♦T and Prfin(C) > λ. For P<λ(♦T), the probability mass has to be at least λ. We consider only
upper bounds here; see [12] for the reduction of lower bounds to this case.

In [16] we proposed to represent counterexamples as so-called critical subsystems instead of large, possibly
infinite, sets of paths. Intuitively, a critical subsystem is a part of the original system in which the given
probability bound is already exceeded, no matter what happens outside the subsystem. The advantages
of taking a subsystem instead of a set of paths as representation of a counterexample concern both the
computation time and the representation size: In [16] we utilized the k-shortest path algorithm as proposed
in [12] for the incremental construction of such a subsystem. Thereby, every new path is added to the current
subsystem. The probability mass of the whole subsystem including all occurring loops is taken into account
which significantly improved the running times. In many cases, only a few paths are needed to form a critical
subsystem while a counterexample represented as a set of paths needs millions of paths. Furthermore, already
in [12] it was shown that the size of a counterexample may be double exponential in the problem size, while
the number of states of a critical subsystem is always bounded by the size of the input system.

Definition 2. A subsystem of a DTMC M = (S, sI , P, L) is a DTMC M ′ = (S′, sI , P
′, L′) such that S′ ⊆ S,

sI ∈ S′, P ′(s, s′) ∈ {P (s, s′), 0} and L′(s) = L(s) for all s, s′ ∈ S′.
For a violated PCTL property ϕ with M, sI 6|= ϕ, we call a subsystem M ′ of M critical for ϕ iff M ′, sI 6|= ϕ.

Note that the set
⋃
t∈T PathsM

′

fin (sI , t) of all finite paths of a critical subsystem M ′ from sI to a target state
forms a counterexample. We will conclude with an example illustrating the concepts introduced so far.

Example 1. Consider the DTMC M depicted in Figure 1(a). The unique initial state is sI = s0, indicated
by the incoming arrow, and the only target state is s3. We are interested in the probability of reaching s3
from the initial state, i. e., the probability of all paths leading from s0 to s3. Solving the linear equation

5

s0 s1

s2 s4

s3 1

s5 s6 1

0.5

0.5

0.5

0.5

0.5

0.5

0.7
0.3

0.1
0.9

(a) Directed graph for DTMC M

s0 s1

s2

s3 1
0.5

0.5

0.5

0.5

(b) Subsystem M ′ of M

Figure 1: The graph induced by a DTMC M and a subsystem M ′ which violates P≤0.3(♦ s3).

system (1) yields a reachability probability ps0 = 0.55. Therefore, the PCTL property ϕ = P≤0.3(♦s3) is
violated in the initial state.

Collecting the most probable paths as in [12] to generate a counterexample yields the following paths:

π1 = s0s1s3 probability: 0.25

π2 = s0s1s2s1s3 probability: 0.0625

π3 = s0s5s3 probability: 0.05

The set C = {π1, π2, π3} has probability pC = 0.3625 and forms a counterexample for ϕ. Please note that
for a probability bound λ = 0.55− ε for a small ε > 0, the number of required paths heads to infinity for
ε→ 0. Most of these paths only differ in the number and order of iterations of the same loops.

However, π1 and π2 already induce a subsystem M ′ of M , depicted in Figure 1(b), inside which the
probability of reaching s3 from s0 is ps0 = 0.3̄. Therefore, M ′ is a critical subsystem for M and ϕ.

2.3. Symbolic Representation of DTMCs

In an explicit representation of Markov chains, the transition probabilities are stored as a sparse matrix,
which contains one entry per transition with non-zero probability. Its size is therefore linear in the number of
states and transitions. This representation is used, for instance, by the probabilistic model checker Mrmc [8].

We use symbolic representations to encode state and transition sets, e. g., as paths in a graph or as
solutions of a certain formula. Symbolic representations are in practice often smaller by orders of magnitude
than explicit ones and allow to reduce not only the memory consumption but also the computational costs
for operations on the data structures.

As a symbolic data structure for the representation of DTMCs we choose binary decision diagrams
(BDDs) [20] and multi-terminal binary decision diagrams (MTBDDs) [21]. (MT)BDDs have been applied
very successfully for verification of digital circuits [22] and also play a role in verification of probabilistic and
stochastic systems [24, 29, 30]. However, they have the drawback that for some systems the representation
is large (e. g., for multiplier circuits [31]), and that their size can strongly depend on the ordering of the
variables. An optimal ordering, however, is hard to find [32], but good heuristics are available [24, 33].

Definition 3. Let Var be a finite set of Boolean variables. A binary decision diagram (BDD) over Var is
a rooted, acyclic, directed graph B = (V, nroot, E) with a finite set V of nodes, a root node nroot ∈ V and
edges E ⊆ V × V . Each node is either an inner node or a leaf node. Leaf nodes n ∈ V have no outgoing
edges and are labeled with label(n) ∈ {0, 1}. Inner nodes n ∈ V have exactly two successor nodes, denoted
by hi(n) and lo(n), and are labeled with a variable label(n) ∈ Var .

A multi-terminal binary decision diagram (MTBDD) is like a BDD but it labels leaf nodes n ∈ V with
rational values label(n) ∈ Q.

6

n0

n1

n3 n4

n2

n5 n6

1 0 fB1
(σ1, σ2, σ3)

σ3

σ2

σ1

(a) BDD B1 representing the state space of DTMC M ′

n0

1 0 fB2
(σ1, σ2, σ3)

σ3

σ2

σ1

(b) BDD B2, reduced version of B1

Figure 2: This figure shows two equivalent BDD representations of the state space of the subsystem M ′ of M , depicted in
Figure 1.

Let B be a BDD over Var and V(Var) =
{
ν : Var → {0, 1}

}
the set of all variable valuations. Each

ν ∈ V(Var) induces a unique path in B from the root to a leaf node by moving from each inner node n
to hi(n) if ν(label(n)) = 1 and to lo(n) otherwise. A BDD B represents a function fB : V(Var) → {0, 1}
assigning to each ν ∈ V(Var) the label of the leaf node reached in B by following the path induced by ν.
We often identify B with fB and write B(ν) instead of fB(ν). Analogously, each MTBDD B represents a
function fB : V(Var)→ Q.

An (MT)BDD is ordered if there is a linear order < ⊆ Var ×Var on the variables such that for all inner
nodes n either hi(n) is a leaf node or label(n) < label

(
hi(n)

)
, and the same for lo(n). An (MT)BDD is

reduced if all functions rooted at different nodes are different. For a fixed variable order, reduced (MT)BDDs
are canonical data structures for representing functions f : V(Var)→ {0, 1} resp. f : V(Var)→ Q [20]. In
the following we assume all (MT)BDDs to be reduced and ordered with respect to a fixed variable order.

By Var ′ we denote the variable set Var with each variable x ∈ Var renamed to some x′ ∈ Var ′ such
that Var ∩ Var ′ = ∅. Our algorithms use standard BDD operations like ITE (if-then-else) to implement
union B1 ∪B2 and intersection B1 ∩B2, variable renaming B[x→ x′], and existential quantification ∃x.B
for x ∈ Var , x′ ∈ Var ′. For MTBDDs additionally APPLY and ABSTRACT are used to perform numerical
operations. For details on these operations in the context of symbolic path search we refer to [34].

BDDs and MTBDDs can be used to represent DTMCs symbolically as follows: Let M = (S, sI , P, L) be
a DTMC and Var a set of Boolean variables such that for each s ∈ S there is a unique binary encoding
νs : Var → {0, 1} with νs 6= νs′ for all s, s′ ∈ S, s 6= s′. For s, s′ ∈ S we also define νs,s′ : Var ∪̇ Var ′ → Q
with νs,s′(x) = νs(x) and νs,s′(x

′) = νs′(x) for all x ∈ Var , x′ ∈ Var ′. A target state set T ⊆ S is represented

by a BDD T̂ over Var such that T̂ (νs) = 1 iff s ∈ T . Similarly for the initial state, Î(νs) = 1 iff s = sI .
The probability matrix P : S × S → [0, 1] ⊆ Q is represented by an MTBDD P̂ over Var ∪̇Var ′ such that
P̂ (νs,s′) = P (s, s′) for all s, s′ ∈ S. For an MTBDD B over Var we use Bbool to denote the BDD over Var
with Bbool(ν) = 1 iff B(ν) > 0 for all valuations ν.

The transition matrices of practically relevant systems are usually sparse and well-structured with
relatively few different probabilities; therefore the symbolic MTBDD representation is in many cases more
compact by several orders of magnitude than explicit representations.

Example 2. In order to represent the 7 states of the DTMC M from Figure 1(a) symbolically, we use the
variable set Var = {σ1, σ2, σ3} with σ1 < σ2 < σ3. To represent its transitions, we extend this set by a
copy of itself: Var ∪̇Var ′ = {σ1, σ2, σ3, σ′1, σ′2, σ′3}. A possible unique encoding of the states as well as the
transitions is given by the following assignments:

7

σ1 σ2 σ3
s0 0 0 0
s1 0 0 1
s2 0 1 0
s3 0 1 1
s4 1 1 1
s5 1 1 0
s6 1 0 0

σ1 σ2 σ3 σ′1 σ′2 σ′3
s0 → s1 0 0 0 0 0 1
s0 → s5 0 0 0 1 1 0
s1 → s2 0 0 1 0 1 0
s1 → s3 0 0 1 0 1 1
s2 → s1 0 1 0 0 0 1
s2 → s4 0 1 0 1 1 1
s3 → s3 0 1 1 0 1 1
s4 → s1 1 1 1 0 0 1
s4 → s3 1 1 1 0 1 1
s5 → s3 1 1 0 0 1 1
s5 → s6 1 1 0 1 0 0
s6 → s6 1 0 0 1 0 0

Based on the this encoding, the BDD B1 in Figure 2(a) represents the state space of the subsystem
M ′ of M from Figure 1(b). Node n0 is labeled with the variable σ1, n1 and n2 are labeled with σ2, and
n3, n4, n5, n6 with σ3. Thus each level corresponds to the choice of the value for exactly one variable. The
leaves labeled with 0 and 1 indicate whether the function fB1

(σ1, σ2, σ3) is evaluated to 0 or 1. Dashed edges
indicate that the variable at whose level the edge starts, is set to 0, solid edges that it is set to 1.

Consider the path n0, n1, n3, 1 which results from choosing the low successor for each inner node. This path
is induced by the assignment νs0 with νs0(σ1) = νs0(σ2) = νs0(σ3) = 0 and has the evaluation fB1

(0, 0, 0) = 1.
Thus, state s0 is part of the set encoded by this BDD. Consider furthermore the path n0, n2, n6, 0. As this
corresponds to state s4 and evaluates to 0, the state s4 is not included in this set.

The BDD B2 in Figure 2(b) encodes the same state set as B1 but it is reduced. Since in B1 the choice of
assignment for variable σ1 already determines the evaluation of the whole function, all intermediate nodes
after n0 can be eliminated.

Finally, the transition matrix of the DTMC M ′ can be encoded by the MTBDD B3 in Figure 3. For each
s, s′ ∈ S, the path induced by the assignment νs,s′ leads to a leaf that is labeled with the probability P (s, s′)
to move from s to s′ in M ′. For example, the path n0, n1, n2, n4, n8, n13, 0.5 is induced by the assignment
νs0,s1 , which corresponds to the transition between the states s0 and s1 with probability 0.5. This MTBDD
is already reduced. Please note, that in our implementation we use an interleaved variable ordering for
the transition MTBDD, i. e., the levels would be in the order σ1, σ

′
1, σ2, σ

′
2, σ3, σ

′
3. We refrained from this

ordering as a transition is easier to read with a non-interleaved ordering.

3. Symbolic Counterexample Generation Framework

In this section we present our framework for the generation of probabilistic PCTL counterexamples using
symbolic data structures.

We provide an algorithm that computes, for the symbolic representation of a DTMC as input, a critical
subsystem, which is again symbolically represented. As the most significant ingredient, this algorithm needs
a symbolic path search method, which returns paths of the input DTMC. The critical subsystem is initially
empty and gets incrementally extended with the states of found paths and the transitions between the (old
and new) states. Symbolic implementations of the path search method will be described in Sections 4 and 5.

3.1. The Framework

The algorithm for finding a symbolic counterexample is depicted in Algorithm 1. The parameters specify
the input DTMC symbolically by the MTBDD P̂ for the transition probability matrix, the BDD Î for the
initial state and the BDD T̂ for the target states, as well as a probability bound λ ∈ [0, 1] ⊆ R, which shall
be exceeded by the resulting critical subsystem. The BDD States is used to symbolically represent the set
of states which are part of the current subsystem, while NewStates is used to store the states occurring
on a path or on a set of paths which shall extend the current subsystem. The MTBDD SubSys stores the
transition MTBDD of the current subsystem. The algorithm uses the following methods:

8

n0

n1

n2

n4

n8

n13

n5

n9

n3

n6

n11

n16

n7

n12

n17

0.5 0 1

σ′3

σ′2

σ′1

σ3

σ2

σ1

Figure 3: MTBDD B3 representing the transition matrix of the DTMC M ′.

ModelCheck(MTBDD P̂, BDD Î, BDD T̂) performs symbolic probabilistic model checking [23, 24] and returns
the probability of reaching states in T̂ from states in Î via transitions in P̂ .

FindNextPath(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) computes a set of states which occur on a path
leading through the DTMC represented by the transition MTBDD P̂ , the initial state Î, and the set of
target states T̂ . Which path is found next depends on the current subsystem SubSys and therefore on
the set of previously found paths. The method can return states occurring on one path or on a set of
paths. Different symbolic implementations of this method will be discussed in Sections 4 and 5.

ToTransitionBDD(BDD States) first computes the BDD States ′ by renaming each variable x ∈ Var occurring
in States to x′ ∈ Var ′ and returns the transition BDD States ∩ States ′ in which there is a transition
between all pairs of states occurring in States, i. e., (States ∩ States ′)(νs1,s2) = 1 iff States(νs1) =
States(νs2) = 1. Intuitively, this yields a BDD inducing the complete directed graph over States, i. e.,
all states are connected to each other. Multiplying this BDD with the transition probability matrix P̂
removes all transitions from P̂ which do not connect two states of the subsystem.

The algorithm proceeds as follows. First, the three empty objects States, NewStates, and SubSys are
created in line (1). If ModelCheck(P̂ , Î, T̂) shows that λ is exceeded, the reachability property is violated
and the search for a counterexample starts (line 2). Otherwise, the algorithm just terminates, returning
an empty subsystem since no counterexample exists if the property is not violated. The condition of the
while-loop in line (3) invokes model checking for the current subsystem SubSys and the initial states and
target states. The loop runs until ModelCheck(SubSys, Î, T̂) returns a value which is greater than λ. In this
case, the current subsystem is critical. Please note that calling a model checking algorithm in each iteration
is quite costly. Depending on the input system, we search for a certain number of paths until we invoke
model checking. In every iteration, first the method FindNextPath(P̂ , Î, T̂ ,SubSys) in line (4) returns a set

9

Algorithm 1 Incremental generation of critical subsystems

FindCriticalSubsystem(MTBDD P̂ , BDD Î, BDD T̂ , double λ)
begin

BDD States := 0, NewStates := 0; MTBDD SubSys := 0; (1)

if ModelCheck(P̂ , Î, T̂) > λ then (2)

while ModelCheck(SubSys, Î, T̂) ≤ λ do (3)

NewStates := FindNextPath(P̂ , Î, T̂ ,SubSys); (4)

if NewStates 6= 0 then (5)

States := States ∪NewStates; (6)

SubSys := ToTransitionBDD(States) · P̂ ; (7)

end if (8)

end while (9)

end if (10)

return SubSys (11)

end

of states which occur on a path or a set of paths through the system. If this set is not empty, the current set
of states is extended by these new states (line 6). Afterward, the current subsystem is extended (line 7):
ToTransitionBDD(States) generates a transition relation between all found states. Multiplying the resulting
BDD and the original transition MTBDD P̂ yields a probability matrix P ′ ⊆ P restricted to transitions
between the states in States. These transitions define the updated subsystem SubSys.

3.2. Path Search Concepts

We distinguish between two basic concepts of searching for paths: global search and fragment search [16].
Global search finds paths that start in the initial state sI of the system and end in a target state t ∈ T .
Fragment search searches for paths that connect already found states but visit only new states in between.
Each symbolic search method presented in this paper will follow one of these concepts.

Example 3. Consider again the DTMC M in Figure 1(a). If we search for paths in decreasing order of
their probability, the following two most probable paths are found:

s0 s1 s3 1
0.5 0.5

s0 s1 s2 s1 s3 1
0.5 0.5 0.5 0.5

The second path contains a state repetition of s1 as it uses the corresponding loop. Note, that for the
global approach paths may differ only in the order and/or the number of loop iterations. For instance, the
second pat might occur many times with arbitrary many unrollings of the loop s1s2s1.

The first two paths according to fragment search for most probable path fragments are as follows:

s0 s1 s3 1
0.5 0.5

s1 s2 s1
0.5 0.5

The first path is the same as for global search, as initially only initial and target states can be connected.
The second path connects already found states: The most probable connection is the loop between s1 and s2.
In this example the global and the fragment search both build the same subsystem presented in Figure 1(b).

10

3.3. Complexity of the Framework

The complexity of BDD-based algorithms strongly depends on the size of the BDDs. In terms of variables,
their size can in general only be bounded by O(2n

n) where n is the number of variables the BDD depends
on [35]. In terms of non-zero elements, every matrix of dimension m ×m with k non-zero elements can
be represented—independently from the variable order—with O(k · logm) nodes [21], which is even in the
worst-case competitive to explicit sparse matrix representations. For practical cases, which often contain
many symmetries, the size is typically much smaller than this upper bound.

The SAT problem, which we utilize to search for paths, is NP-complete [36], i. e., all available algorithms
have an exponential worst-case running time in the number of variables. Nevertheless, practical problems
inducing millions of clauses and hundreds of thousands of variables can be often solved quickly using modern
SAT solvers [37].

Due to the great gap between the worst case and the practically experienced complexity, a worst-case
analysis of these algorithms makes little sense. We will instead give an experimental evaluation in Section 7.

4. Searching Paths Using SAT Solving

In this section we present two implementations for the method FindNextPath(...) (as invoked by Algo-
rithm 1) using bounded model checking and SAT solving. First, an existing method which searches for paths
of certain lengths is adapted to our symbolic framework, giving us a global search procedure. Second, we
present a new method which looks for path fragments that extend a subsystem. Finally, we describe a new
SAT-solving heuristic which guides the SAT solver to prefer more probable path fragments.

4.1. Adapting Bounded Model Checking for Global Search

In [9], a bounded model checking (BMC) approach for DTMCs was developed. The input is a symbolic
representation of a DTMC M = (S, sI , P, L) and a set of target states, i. e., BDDs Î and T̂ , and an MTBDD
P̂ over a variable set Var = {σ1, . . . , σm} as described earlier. We assume target states to be deadlock states,
i. e., without outgoing transitions.

First, Tseitin’s transformation [38] is applied to generate formulae in conjunctive normal form (CNF) for
the BDDs Î, T̂ and P̂bool, where the latter represents the BDD for the induced non-probabilistic transition
relation for P̂ without any outgoing transitions from target states. We denote the resulting CNF predicates
by Ǐ(Var), Ť (Var) and P̌ (Var ,Var ′), respectively. The BMC formula is parametric in k ∈ N and has the
following structure:

BMC (k) = Ǐ(Var0) ∧
k−1∧
i=0

P̌ (Var i,Var i+1) ∧ Ť (Vark) . (2)

The solution set of BMC (k) corresponds to the set of paths of length k from the initial to a target state,
where for each i = 0, . . . , k the set Var i = {σi,1, . . . , σi,m} of Boolean variables is used to encode the state at

depth i on a path. That means, a satisfying assignment ν :
⋃k
i=0 Var i → {0, 1} encodes the ith state on the

path by νi : Var i → {0, 1} with νi(σj) = ν(σi,j) for each j = 1, . . . ,m. If there is no satisfying assignment,
there is no such path.

Usually multiple paths need to be found in order to form a counterexample, thus the solver has to
enumerate satisfying solutions for BMC (k), k = 0, 1, . . ., until enough probability mass has been accumulated.
Note that target states have no outgoing transitions in the encoding, i. e., paths end in the first target state
that is reached and therefore two different paths from the initial to a target state are never prefixes of each
other. Therefore their corresponding cylinder sets are disjoint and their joint probability is the sum of their
individual probabilities.

To assure that a path is not considered several times, each time a solution is found it is excluded from
further search by adding new clauses to the SAT solver’s clause database. Assume that the solver has

11

found a solution ν :
⋃k
i=0 Var i → {0, 1} for BMC (k). The found path is uniquely described by the following

conjunction:
k∧
i=0

m∧
j=1

σ
ν(σi,j)
i,j , (3)

where σ1
i,j = σi,j and σ0

i,j = ¬σi,j . To exclude the found path from the solution space of BMC (k), the
negation of the above conjunction is added to the solver’s clause database:

k∨
i=0

m∨
j=1

σi,j
1−ν(σi,j) . (4)

This ensures that for a new path at least one state variable has to be assigned differently as it is done by ν.
Termination of the iterative construction of a critical subsystem is guaranteed, as the SAT solver finds all

paths of length k. Eventually, the subsystem will consist of all states that are part of paths from initial to
target states. This subsystem induces the whole probability mass of reaching a target state in the original
system. As the counterexample generation in Algorithm 1 only starts if the probability bound is exceeded,
the probability mass of this system will also exceed the bound. Therefore, the algorithm always terminates.

Example 4. Assume the symbolic representation of the DTMC M of Figure 1(a) as explained in Example 2.
We use the same set of variables Var = {σ1, σ2, σ3} while we add another index for the depth of the path at
which each variable is used to encode a state. For example, the formula σ0

2,1 ∧ σ1
2,2 ∧ σ0

2,3 encodes state s2 at
depth 2 of a path. As the shortest path that leads from the initial state sI to the target state s4 has length
2, there will be no satisfying assignments for BMC (0) and BMC (1). For k = 2, the formula

σ0
0,1 ∧ σ0

0,2 ∧ σ0
0,3︸ ︷︷ ︸

s0

∧ σ0
1,1 ∧ σ0

1,2 ∧ σ1
1,3︸ ︷︷ ︸

s1

∧ σ0
2,1 ∧ σ1

2,2 ∧ σ1
2,3︸ ︷︷ ︸

s3

encodes the first path s0s1s3 of the global search in Example 3. The predicates P̌ , Ǐ, and Ť are all satisfied.
Adding the negation of this formula to BMC (2) prevents the SAT solver from finding this path again.

4.2. Adapting Bounded Model Checking for Fragment Search

The previously described approach of using a SAT solver to find paths leading from the initial state of the
DTMC to the target states is now extended according to the fragment search approach as described in
Section 3.2. We therefore aim at finding path fragments that extend the already found system iteratively.

The intuition is as follows: In search iteration 0, the CNF formula given to the SAT solver is satisfied if
and only if the assignment corresponds to a path of arbitrary but bounded length (by some predefined n ∈ N
which will be increased later if necessary) through the input DTMC leading from the initial state sI to a
target state t ∈ T . This path induces the initial subsystem. Subsequently, this system is extended by paths
whose first and last states are included in the current subsystem, while all states in between are fresh states.

For this we need to consider already found states for all possible depths d of a path, 0 ≤ d ≤ n. For a
state s let νds : Vard → {0, 1} be the unique assignment of Vard corresponding to state s.

We introduce a flag fds for each state s and each depth d. This flag is assigned 1 if and only if the
assignment of the state variables at depth d corresponds to the state s. Thereby, we can “switch” the
occurrence of a state s at level d by setting its flag fds to 0 or 1.

fds ↔ (σ
νd
s (σd,1)
d,1 ∧ · · · ∧ σν

d
s (σd,m)
d,m) . (5)

The next variable Kd
j describes the whole set of states which have been found so far, namely in the iterations

0, . . . , j of the search process (again in terms of the variables Vard for depth d). Note, that these are exactly
the states of the current subsystem SubSys after iteration j. We set Kd

−1 := fdsI ∨
∧
t∈T f

d
t to allow for paths

initially leading from the initial state to all target states. Note that we assume all target states to have no

12

outgoing transitions. Assume that in iteration j of the search process the path πj = s0s1 . . . sn is found. We
then define

Kd
j ↔

(
Kd
j−1 ∨

n∨
i=0

fdsi

)
. (6)

All flags for the states s0 . . . sn can satisfy the right-hand side of this formula as well as the ones hidden in
Kd
j−1. Kd

j is thereby true iff the assignment corresponds to at least one of the states that were encountered
so far.

In the first search iteration j = 0 we need a formula which is true iff the variable assignment corresponds
to a path of arbitrary length—again bounded by n—leading from the initial state to a target state of the
DTMC.

Ǐ(Var0) ∧
n∨
i=0

Ť (Var i) ∧ (7a)

n−1∧
i=0

[(
¬Ť (Var i)→ P̌ (Var i,Var i+1)

)
∧
(
Ť (Var i)→ (Var i = Var i+1)

)]
. (7b)

Assume that ν is an assignment corresponding to the path π = s0s1 . . . sn. Formula (7a) states that the
first state s0 is the initial state and that one of the states s0, . . . sn is a target state. Formula (7b) ensures,
that if a state si is not a target state, a valid transition will be taken to the next state. On the other hand, if
si is a target state, all following state variables will be assigned si, which creates an implicit self-loop on this
state. This is useful to detect when a target state is reached, since otherwise the solver would be free to
assign arbitrary values to the states following a target state. The path returned to Algorithm 1 ends with
the first target state sn.

For the following iterations j > 1 we require that each solution corresponds to a path fragment that starts
and ends in the current subsystem and contains at least one new state in between. For this we need the
previously defined variables Kj

d:

K0
j−1 ∧ P̌ (Var0,Var1) ∧ ¬K1

j−1 ∧
n∨
d=2

Kd
j−1 (8a)

∧
n−1∧
d=1

[(
¬Kd

j−1 → P̌ (Vard,Vard+1)
)
∧
(
Kd
j−1 → Vard = Vard+1

)]
. (8b)

Formula (8a) ensures that the first state s0 of a solution path πj = s0 . . . sn is contained in the set K0
j−1

of previously found states, that a transition is taken from this state to a not yet found state s1 and that one
of the following states sd, d ≥ 2, is again contained in Kd

j−1. Formula (8b) enforces valid transitions from all
not yet found states si to si+1. If si was already included in previous paths, then all following states are
assigned to si, thereby again creating an implicit self-loop on this state.

Termination is guaranteed, as the length of the paths is bounded by n. If no further satisfying assignments
are found, this number has to be increased. However, the diameter, i. e., the longest cycle-free path of the
underlying graph, is an upper bound on the length of loop-free paths from sI to target states. Therefore, n
needs to be increased only finitely many times, such that a critical subsystem is always determined in finite
time.

Example 5. Consider again the assignment σ0,1 7→ 0, σ0,2 7→ 0, σ0,3 7→ 0, σ1,1 7→ 0, σ1,2 7→ 0, σ1,3 7→
1, σ2,1 7→ 0, σ2,2 7→ 1, σ2,3 7→ 1 which encodes the first path s0s1s3 for the fragment search as in Example 3.
Having this in iteration 0, (7a) is satisfied, as the assignment of the variables in Var0 = {σ0,1, σ0,2, σ0,3}
encodes the initial state. The assignment of the variables in Var2 = {σ2,1, σ2,2, σ2,3} the corresponds to the
target state. (7b) is also satisfied, as for the states encoded by the variables Var0 and Var1, which are not
target states, transitions are available leading to the state at the next depth. As the variables from Var2 are
assigned to a target state, all following variable sets Varm with 2 ≤ m ≤ n will be assigned equally, thereby

13

again encoding the target state. This causes an implicit self-loop on the target state. According to (6), we
build:

K0
0 ↔ (f0s0 ∨ f0s1 ∨ f0s3), K1

0 ↔ (f1s0 ∨ f1s1 ∨ f1s3), K2
0 ↔ (f2s0 ∨ f2s1 ∨ f2s3) .

Intuitively, Kd
0 is true for 0 ≤ d ≤ 2 iff the variables at depth d are assigned to any of s0, s1 or s3.

For iteration 1, consider the assignment σ0,1 7→ 0, σ0,2 7→ 0, σ0,3 7→ 1, σ1,1 7→ 0, σ1,2 7→ 1, σ1,3 7→ 0, σ2,1 7→
0, σ2,2 7→ 0, σ2,3 7→ 1. This encodes the second path s1s2s1 of the fragment search (Example 3). First, (8a) is
true: The variables from Var0 are assigned such that K0

0 is true as f0s1 is true for σ0,1 7→ 0, σ0,2 7→ 0, σ0,3 7→ 1;
a valid transition leads from s1 to s2; s2 satisfies ¬K1

0 , and at d = 2 again a state satisfying K2
0 is assigned,

namely again s1. (8b) is also satisfied, as for state s2—not satisfying K1
0—a valid transition is taken. Once

Kd
0 for 0 < d ≤ n is satisfied, all states at the following depths are assigned the same, again creating an

implicit self-loop.

4.3. A SAT Heuristics for Finding More Probable Paths

A drawback of the SAT-based search strategies is that paths are found without considering their probability
beforehand. If paths or transitions with higher probabilities are preferred, the process can be accelerated.

SAT solvers have efficient variable selection strategies, i. e., strategies to decide which variable should be
assigned next during the solving process. We therefore modify only the choice of the value the solver assigns
to the selected variable, in order to prefer paths with higher probabilities.

The decision how to assign a variable is based on the transition probabilities. If a variable σi+1,j is to
be assigned at depth 0 < i+ 1 ≤ n, its value partly determines si+1, being the target of a transition with
source si. We choose the value for σi+1,j which corresponds to the state si+1 to which the transition with the
highest probability can be taken (under the current assignment). This can be applied for several consecutive
transitions in the future up to the complete path. However, as this computation is very expensive, we restrict
the number of time steps we look ahead. For our test cases, assigning variables for 3 possible consecutive
transitions in one step led to the best results.

Example 6. Consider the DTMC M from Figure 1(a). Assume the binary encoding as described in
Example 2. In the table below, a partial assignment νpart of the variables for a state si and its successor si+1

is shown; “?” indicates, that this variable is not yet assigned, next, that this variable will be assigned next.

si si+1

σi,1 σi,2 σi,3 σi+1,1 σi+1,2 σi+1,3

νpart 1 1 ? next ? ?

The current assignment determines state si to be either s4 or s5. Assigning 1 to the next variable σi+1,1,
which is the first variable for the successor state si+1, would only lead to the non-target absorbing state s6.
As the most probable transition outgoing from s4 or s5 would be the one leading to state s1 with probability
0.7, we guide the SAT solver to assign 0 here.

5. BDD-based Symbolic Path Search

In this section we present new BDD-based graph algorithms to implement the path search procedure
FindNextPath(...) as invoked by Algorithm 1. We first explain, how one can find the most probable
path through a symbolically represented DTMC using a set-theoretic variant of Dijkstra’s algorithm, called
Flooding Dijkstra [11]. This method is extended to allow the computation of the k most probable paths of a
DTMC. This procedure can be directly embedded into the symbolic framework from Section 3, resulting in a
symbolic global search. However, the direct application leads to an exponential blow-up of the search graph.
Therefore we introduce an improved variant which—amongst other improvements—avoids this growth, called
adaptive global search. Afterward we present a new search method which symbolically searches for the most
probable path fragments that extend the current subsystem. We call this approach the symbolic fragment
search.

14

Algorithm 2 The Flooding Dijkstra algorithm for symbolic DTMCs

FloodingDijkstra(MTBDD P̂ , BDD Î, BDD T̂)
begin

BDD UD := Î; (1)

MTBDD PR1 := Î, PR2 := 0, SP := 0, SPG := 0; (2)

while UD 6= 0 do (3)

PR2 := CalcProbs(UD ,PR1, P̂); (4)

UD := GetStates(PR2,PR1); (5)

PR1 := UpdatePR(UD ,PR1,PR2); (6)

SPG := UpdateSPG(UD , P̂ ,SPG); (7)

end while (8)

SP := GetPath(SPG , Î, T̂); (9)

return SP ,SPG (10)

end

5.1. Flooding Dijkstra Algorithm

The Flooding Dijkstra algorithm was introduced in [11]. As it is used in all of our BDD-based symbolic
algorithms, we give a short explanation. The algorithm computes a shortest path, which is in our context
a most probable path, from the initial state of a DTMC to a target state. This is done by a forward fixed
point computation, iteratively improving for all states s of the DTMC an under-approximation of the largest
path probability from the initial state sI to s. Initially, the under-approximation is 1 for the initial state
and 0 for all other states. An update set, which initially consists of the initial state, stores those states
whose approximation was improved and needs to be propagated to their successors. The difference to the
standard Dijkstra algorithm [26] for computing shortest paths in a directed graph is that Flooding Dijkstra
updates in each iteration the approximations of the successors of all states from the update set, instead of
restricting the propagation to an optimal element with the minimal currently known cost (highest probability).
That means, in contrast to the depth-first search of the standard Dijkstra algorithm, the Flooding Dijkstra
algorithm operates in a breadth-first-style over sets of states. Therefore it can be efficiently implemented
using MTBDD operations. For details on the differences between the Flooding and standard Dijkstra variant
cf. [34, Section 5.2.1].

The Flooding Dijkstra algorithm is sketched in Algorithm 2. The parameters P̂ , Î and T̂ specify the
input DTMC with the target states. The BDD UD stores the update set of those states that gained higher
probabilities in the last iteration, whereas the probability approximations before resp. after a propagation
step are stored in the MTBDDs PR1 resp. PR2. A directed acyclic graph (DAG) SPG (short for shortest
path graph) is maintained to contain all most probable paths with minimal length from the initial state to all
other states (w. r. t. the current approximation). Please note, that SPG is not a tree, as there may be two or
more paths of the same highest probability and length leading to the same state. After the fixed point has
been reached, i. e., when the approximation becomes exact, the last step of the algorithm extracts a single
most probable path (represented by the set SP of contained states) from the initial state to a target state.
The following methods are used:

CalcProbs(BDD UD, MTBDD PR1, MTBDD P̂) propagates the improved probability values of states in UD
to their successors. It calculates for all states s′ with at least one predecessor s ∈ UD the maximal
currently known path probability to go from sI to a state in UD (as stored in PR1) and from there in
one step to s′ (according to P̂). The name “flooding” indicates that hereby the maximum is formed
over all states s ∈ UD with P (s, s′) > 0.

Using (MT)BDD operations this is done as follows: PR1 stores the probabilities of the most probable
paths detected so far. Initially, only the initial state has probability 1 and all other states 0. PR1 ·UD
restricts the probabilities to the states in UD . PR1 ·UD · P̂ yields an MTBDD defined over Var and

15

Var ′. For an assignment νs,s′ this MTBDD gives the probability to go from sI to s (according to PR1)
and then takes the direct transition from s to s′. We quantify over the source states, i. e., the variables
Var , taking the maximum over all possibilities. Since the resulting MTBDD is defined over Var ′, we
rename these variables to Var . This yields PR2.

GetStates(MTBDD PR2, MTBDD PR1) determines those states whose probability approximations were
improved during the last propagation step. The resulting BDD contains those states whose probability
in PR2 is higher than in PR1. In detail, the operation APPLY(>, PR2, PR1) is carried out.

UpdatePR(BDD UD, MTBDD PR1, MTBDD PR2) computes the maximum over PR1 and PR2, where UD
is assumed to contain those states whose values in PR2 are higher than in PR1. This function is
implemented using ITE(UD ,PR2,PR1).

UpdateSPG(BDD UD, MTBDD P̂, MTBDD SPG) maintains the DAG according to the improved probabilities
for the update set UD . Those transitions of SPG that lead to a state in UD , i. e., to a state whose
probability was improved, are removed. The transitions that cause the higher probabilities in PR2 are
added.

GetPath(MTBDD SPG, BDD Î, BDD T̂) extracts one most probable path from the DAG SPG by walking
backward from T̂ to one of its predecessors until Î is reached. This is straightforward and will not be
explained further.

When the while-loop terminates, the MTBDD SPG contains, for each state s, all most probable paths
with a minimal number of transitions from sI to s.

For both path search methods that we describe in the following, it is often beneficial not to return only a
single path, but all paths in SPG to a target state. Then we perform a backward breadth-first search in SPG
starting from T̂ in order to have only states from which the target state is reached inside SPG . Therefore,
the return statement of the Algorithm returns both SP and SPG .

Example 7. If the Flooding Dijkstra algorithm is run on the DTMC from Figure 1(a), a DAG containing
all paths of maximal probability from the initial state to all other states is computed. This graph and the
most probable path to the target state s3 of probability 0.25 and length 2 are depicted below. The framed
values above the nodes of the DAG show the computed probability values from PR1.

s0

s1

s2 s4

s3

s5 s6

1

0.5

0.25

0.25

0.125

0.5 0.45

s0

s1

s3

The path is determined by invoking a backward breadth-first search from the target state. Please note
that in case there was another path of the same probability and length to the target state s3 in the DTMC,
there would be another path from s0 to s3 in the DAG. Please note also that standard Dijkstra would
compute the same result, only the way of computation differs.

5.2. Adaptive Symbolic Global Search

In [11], a symbolic version of a k-shortest path search was presented. This corresponds to the k most
probable paths, leading from the initial state to a target state ordered by their probabilities. Utilized for a
counterexample search, the value of k is not fixed beforehand but the search terminates if enough probability

16

mass is accumulated [12]. The main components are the calculation of a most probable path by the Flooding
Dijkstra, see Section 5.1, and a transformation of the DTMC such that the most probable path in the altered
system corresponds to the second-most probable path in the original system.

The adaption to our symbolic framework for the computation of critical subsystems is straightforward.
Intuitively, for every new path the states on this path are available in BDD-representation and returned to
Algorithm 1 as the BDD NewStates . As long as still new states are needed to form a critical subsystem, the
k-shortest path search continues to deliver the next shortest path. This adaption is shown in Algorithm 3.

Algorithm 3 The global search algorithm for symbolic DTMCs

SymbolicGlobalSearch(MTBDD P̂ , BDD Î, BDD T̂ , BDD SP)
begin

if SP 6= 0 then (P̂ , Î, T̂) := Change(P̂ , Î, T̂ ,SP); (1)

SP := ShortestPath(P̂ , Î, T̂); (2)

return SP (3)

end

The parameters P̂ , Î and T̂ represent the input DTMC and the target states, whereas SP stores the
states of the shortest path. The following methods are used (for details on the MTBDD operations we refer
to the appendix of [11]):

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) is a symbolic implementation of the Flooding Dijkstra algorithm
described in Section 5.1. It returns a BDD that represents the states occurring on a most probable
path from the initial state represented by Î to a target state from the set represented by T̂ .

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SP) changes the DTMC (P̂ , Î, T̂) such that the most probable
path in the new DTMC corresponds to the second-most probable path of the original DTMC.

The idea is to use two copies of the DTMC. The initial state is in the first copy while the target
states are in the second copy. In the first copy, only edges of SP remain unchanged; all other edges
are redirected to the corresponding states in the second copy, in which all edges remain unchanged.
Then all paths—with the exception of SP—lead from the initial state to a target state in this modified
graph. As a consequence, every path to a target state needs to take at least one transition at a certain
depth that does not occur in SP at the same depth. Therefore, the most probable path in the modified
graph corresponds to the second-most probable path in the original model. These modifications can be
performed symbolically by adding an additional state variable that indicates which copy is used. The
MTBDD P̂ is therefore extended by two variables: One for the source and one for the target state.
The adaptation of the transition relation is straightforward.

Example 8. To explain the procedure of altering the system using the above method, assume that the
first global path s0s1s3 of the DTMC shown in Figure 1(a) is found (the first global path in Example 3).
The altered system is depicted in Figure 4. The two copies of the DTMC are marked by dashed rectangles.
The initial state is still s0 while the new target state is the copy s′3 of s3. Only the transitions of the most
probable path reside in the left copy. States, that are not reachable any more are drawn gray and we omit
the transitions. The dashed transitions are the ones that do not belong to the most probable path and lead
from the left to the right copy. The most probable path in this altered system is now the path s0s1s

′
2s
′
1s
′
3.

This corresponds to the second-most probable path of the original system as in Example 3. Note, that in
order to find the next path, this whole altered system is again copied.

As the whole modified system is copied again in every iteration (after each path), this procedure leads
to an exponential blow-up in the system size. The MTBDD resulting from the iterative application of this
altering grows also rapidly and renders this method inapplicable to systems which require a large number of

17

s0 s1

s2 s4

s3 1

s5 s6

s′0 s′1

s′2 s′4

s′3 1

s′5 s′6 1

0.5 0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.7

0.3

0.1

0.9

Figure 4: Altered system.

paths, as our test cases will show. A further drawback is that many of the computed paths do not extend
the subsystem and therefore do not lead to any progress. We have implemented this approach in order to
compare it to other ones, and call it symbolic global search.

To present a symbolic global search approach that is usable for practical instances, we developed a new
improved variant. In comparison to the straightforward approach this on the one hand avoids the exponential
blow-up of the system size and on the other hand saves many search iterations by adding sets of paths.
Furthermore, the search algorithm uses an adaptive strategy in order to find small counterexamples. We call
this approach the adaptive symbolic global search, depicted in Algorithm 4.

Algorithm 4 The adaptive global search algorithm for symbolic DTMCs

AdaptiveSymbolicGlobalSearch(MTBDD P̂ , BDD Î, BDD T̂ , BDD SubSys)
begin

BDD SPG = 0; MTBDD P̂ ′; BDD Î ′, T̂ ′; (1)

if SubSys = 0 then (P̂ ′, Î ′, T̂ ′) := (P̂ , Î, T̂); (2)

else (P̂ ′, Î ′, T̂ ′) := Change(P̂, Î, T̂, SubSys); (3)

SPG := ShortestPath(P̂ ′, Î ′, T̂ ′); (4)

return SPG (5)

end

Parameters are P̂ , Î, T̂ and SubSys as well as an BDD SPG which stores the current DAG. The methods
differ from the ones for Algorithm 3 as follows.

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) returns the BDD representation of the DAG SPG containing
all most probable paths of minimal length from a state of Î to a state of T̂ . A symbolic implementation
of the Flooding Dijkstra algorithm as described in Section 5.1 is used to obtain the DAG; a backward
reachability analysis starting from T̂ yields SPG .

Change(MTBDD P̂, BDD Î, BDD T̂, MTBDD SubSys) In the improved version, the idea is to not only exclude
the most probable path from the system but all transitions from the current subsystem. This is done
by applying the transformation to the original DTMC and the current subsystem SubSys instead of
only the most probable path SP . In every step, we redirect the transitions such that at least one
transition not present in SubSys has to be found.

This avoids doubling the search graph after each path and therefore the exponential blow-up, as in
every step again the original system is used; the system size only increases linearly. Furthermore, we

18

always obtain a path having a transition that is not yet contained in the subsystem at each time. Since
the subsystem contains all transitions of the original DTMC connecting two states in the subsystem,
each new transition also contributes a new state. Therefore the subsystem is extended in each iteration.
Note that P̂ is always unmodified.

Returned to Algorithm 1 is SPG which represents not only a single shortest path but a set of shortest
paths. To further speed up the calculation, we add all states of this DAG to the subsystem at once. As we
will see in our experiments, the search process is accelerated by orders of magnitude.

Adding many paths to the subsystem at once involves the risk that the computed counterexample has
more states than needed and is of a probability that is not close to the probability bound. We overcome this
problem by using an adaptive search strategy : In case the current subsystem is critical, i. e., its probability
exceeds the probability bound, we measure the difference of these probabilities. If the difference is higher
than a predefined constant δ > 0, we perform backtracking to the state of the search procedure before the last
spanning tree was added. We now add only a single path at a time and terminate as soon as the probability
bound is again exceeded.

5.3. Symbolic Fragment Search

In contrast to the previous approach, where we search for whole paths through the system, we now aim at
finding most probable path fragments as described in Section 3.2. This approach was successfully implemented
for explicit graph representations [16] and is now adapted to symbolic representations, depicted in Algorithm 5.

Algorithm 5 The adaptive fragment search for symbolic DTMCs

AdaptiveSymbolicFragmentSearch(MTBDD P̂ , BDD Î, BDD T̂ , MTBDD SubSys)
begin

BDD SPG , SubSysStates; (1)

if SubSys = 0 then (2)

SPG := ShortestPath(P̂, Î, T̂); (3)

else (4)

SubSysStates := ToStateBDD(SubSys); (5)

SPG := ShortestPath(P̂ \ SubSys, SubSysStates, SubSysStates); (6)

end if (7)

return SPG (8)

end

We need again a BDD SPG to store the DAG resulting from the Flooding Dijkstra algorithm. The
subsystem is now represented as an MTBDD SubSys, its states as a BDD SubSysStates. The following
methods are used:

ShortestPath(MTBDD P̂, BDD Î, BDD T̂) returns again the DAG SPG describing all paths of the highest
probability leading to a target state.

ToStateBDD(MTBDD SubSys) computes for the transition MTBDD SubSys a BDD describing all states that
occur as source state or target state for one of the transitions of SubSys. When SubSys is defined
over the variables Var = {x1, . . . , xn} and Var ′ = {x′1, . . . , x′n}, this is done by first building the
set OUT := ∃x′1, . . . , x′n. SubSysbool of all states with an outgoing transition. Afterward, the set
IN ′ := ∃x1, . . . , xn. SubSysbool of states with incoming transitions is built. These resulting BDDs have
to be defined over the same variable set, therefore we perform variable renaming for the set of states
with incoming transitions: IN := IN ′[x′1 → x1] . . . [x′n → xn]. Building the union IN ∪OUT yields the
needed BDD.

19

The symbolic fragment search checks whether the parameter SubSys is empty, i. e., whether this is the first
search iteration. If this is the case, the base paths leading from the initial state to a target state are computed
by invoking the most probable path search. The resulting paths, stored in the BDD SPG are returned to
Algorithm 1. If SubSys is not empty, then a part of the subsystem has already been determined. In this
case we compute the state BDD SubSysStates by invoking ToStateBDD(SubSys). The most probable path
algorithm is called to find the most probable paths from a state in SubSysStates to a state in SubSysStates
inside the DTMC induced by P̂ without using direct transitions from SubSysStates to SubSysStates. Note
again that the resulting DAG might describe a large number of such paths.

In contrast to the symbolic global search described in Section 5.2, the MTBDD for the transition relation
needs no significant modification. We only need to exclude the current subsystem from the further search in
every iteration, which didn’t lead to any remarkable overheads in our experiments. We also use the adaptive
search algorithm in order to gain small critical subsystems and call this the adaptive symbolic fragment
search.

Example 9. To illustrate the advantages of the adaptive fragment search, consider the following toy example
DTMC with a single target state s3.

s0 s1

0.4

s2 s3 1

s4

s5

s6

0.8

0.2

0.6 0.5

0.25

0.251

1

1

Using the adaptive global search, first the path π1 = s0s1s2s3 of probability 0.24 is found. The self-loop
on s1 is a transition starting and ending at states of the above path and will thus be automatically contained
in the DAG SPG . The next path is π2 = s0s6s3 having probability 0.2. Each of the next steps will extend
π1 by traversing the loops π3 = s1s2s4s1 and π3 = s1s2s5s1.

In contrast, the fragment search will first find the path π1 and then the path fragments π3 and π4, both
in one step. If the probability bound was not higher than λ = 0.8, this suffices to form a critical subsystem.
As in most of the available benchmarks such symmetric loop-behavior is very common, this example is
illustrative.

6. Related Work

This paper builds (amongst others) on the concepts used in [11, 16]. Jansen et al. [16] introduced the global
and fragment search techniques for the explicit generation of counterexamples. In this paper, we adapted
these techniques and developed both a SAT-based (cf. Section 4) and a (MT)BDD-based (cf. Section 5)
approach thereof. The experiments show a significant increase in scalability over [16] by several orders of
magnitude.

Günther et al. [11] presented a symbolic k-shortest path algorithm and exploited this in the context of
counterexample generation for DTMCs represented by MTBDDs. We adopted this for the global search
approach, but as opposed to [11] we do not obtain an MTBDD representing a set of k shortest paths, but
rather a representation as a critical subsystem of the DTMC (cf. Section 5.2). In addition, we improved
the running time of [11] by reducing the number of variable shiftings for the transition MTBDD in our
implementation.

20

The idea to use a k-shortest path algorithm in counterexample generation stems from Han et al. [12].
They show that the k most probable paths in a DTMC (forming a counterexample) correspond to the k
shortest paths in a related weighted digraph. Using a k shortest path algorithm by Jiménez and Marzal [39],
the number of paths is not determined beforehand but on-the-fly by an external condition. In this case that
means that the search terminates once a counterexample has been found. This avoids fixing some (arbitrary)
k in advance, and allows for finding the smallest k yielding a counterexample.

Aljazzar and Leue [15] exploit a best-first search for various search algorithms. The main advantage
is that this can be pursued in an on-the-fly manner, avoiding an a priori generation of the state space.
Using the simulation engine of Prism [7], a successor relation on states delivers for one state exactly the
explicit representation of its successors. Starting from an initial state of the system, the system is thereby
successively extended along most probable local paths. Additionally, a heuristic function enables the user to
use specific knowledge about benchmarks to prefer or penalize certain states of the system. As there might
be cases where it is be beneficial to represent a counterexample by a subsystem instead of a set of paths, an
extended best-first search (XBF) is used, where for each node not only the predecessor inducing the optimal
path is stored but also the other connections. Thereby, a whole system instead of a single path is obtained.
The approaches are implemented in the tool DiPro [18]. Furthermore, the authors introduce an on-the-fly
algorithm called K? [40] for finding the k shortest paths, which is based on the similar concepts.

Next we shortly discuss, how the approach implemented in DiPro could be adapted to the symbolic
setting. First of all, we always use subsystems as representations of counterexamples and not sets of paths.
As was already argued and evaluated in [15, 16], providing counterexamples in form of subsystems is clearly
superior to enumerating the paths in terms of running time and size of the representation as well. Furthermore,
having a subsystem, a path-based counterexample is always induced as the set of all finite paths going from
initial to target states inside the subsystem forms a counterexample.

Adapting the best-first approaches as in [15, 40] to symbolic data structures is not directly possible. Both
our symbolic approach and the best-first approach tackle the state explosion problem, the first one by using
symbolic data structures, the second one by building the state space successively. If the state space is already
fully generated in form of an MTBDD representation, it seems more reasonable to use search algorithms that
take the whole system into account as in our approach and not only locally optimal transition choices. Using
heuristics for preferring certain states as in these approaches could be adapted as follows: If a state is to be
preferred or penalized, the probability of its adjacent transitions can be scaled by a factor δ ∈ [0, 1] ⊂ Q,
while the probability of all other transitions is scaled by 1− δ. Thereby, a path leading through this state
becomes more probable or less probable, respectively, which would be taken into account by our algorithms.

In [17], a method to compute a minimal subsystem inducing a counterexample was presented. Unlike
the path-based methods, solving techniques like SAT modulo theories (SMT) and mixed integer linear
programming (MILP) are used to encode and compute these minimal subsystems. The implementation is
available as part of the tool LTLSubsys. An adaption to the symbolic setting poses the difficulty, that in
order to minimize the number of states a variable for each state needs to be introduced. With increasing
explicit size of a system, these approaches become infeasible.

Finally, in [41] the strongly connected components (SCCs) of the graph induced by a DTMC are abstracted
to single transitions leading through these SCCs. This is achieved by using Tarjan’s algorithm [42] for finding
SCCs and computing the overall probabilities of walking through SCCs and exiting them at certain states.
In [16], this concept was extended to arbitrarily nested connected components combined with path search
on abstract systems. Adapting these approaches would be possible, as efficient symbolic algorithms for
finding strongly connected components exist [43]. However, while this is straightforward for [41], defining a
nested abstraction scheme as in [16] is not obviously feasible for MTBDD representations and needs to be
investigated further.

7. Case Studies

In this section we present an experimental evaluation of the approaches introduced in this paper. We compare
them with existing methods, which all rely on an explicit representation of the state space. Measuring how

21

useful counterexamples in practice are is difficult. Obviously the size of a counterexample plays a crucial role:
If the counterexample is much larger than necessary, it will be of little help for debugging. Therefore we focus
on comparing the sizes of the counterexamples computed by different tools. Additionally we measure the
time for their computation and the memory consumption of the tools. We will see that our novel symbolic
methods can handle much larger state spaces than all tools relying on explicit representations.

7.1. Implementation

We have implemented a prototypical tool in C++ for the approaches presented in this paper. It uses the
model checker Prism 4.0.3, the BDD package Cudd 2.5.0 [44], and the SAT solver MiniSAT 2.2.0 [45].

We are going to compare our tool with DiPro [18], COMICS [19], and LTLSubsys [17], which are—to
the best of our knowledge—the only tools that support counterexample generation for DTMCs in form of
critical subsystems. In order to obtain comparable results, we use the same Prism models for all tools. For
COMICS and LTLSubsys, which cannot read Prism models, we use Prism to convert the state spaces into
Mrmc’s input format, which is essentially a list of reachable states and transitions. DiPro, on the other
hand, internally calls Prism to generate the state space. For our tool chain, we modified Prism such that it
is able to write its (MT)BDD representation of the reachable states, the initial and target states, and the
transition probability matrix into a file that can be read by our tool.

Regarding the variable order of the BDDs, we use the order generated by Prism: state and next state
variables are interleaved, the Boolean variables which encode a certain integer variable of the Prism model are
kept together. For more information on Prism’s model representation, we refer to [24]. Furthermore we did
not use dynamic reordering [33] to reduce the size of the BDDs during computations since the improvement
in terms of running times due to slightly smaller BDDs did not compensate the additional overhead for
sifting.

For the SAT-based approaches, we also use the MTBDD of the transition probability matrix. As described
in Section 4.1, to obtain a SAT formula, we map all leaves with a positive value to 1. This results in a BDD
describing the possible transitions of the system. By applying Tseitin’s transformation [38] we obtain a
propositional formula in conjunctive normal form whose length is linear in the number of nodes of the BDD.

For solving the formulae, we use MiniSAT. We extended it with a callback function which is called each
time a satisfying assignment has been found. This way the solver can continue its search after reporting a
solution without performing a restart from the beginning.

7.2. Models

We present results for the Probabilistic Contract Signing protocol [46], the Crowds protocol [47], and a
synchronous leader election protocol [48]. We used the Prism models [49] of these protocols, which are
publicly available at the Prism web page [50].

Probabilistic Contract Signing is a network protocol targeting the fair exchange of critical information
between two parties A and B. In particular, whenever B has obtained A’s commitment to a contract, B should
not be able to prevent A from getting B’s commitment. The PCTL property P≤0.5

(
♦ [knowA∧¬knowB]

)
we

are investigating describes an unfair situation where A knows B’s secrets while B doesn’t know A’s secrets.
The target states in our model are those states which carry the label knowA, but not the label knowB . The
model is parametric in the number N of data pieces to exchange and in the size K of each data piece.

The Crowds Protocol aims at anonymous communication in networks, where a crowd of n users is divided
into good members and bad members. A good member delivers a message to its destination with probability
1− pf and forwards it to another member, randomly chosen, with probability pf . This guarantees that no
bad member knows the original sender of the message. Each session describes the delivery of a message
to a sender. If a user is identified twice by a bad member as the sender of a message, we assume that
anonymity is no longer guaranteed. This is called positively identified (Pos). The PCTL property we consider
is P≤λ(♦Pos). The models are parametric in the size N of the crowd and in the number K of sessions.

The synchronous Leader Election Protocol is run on a ring-structured network of N identical nodes. The
goal is to randomly elect a leader node, which can later serve, e. g., as a coordinator. For the election, each
node randomly draws a number in the range from 1 to K. If at least one node draws a unique number, the

22

Model N-K States Transitions Probability λ

crowds

5-6 18 817 30 158 0.426153 0.25
8-15 50 445 495 88 120 216 0.850540 0.20
10-20 4 163 510 716 10 172 513 716 0.931304 0.40
20-30 10 173 177 100 089 080 38 403 575 234 221 120 ?? 0.20

contract

5-2 337̇90 34 814 0.515625 0.50
5-8 156 670 157 694 0.515625 0.50
7-2 737 278 753 662 0.503906 0.50
7-4 1 654 783 1 671 166 0.503906 0.50

leader
4-8 12 302 16 397 1.000000 0.50
8-4 458 847 524 382 1.000000 0.50

Table 1: Model statistics. Prism was not able to compute the reachability probabilities for crowds20-30 within 2 hours.

one with the highest unique number becomes the leader. Otherwise a new round starts. We investigate the
property whether the probability to finally elect a leader exceeds the bound λ.

The three benchmark classes have different structures: while the Crowds protocol contains nested loops,
the protocol for contract signing is completely acyclic. The leader benchmark contains non-nested loops
which correspond to the rounds of the protocol. This will also be reflected in the results.

Table 1 contains information about the different instances. The first column contains the benchmark
class, the second the values of the parameters N and K. The next three columns list the number of states,
transitions, and the actual probability (computed by Prism [7]) to reach a state satisfying property ϕ from
the initial state. The column titled “λ” contains the upper bound on the allowed probability.

7.3. Experimental Setting

All experiments were performed on an Intel Xeon E5-2643 CPU (3.3 GHz) with 32 GB RAM running Ubuntu
Linux 12.04. The timeout (TO) for counterexample generation was defined as 2 hours. We made 30 GB of
memory available to the program, leaving 2 GB for the operating system.

We do a comparison of the methods described in this paper with the following three tools:

The developers of DiPro [18] provided us with the most recent version of DiPro, which contains a series
of improvements and bug fixes compared to the published version. For comparison with our tool we used
three different algorithms, supported by DiPro on DTMCs: eXtended Best First search (XBF), Eppstein’s
k-shortest paths algorithm [51], and the K* algorithm by Aljazzar and Leue [40] with X optimization (-kxsol
switch). Model checking is performed every 50 iterations to check whether the computed subsystem is already
critical, which is the default setting of DiPro.

It is possible to extend DiPro with user-defined heuristics, which can considerably speed-up the search.
Such a heuristic, however, has to exploit the user’s knowledge about the structure of the model under
consideration. Since all other approaches work for arbitrary models without knowing their internals, we did
not develop any heuristics for DiPro to make the comparison fair. As mentioned in Section 6, we could
extend our approaches to use a heuristic like in DiPro.

The tool LTLSubsys can be used to compute minimal critical subsystems for DTMCs. It uses mixed
integer linear programming (MILP) to obtain a critical subsystem with a minimum number of states [17]. It
allows to add redundant constraints, which often speed up the solution process by strengthening the linear
relaxation of the MILP. We use the default settings which add forward and backward cuts as well as SCC
input cuts. The MILPs are solved using the commercial solver Cplex 12.4 by IBM. Although Cplex supports
multi-threading, we ran LTLSubsys only with a single thread since all other tools work sequentially.

COMICS [19] is able to construct hierarchical, refineable counterexamples by abstracting strongly connected
components as well as critical subsystems of the DTMC. It can apply both global search, i. e., the explicit-state
counterpart of the method described in Section 5.2 using the k-shortest paths algorithm by Jiménez and
Marzal [39], and an explicit-state variant of the fragment search method described in Section 5.3. We use
both global and fragment search on the non-abstracted system for our experiments.

23

cr
ow
ds
5-
6

cr
ow
ds
8-
15

cr
ow
ds
10
-2
0

le
ad
er
4-
8

le
ad
er
8-
4

co
nt
ra
ct
5-
2

co
nt
ra
ct
5-
8

co
nt
ra
ct
7-
2

co
nt
ra
ct
7-
4

101

104

107
#

S
ta
te
s
/
#

N
o
d
es

States (original system)

#States (subsystem)

#Nodes of P̂ (system)

#Nodes of P̂ (subsystem)

Figure 5: Number of states and MTBDD nodes of the original system and the computed subsystem.

Using COMICS and our symbolic algorithms, model checking is invoked for every 10th found path. If the
probability mass of the subsystem has reached around 95% of the needed mass, the probability is checked for
every new path. Using the adaptive strategy as explained in Section 5.2, the number of subsequent iterations
is heuristically determined with respect to the probability of the paths contained in the spanning tree.

7.4. Results

In Table 2 we have collected a number of results we achieved with our symbolic methods on the different
instances of the described case studies with properties of the form P≤λ(♦ϕ).

We tested the methods for symbolic counterexample generation described in this paper as well as the
original bounded model checking approach [9], which computes a set of paths. We provide results for the
following symbolic algorithms:

• BDD global: The naive BDD-based symbolic global search approach without optimizations, described
in Section 5.2.

• Adaptive BDD global: The BDD-based symbolic global search with optimizations also described in
Section 5.2.

• Adapt. BDD fragment: The BDD-based symbolic fragment search approach from Section 5.3 with
adaptive strategy and adding sets of paths at one time.

• SAT global: The global search approach using SAT solvers, see Section 4.1.

• SAT fragment: The fragment search approach using SAT solvers, Section 4.2.

• SAT fragment + H: The SAT-based fragment search approach together with the SAT heuristic preferring
more probable paths, Section 4.3.

• BMC classic: The original bounded model checking approach for DTMCs as described in [9].

For the resulting subsystems we present their number of states (# states) and the number of performed
path searches (# paths) or the number of iterations (# iter.) for the symbolic adaptive strategies. Additionally
we report the reachability probability within this subsystem (prob.), the computation time (time) in seconds,
and memory consumption (memory) in megabytes.

The classic BMC-approach of [9] does not compute a subsystem, but a set of acyclic paths which are
annotated with loops. In order to make its result comparable with the subsystems computed by the other

24

BDD Adaptive Adapt. BDD SAT SAT SAT frag- BMC
Model N-K global BDD global fragment global fragment ment + H classic

states # states # states # states # states # states # inv. states
paths # iter. # iter. # paths # paths # paths # paths

prob. prob. prob. prob. prob. prob. prob.
time time time time time time time

memory memory memory memory memory memory memory

crowds 5-6 626 932 660 908 6757 5584 1241
985 36 28 231359 1973 1600 127096
0.14 0.26 0.26 0.25 0.25 0.25 0.17
TO 3.41 3.35 3530.36 588.37 433.80 TO
329 26 23 987 356 345 1586

crowds 8-15 732 4049 1888 1586 12511 10768 1558
991 31 34 184480 3357 2849 36020
0.11 0.20 0.21 0.17 0.06 0.04 0.09
TO 8.78 23.62 TO TO TO TO
317 86 86 968 1434 1153 746

crowds 10-20 367 167157 28771 1394 8249 2229 1370
979 107 53 73759 2042 538 56821
0.10 0.40 0.40 0.15 0.04 0.04 0.08
TO 43.49 71.59 TO TO TO TO
277 178 178 1139 1708 854 1254

contract 5-2 6816 7010 6995 6684 6684 6684 6684
513 2 3 513 3074 3073 513

0.501 0.51 0.507 0.501 0.501 0.501 0.501
1993.33 0.15 0.15 23.11 2494.83 4044.64 23.29

190 33 33 184 2366 2374 184
contract 5-8 23430 38690 38675 37464 17262 7029 37464

318 2 3 513 235 95 513
0.29 0.51 0.507 0.501 0.22 0.09 0.501
TO 2.08 1.84 534.99 TO TO 563.50
161 137 137 2437 31161 14586 2455

contract 7-2 13064 141060 141029 139302 16535 19833 139302
724 2 3 8193 899 1092 8193
0.04 0.50 0.502 0.501 0.05 0.06 0.501
TO 0.32 0.29 495.70 TO TO 496.83
326 41 41 314 6560 7535 324

contract 7-4 24759 372228 372197 368706 13985 3196 368706
533 2 3 8193 296 67 8193
0.03 0.50 0.502 0.501 0.01 0.004 0.501
TO 1.18 1.15 2759.95 TO TO 2847.83
234 88 87 1202 14295 4021 1191

leader 4-8 2793 6161 6160 6161 6297 6294 6160
930 2049 2050 2049 2094 2093 2049
0.22 0.50 0.50 0.50 0.50 0.50 0.50
TO 1325.39 119.86 512.15 1662.90 4093.19 446.67
429 238 238 4587 4771 4782 318

leader 8-4 3390 6742 9257
483 961 1309

0.007 0.02 0.02
TO TO TO MO MO MO MO

1604 1632 1632

Table 2: Results using symbolic methods (TO > 2 h, MO > 30 GB).

25

COMICSCOMICSCOMICS COMICSCOMICSCOMICS DiPro DiPro DiPro
Model N-K LTLSubsysLTLSubsysLTLSubsys global fragment XBF Eppstein K* w. X opt.

states # states # states # states # states # states
lower bound # paths # paths # vertices # vertices # vertices

prob. prob. prob. prob. prob. prob.
time time time time time time

memory memory memory memory memory memory

crowds 5-6 487 2038 803 1114 2076
457.19 55369 487 3051 8549

0.25 0.25 0.25 0.254 TO 0.292
TO 0.30 7.54 14.04 193.88

2382 56 32 333 4142
crowds 8-15 3274 3877

11390 25413
MO MO MO 0.211 TO 0.202

33.64 237.79
1392 3523

crowds 10-20

MO MO MO TO TO TO

contract 5-2 6683 6832 6684 6683 6770 7015
— 513 513 15911 23863 23863

0.501 0.501 0.501 0.501 0.501 0.516
0.21 0.12 3.98 1060.70 34.58 99.49

24 31 164 5770 999 1056
contract 5-8 37463 37674 37464 37463 37610 38755

— 513 513 77342 115123 115123
0.501 0.501 0.501 0.501 0.501 0.516
1.12 1.25 53.89 5363.96 163.27 622.36
106 141 904 28087 4805 5117

contract 7-2 139302 140050
— 8193

0.501 0.501 TO TO TO TO
8.29 62.14
411 642

contract 7-4 368705
—

0.501 TO TO TO TO TO
301.12

1032

leader 4-8 6150 6160 6426 6221 6160 7342
— 2049 2137 12302 12302 12302

0.50 0.50 0.50 0.505 0.505 0.596
61.94 0.70 22.29 23.75 18.62 52.08

123 16 565 1306 630 720
leader 8-4

TO TO TO TO TO TO

Table 3: Results using explicit methods (TO > 2 h, MO > 30 GB).

26

approaches, we give the total number of involved states, which occur on any of the computed paths or loops
(# inv. states).

With the exception of LTLSubsys, all tools extend the subsystem until its probability measure exceeds
the bound λ. LTLSubsys, however, starts with the whole DTMC as critical subsystem and tries to reduce
it, until a minimal critical subsystem (MCS) is obtained. At the same time it maintains a lower bound on
the size of the MCS which is successively improved. Optimality is detected as soon as the lower bound and
the size of the computed subsystem coincide. While LTLSubsys computes the smallest possible critical
subsystem, all other tools apply heuristics to efficiently compute small, but not necessarily minimal critical
systems.

All results which were finished within the resource limits of 2 hours and 30 GB of main memory are
printed in boldface. For unfinished cases we give, if possible, the results that were achieved so far. Note
that the probability for these unfinished benchmarks lies under the probability threshold. TO means that
the time limit was exceeded, MO stands for exceeding the memory limit.

We first demonstrate the effectiveness of the BDD-based representation of the original system, which is the
starting point for both the SAT-based and the BDD-based methods, and of the computed subsystem. In
Figure 5 we show for the considered benchmarks the number of states both of the original DTMC and of the
subsystem computed by the adaptive global search approach. Additionally the figure contains the number of
MTBDD nodes of the transition probability matrix P̂ of the original DTMC and of the subsystem. Note
that the vertical axis is logarithmically scaled.

We can observe that the number of MTBDD nodes is often smaller by orders of magnitude than the
represented state space. In particular for the crowds instances the difference between the number of states
and the number of MTBDD nodes spans several orders of magnitude. This is because practical benchmarks
are not random, but exhibit regularities in their system structure, which is exploited by the BDD-based
representation. Exceptions are possible, e. g., only for quite large instances of the leader election protocol the
BDD-based representation pays off.

Comparing the size of the original system and the size of the computed subsystem, we can see that
in most cases the subsystem is so small that it can easily be represented in an explicit way, which opens
the possibility to post-process it using exact minimization, e. g., using LTLSubsys, or further heuristic
minimization using COMICS, DiPro, or a greedy approach.

The results in Table 2 show that the adaptive BDD-based global and fragment search significantly
outperform all other symbolic approaches on our benchmarks sets. We can compute critical subsystems for
benchmarks consisting of billions of states. The memory consumption stays below 250 MB for all instances
in Table 2 with the exception of leader8-4, while BDD-based global search used up to 429 MB and the
SAT-based approaches more than 4.7 GB.

For the leader instances, all paths corresponding to one successful election round have the same probability
and length. Therefore the adaptive strategies find all these paths in a single iteration. For leader8-4 this
yields a subsystem with a probability of 0.76 in about 2 seconds. Since this probability exceeds the bound by
more than 10 %, this step is undone, and the search continues from scratch by computing a single path at
a time. This explains the large number of iterations and the relatively high running times for the leader
election protocol. Additionally the large BDD representation contributes to the high running times.

To evaluate the limits of adaptive BDD-based search strategies, we generated the instance crowds20-30
with more than 1016 states and 3.8 · 1016 transitions. Adaptive BDD-based fragment search computed, for
a probability bound λ = 0.2, a subsystem with 76 007 states, probability 0.208446 within 2972.36 seconds
using less than 873 MB of main memory. It needed 96 iterations for this. The adaptive global search returns
a subsystem with 82 944 states and probability 0.207726 within 2497.89 seconds, using roughly the same
amount of memory. It needed 43 iterations.

None of the explicit-state tools was able to handle this instance: COMICS and LTLSubsys failed because
we were not even able to store the explicit state space on hard disk. DiPro did not immediately fail due
to the limited memory, but ran into a timeout with all three search methods. DiPro was able to at least
start the search on this large instance. As the state space is not constructed fully but on the fly using the
extended best-first search, often relatively little memory is required in spite of the explicit representation of

27

0 200 400 600 800
0

5

10

15

20

Path number

T
im

e
p
er

p
a
th

(s
ec
o
n
d
s)

original global search
improved version

0 200 400 600 800
0

5 · 105

1 · 106

1.5 · 106

Path number

N
o
d
es

in
th
e
tr
an

si
ti
on

M
T
B
D
D

Figure 6: Evaluation of the symbolic global search on crowds5-6.

the state space.
The adaptive BDD-based fragment search is superior to the adaptive BDD-based global search: The

former yields typically smaller subsystems than the latter. This is due to the fact that most probable
local extensions of the current subsystem are added, while the global search finds paths that can traverse
completely different parts of the state space. Nevertheless, depending on the problem at hand this might
also be of advantage.

We also measured the difference between the original BDD-based global search and the improved variant
which does not need to double the graph after each iteration. While the former is hardly able to handle
any of the instances besides the smallest ones, the improved version succeeds also when we only insert a
single path at a time instead of all most probable paths of minimal length. The reason for this behavior
can be seen in Figure 6. The horizontal axis shows the number of paths computed by the two variants of
BDD-based global search. The vertical axis of the graph on the left-hand side contains the computation time
of each path in seconds, the graph on the right-hand side the number of nodes of the BDD representation.
We can observe that, for the original global search, the computation time per path rapidly grows during
the search process and at the same time the number of BDD nodes increases substantially. This effect is
caused by the strategy used to exclude the already found paths from the search space: each time a path
has been found, the state space is doubled and the transition relation adapted to exclude the found path.
This makes the introduction of two additional BDD-variables necessary. Thus the size of the transition BDD
grows, making the operations thereon more expensive. Our improved variant does not suffer from this effect.
It only needs to maintain two copies of the DTMC. Therefore the size of the BDD for the graph on which
the shortest path computation is performed and the time per path stay almost constant.

When comparing the SAT- and the BDD-based approaches one can recognize that the former performs
much worse—in particular in comparison with the adaptive BDD-based search strategies. The SAT-based
approaches ignore the actual transition probabilities, while the BDD-based approaches always compute the
most probable paths. Therefore the BDD-based methods need in general fewer paths to reach a critical
subsystem. Additionally, the Flooding Dijkstra algorithm computes not only one path at a time but all
most probable paths of minimal length. Therefore the adaptive strategies need few iterations to reach
the probability bound. Not only the computation time is higher for the SAT-based approaches, but also
the memory consumption: for each found path an additional clause has to be added to the solver’s clause
database to exclude it from the search space. Moreover a large number of conflict clauses is computed by the
solver during the search process, which significantly contribute to the memory consumption.

Table 3 shows the experimental results for the following explicit algorithms and tools:

• LTLSubsys [17] computes the smallest possible critical subsystem (in terms of states) using an approach
based on mixed integer programming.

• COMICS [19] using both global and fragment search on explicitly represented state spaces.

28

cr
ow
ds
5-
6

cr
ow
ds
8-
15

cr
ow
ds
10
-2
0

co
nt
ra
ct
5-
2

co
nt
ra
ct
5-
8

co
nt
ra
ct
7-
2

co
nt
ra
ct
7-
4

le
ad
er
4-
8

le
ad
er
8-
4

50

100

150

0

TO

MO

T
im

e
(s
)

Adaptive BDD-based global search

Adaptive BDD-based fragment search

COMICS global search

COMICS local search

DiPro XBF search

↑ 1061 ↑ 5363 ↑ 1325

Figure 7: Comparing the running times of different tools.

• DiPro [18] using three different methods: extended best first search (XBF) [15], Eppstein’s k shortest
path algorithm [51], and the K* algorithm [40], with X optimizations enabled [52].3

We provide the following data: the number of states contained in the subsystem (# states), the number of
paths (# paths) for COMICS, and the number of expanded vertices (# vertices) for DiPro. For LTLSubsys we
give—if the computed solution was not proven optimal—a lower bound on the size of the optimal subsystem.
Additionally we give the reachability probability within the subsystem (prob.), the computation time (time)
in seconds, and the memory consumption (memory) in megabytes.

The approaches implemented in COMICS and DiPro are fast on small or medium-sized instances. Since
they represent the state space by enumerating all transitions, their memory consumption is at least linear in
the size of the DTMC. As DiPro does not construct the whole state space beforehand, it suffers far less
from this problem than COMICS.

The sizes of the subsystems computed by COMICS and DiPro are similar to those of the symbolic
approaches. The adaptive BDD-based search strategies return slightly larger subsystems since they add
several paths at once and perform model checking with a different frequency than DiPro. This can delay
when the tool recognizes that the subsystem has become critical. The frequency of model checking has a
great impact on the overall computation time since repeatedly computing the reachability probability for the
subsystem makes up more than 50 % of the total running time.

The large differences in computation times of the most efficient methods are illustrated in Figure 7. We
can clearly see that the two adaptive BDD-based approaches are much faster than the other methods, in
particular for large instances.

LTLSubsys is restricted to small systems. In contrast to the other tools, it focuses on computing optimal
counterexamples. Although the complexity of this problem is unknown, it seems to be hard. Therefore
LTLSubsys is often not able to prove the optimality of its solution, but yields a relatively small subsystem
when the time limit is exceeded. It is the only tool which can give information about the quality of the returned
subsystem compared to the optimal one. LTLSubsys can be used to improve the heuristic solutions of the
other tools by applying it to the returned subsystems. This will not yield a globally optimal counterexample,
but a locally optimal one in the sense that it is the smallest critical subsystem which is contained in the
heuristic subsystem.

3We omit the K* algorithm without X optimizations because it performed worse on all of our instances.

29

8. Conclusion and Future Work

In this paper we presented a new framework for the symbolic generation of probabilistic counterexamples for
discrete-time Markov chains. We suggested several methods; thereby the symbolic fragment search turned
out to be the best alternative. Our experiments showed that using our framework the size of input systems
feasible for counterexample generation is increased by orders of magnitude, compared to other approaches.

Binaries and source code of our COMICS tool and the benchmark sets used in this paper are available at
the COMICS-web page http://www-i2.informatik.rwth-aachen.de/i2/comics/.

References

[1] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: Proc. of CAV,
Vol. 1855 of LNCS, Springer-Verlag, 2000, pp. 154–169.

[2] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: Proc. of CAV, Vol. 5123 of LNCS, Springer-Verlag, 2008,
pp. 162–175.

[3] R. Chadha, M. Viswanathan, A counterexample-guided abstraction-refinement framework for Markov decision processes,
ACM Transactions on Computational Logic 12 (1) (2010) 1–45.

[4] E. M. Clarke, The birth of model checking, in: 25 Years of Model Checking – History, Achievements, Perspectives, Vol.
5000 of LNCS, Springer-Verlag, 2008, pp. 1–26.

[5] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects of Computing 6 (5) (1994)
512–535.

[6] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.
[7] M. Z. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification of probabilistic real-time systems, in: Proc. of CAV,

Vol. 6806 of LNCS, Springer-Verlag, 2011, pp. 585–591.
[8] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, D. N. Jansen, The ins and outs of the probabilistic model checker

MRMC, Performance Evaluation 68 (2) (2011) 90–104.
[9] R. Wimmer, B. Braitling, B. Becker, Counterexample generation for discrete-time Markov chains using bounded model

checking, in: Proc. of VMCAI, Vol. 5403 of LNCS, Springer-Verlag, 2009, pp. 366–380.
[10] B. Braitling, R. Wimmer, B. Becker, N. Jansen, E. Ábrahám, Counterexample generation for Markov chains using

SMT-based bounded model checking, in: Proc. of FMOODS/FORTE, Vol. 6722 of LNCS, Springer-Verlag, 2011, pp. 75–89.
[11] M. Günther, J. Schuster, M. Siegle, Symbolic calculation of k-shortest paths and related measures with the stochastic

process algebra tool Caspa, in: Proc. of DYADEM-FTS, ACM Press, 2010, pp. 13–18.
[12] T. Han, J.-P. Katoen, B. Damman, Counterexample generation in probabilistic model checking, IEEE Transactions on

Software Engineering 35 (2) (2009) 241–257.
[13] M. Kattenbelt, M. Huth, Verification and refutation of probabilistic specifications via games, in: Proc. of FSTTCS, Vol. 4

of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009, pp. 251–262.
[14] H. Fecher, M. Huth, N. Piterman, D. Wagner, PCTL model checking of Markov chains: Truth and falsity as winning

strategies in games, Performance Evaluation 67 (9) (2010) 858–872.
[15] H. Aljazzar, S. Leue, Directed explicit state-space search in the generation of counterexamples for stochastic model checking,

IEEE Transactions on Software Engineering 36 (1) (2010) 37–60.

[16] N. Jansen, E. Ábrahám, J. Katelaan, R. Wimmer, J.-P. Katoen, B. Becker, Hierarchical counterexamples for discrete-time
Markov chains, in: Proc. of ATVA, Vol. 6996 of LNCS, Springer-Verlag, 2011, pp. 443–452.

[17] R. Wimmer, N. Jansen, E. Ábrahám, B. Becker, J.-P. Katoen, Minimal critical subsystems for discrete-time Markov models,
in: Proc. of TACAS, LNCS, Springer-Verlag, 2012, pp. 299–314.

[18] H. Aljazzar, F. Leitner-Fischer, S. Leue, D. Simeonov, DiPro – A tool for probabilistic counterexample generation, in:
Proc. of SPIN, Vol. 6823 of LNCS, Springer-Verlag, 2011, pp. 183–187.

[19] N. Jansen, E. Ábrahám, M. Volk, R. Wimmer, J.-P. Katoen, B. Becker, The COMICS tool – Computing minimal
counterexamples for DTMCs, in: Proc. of ATVA, Vol. 7561 of LNCS, Springer-Verlag, 2012, pp. 349–353.

[20] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Transactions on Computers 35 (8) (1986)
677–691.

[21] M. Fujita, P. C. McGeer, J. C.-Y. Yang, Multi-terminal binary decision diagrams: An efficient data structure for matrix
representation, Formal Methods in System Design 10 (2/3) (1997) 149–169.

[22] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic model checking: 1020 states and beyond,
Information and Computation 98 (2) (1992) 142–170.

[23] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, M. Ryan, Symbolic model checking for probabilistic
processes, in: Proc. of ICALP, 1997, pp. 430–440.

[24] D. Parker, Implementation of symbolic model checking for probabilistic systems, Ph.D. thesis, University of Birmingham
(2002).

[25] E. M. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving, Formal Methods in System
Design 19 (1) (2001) 7–34.

[26] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959) 269–271.

[27] N. Jansen, E. Ábrahám, B. Zajzon, R. Wimmer, J. Schuster, J.-P. Katoen, B. Becker, Symbolic counterexample generation
for discrete-time Markov chains, in: Proc. of FACS, Vol. 7684 of LNCS, Springer-Verlag, 2012, pp. 134–151.

30

http://www-i2.informatik.rwth-aachen.de/i2/comics/

[28] J. G. Kemeney, J. L. Snell, A. W. Knapp, Denumerable Markov Chains, Springer-Verlag, 1976.
[29] M. Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic symbolic model checking with PRISM: A hybrid approach, in:

J.-P. Katoen, P. Stevens (Eds.), Proc. of TACAS, Vol. 2280 of LNCS, Springer-Verlag, 2002, pp. 52–66.
[30] H. Hermanns, M. Z. Kwiatkowska, G. Norman, D. Parker, M. Siegle, On the use of MTBDDs for performability analysis

and verification of stochastic systems, Journal of Logic and Algebraic Programming 56 (1–2) (2003) 23–67.
[31] R. E. Bryant, On the complexity of VLSI implementations and graph representations of boolean functions with application

to integer multiplication, IEEE Transactions on Computers 40 (2) (1991) 205–213.
[32] B. Bollig, I. Wegener, Improving the variable ordering of OBDDs is NP-complete, IEEE Transactions on Computers 45 (9)

(1996) 993–1002.
[33] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, in: Proc. of ICCAD, IEEE Computer Society,

Santa Clara, CA, USA, 1993, pp. 42–47.
[34] J. Schuster, Towards faster numerical solution of continuous time Markov chains stored by symbolic data structures, Ph.D.

thesis, Universität der Bundeswehr München, http://d-nb.info/102057920X/34 (2012).
[35] Y. Breitbart, H. B. Hunt III, D. J. Rosenkrantz, On the size of binary decision diagrams representing boolean functions,

Theoretical Computer Science 145 (1&2) (1995) 45–69.
[36] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. of STOC, ACM Press, 1971, pp. 151–158.
[37] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.
[38] G. S. Tseitin, On the complexity of derivations in the propositional calculus, Studies in Mathematics and Mathematical

Logic Part II (1968) 115–125.
[39] V. M. Jiménez, A. Marzal, Computing the k shortest paths: A new algorithm and an experimental comparison, in: Int’l

Workshop on Algorithm Engineering (WAE), Vol. 1668 of LNCS, Springer-Verlag, 1999, pp. 15–29.
[40] H. Aljazzar, S. Leue, K∗: A heuristic search algorithm for finding the k shortest paths, Artificial Intelligence 175 (18)

(2011) 2129–2154.
[41] M. E. Andrés, P. D’Argenio, P. van Rossum, Significant diagnostic counterexamples in probabilistic model checking, in:

Proc. of HVC, Vol. 5394 of LNCS, Springer-Verlag, 2008, pp. 129–148.
[42] R. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal on Computing 1 (2) (1970) 146–160.
[43] R. Gentilini, C. Piazza, A. Policriti, Computing strongly connected components in a linear number of symbolic steps, in:

SODA, ACM/SIAM, 2003, pp. 573–582.
[44] F. Somenzi, Cudd: Cu decision diagram package release 2.5.0 (2013).
[45] N. Eén, N. Sörensson, An extensible SAT-solver, in: Proc. of SAT, Vol. 2919 of LNCS, Springer-Verlag, 2003, pp. 502–518.
[46] G. Norman, V. Shmatikov, Analysis of probabilistic contract signing, Journal of Computer Security 14 (6) (2006) 561–589.
[47] M. K. Reiter, A. D. Rubin, Crowds: Anonymity for web transactions, ACM Transactions on Information and System

Security 1 (1) (1998) 66–92.
[48] A. Itai, M. Rodeh, Symmetry breaking in distributed networks, Information and Computation 88 (1) (1990) 60–87.
[49] M. Kwiatkowska, G. Norman, D. Parker, The PRISM benchmark suite, in: Proc. of QEST, IEEE Computer Society, 2012,

pp. 203–204.
[50] PRISM Website, http://prismmodelchecker.org (Aug. 2013).
[51] D. Eppstein, Finding the k shortest paths, SIAM Journal on Computing 28 (2) (1998) 652–673.
[52] H. Aljazzar, M. Kuntz, F. Leitner-Fischer, S. Leue, Directed and heuristic counterexample generation for probabilistic

model checking – a comparative evaluation, in: Proc. of QUOVADIS, ACM Press, 2010, pp. 25–32.

31

http://d-nb.info/102057920X/34
http://prismmodelchecker.org

	Introduction
	Preliminaries
	Discrete-time Markov Chains
	Probabilistic CTL and Critical Subsystems
	Symbolic Representation of DTMCs

	Symbolic Counterexample Generation Framework
	The Framework
	Path Search Concepts
	Complexity of the Framework

	Searching Paths Using SAT Solving
	Adapting Bounded Model Checking for Global Search
	Adapting Bounded Model Checking for Fragment Search
	A SAT Heuristics for Finding More Probable Paths

	BDD-based Symbolic Path Search
	Flooding Dijkstra Algorithm
	Adaptive Symbolic Global Search
	Symbolic Fragment Search

	Related Work
	Case Studies
	Implementation
	Models
	Experimental Setting
	Results

	Conclusion and Future Work

