
Cost vs. Time
in Stochastic Games and Markov Automata?

Hassan Hatefi1, Bettina Braitling2, Ralf Wimmer2,
Luis Maŕıa Ferrer Fioriti1, Holger Hermanns1, and Bernd Becker2

1 Saarland University, Saarbrücken, Germany
{hhatefi | ferrer | hermanns}@cs.uni-saarland.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{braitlin | wimmer | becker}@informatik.uni-freiburg.de

Abstract. Costs and rewards are important tools for analysing quantita-
tive aspects of models like energy consumption and costs of maintenance
and repair. Under the assumption of transient costs, this paper considers
the computation of expected cost-bounded rewards and cost-bounded
reachability for Markov automata and stochastic games. We give a trans-
formation of this class of properties to expected time-bounded rewards
and time-bounded reachability, which can be computed by available al-
gorithms. We prove the correctness of the transformation and show its
effectiveness on a number of case studies.

1 Introduction

Markov automata (MA) [13] constitute a compositional modelling formalism
for concurrent stochastic systems. They generalise discrete-time Markov chains
(DTMCs), Markov decision processes (MDPs), probabilistic automata (PA [28]),
continuous-time Markov chains (CTMCs), and interactive Markov chains (IMCs
[22]). Markov automata form the semantic foundation of, among others, dynamic
fault trees [6], stochastic activity networks, and generalised stochastic Petri
nets (GSPNs) [12]. Compositional modelling for MA [31] is supported by the
MAMA tool set [17, 18], also providing access to effective model analysis via
the IMCA tool [16]. That analysis follows the principles of model checking [5].
Concretely speaking, algorithms for model checking time-bounded reachability
and continuous stochastic logic (CSL) [21], as well as long-run average and
expected reachability times [17, 18] are supported.

Apart from timing-related properties, there is an immensely large spectrum
of potential applications that ask for integration of cost-related modelling and
analysis. Costs, or dually rewards, are especially convenient to reflect economical

? This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center AVACS (SFB/TR 14), by the
EU 7th Framework Programme under grant agreement no. 295261 (MEALS) and
318490 (SENSATION), by the CDZ project CAP (GZ 1023), and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.



implications, power consumption, wear and abrasion, or other quantitative in-
formation. Therefore MA have lately been extended to MRA, Markov reward
automata. In MRA, states and transitions can be equipped with rewards or
costs, accumulated as time advances and as transitions are taken. Algorithms
for computing the long-run average reward, for the expected cumulative reward
until reaching a goal, and for the expected cumulative reward until a certain time
bound are known and implemented [19]. Effective abstraction and refinement
strategies for MRA have also been introduced [7], working on stochastic reward
game abstractions of MRA.

In this paper, we turn our attention to properties that relate multiple dimen-
sions of cost or rewards. In particular, we enable the computation of expected
cumulative rewards until exceeding a cost bound, both for Markov reward au-
tomata and stochastic reward games. This can, for instance, answer questions
of central importance for energy-harvesting battery-powered missions: Under a
given initial budget, what is the maximum probability of the battery running dry,
or how many tasks can maximally be expected to be carried out by the battery?

To answer such questions we give a fixed point characterisation of expected
cost-bounded rewards and a transformation for stochastic games from cost- to
time-bounded rewards. This transformation supports arbitrary non-negative
transient costs. Markov automata are closed under this transformation. After
the transformation, arbitrary algorithms for expected time-bounded rewards like
[19, 7] can be applied to compute expected cost-bounded rewards.

In order to develop our contribution, we take inspiration from various sources,
especially from the domain of continuous-time Markov decision processes (CT-
MDPs). This encompasses works on necessary and sufficient criteria for optimality
with respect to time-bounded rewards [24], and algorithms to compute optimal
time-bounded rewards using uniformisation [10]. Instantaneous transition rewards
have been added to the CTMC setting as well [11].

Our work is strongly influenced by the study of the duality between time
and costs in CTMDPs under time-abstract strategies [4], built up on the earlier
work in the setting of CTMCs [3]. We extend it in various dimensions: Our
technique supports zero-cost states, where previously only strictly positive costs
were allowed. We optimise over time-dependent strategies, which are a superclass
of time-abstract ones. We extend the setting to expected reward analysis on two-
player games with discrete and continuous locations, which is also an improvement
over [14, 15]. And finally our analysis technique works for any kind of models,
not only uniform ones.

Structure of the paper. In the following section, we introduce the necessary
foundations. Sec. 3 describes the fixed point characterisation of optimal expected
cost-bounded rewards and the transformation from cost to time bounds. We
report on experimental results in Sec. 4 and conclude the paper in Sec. 5. An
extended version of this paper with proofs of the main propositions is available
at [20].

2



v0

v1

v2

v3

tr1
10

1/10

9/10

tr2

1

1/5

4/5

tr3

∞
1/2

1/2

tr4

∞
3/5

2/5

tr5

5

3/10

7/10

(a) Stochastic game

tr1 tr2 tr3 tr4 tr5 v0 v1 v2 v3

c 5 0 0 0 3
ρt 1 3 0 0 1
ρi 4 1 1 5 2
ρf 1 0 2 3

(b) Costs and rewards

Fig. 1. An example of a stochastic game with costs and rewards

2 Foundations

Let V be a finite (or countably infinite) set. A probability distribution over V
is a function µ : V → [0, 1] such that

∑
v∈V µ(v) = 1. We denote the set of

probability distributions over V by Distr(V ). The real numbers are denoted by R,
R≥0 is the set of non-negative real numbers, and R∞≥0 := R≥0∪{∞}. Accordingly
R>0, R∞>0 etc. are used.

Definition 1 (Stochastic game). A stochastic (continuous-time two-player)
game (SG) is a tuple G =

(
V, (V1, V2), vinit, T

)
such that V = V1 ]V2 is the finite

set of states, vinit ∈ V is the initial state, and T ⊆ V × R∞>0 × Distr(V ) is the
transition relation.

V1 and V2 are the states of player 1 and player 2, respectively; we also
denote them as V1- and V2-states. Transitions (v, λ, µ) ∈ T with rate λ <∞ are
called Markovian, transitions with infinite rate probabilistic. We denote the set of
Markovian and probabilistic transitions by TM and TP, respectively. We use TM(v)
and TP(v) to refer to the set of Markovian and probabilistic transitions available
at state v. Then, T (v) = TM(v) ] TP(v) is the set of all available transitions of v.
We assume that T (v) 6= ∅ for all v ∈ V .

The game starts in state vinit. If the current state is v ∈ V1, then it is player 1’s
turn, otherwise player 2’s. The current player chooses a transition (v, λ, µ) ∈ T (v)
for leaving state v. The rate θrate

(
(v, λ, µ)

)
= λ ∈ R∞≥0 determines how long we

stay at v, whereas θdistr

(
(v, λ, µ)

)
= µ ∈ Distr(V ) gives us the distribution which

leads to the successor states. If λ =∞, the transition is taken instantaneously.
Otherwise, λ is taken as the parameter of an exponential distribution. In this
case, the probability that a transition to state v′ ∈ V happens within t ≥ 0
time units, is given by µ(v′) · (1− e−λ·t). For conciseness, we write λtr instead of
θrate(tr) and µtr instead of θdistr(tr) for tr ∈ T .

Example 1. Fig. 1(a) shows an example of a stochastic game. It consists of two
player 1 states (drawn as circles) and two player 2 states (drawn as diamonds).

3



The exit rates of the transitions tr1, . . . , tr5 are written in red. The game starts
in v0. Player 1 chooses one of the outgoing transitions {tr1, tr2}, say tr1. The
probability to stay in v0 for at most t time units is then given by 1 − e−10·t.
When the transition fires, we move to v1 with probability 0.1 and to v2 with
probability 0.9; say v1 is the successor state. There it is player 2’s turn. As only
one outgoing transition is available, namely tr3, and its exit rate is ∞, it is left
immediately, either to v1, again, or to v3, both with probability 0.5. ut

Markov automata (MA) [13] are a special type of stochastic games with a
single player and without a nondeterministic choice between different Markovian
transitions at one state. The reason for this restriction is that Markov automata
are designed to be a compositional formalism, i. e. the MA for a system consist-
ing of several components can be constructed from the MA of the individual
components.

Definition 2 (Markov automaton). A Markov automaton (MA) is a stochas-
tic game M =

(
V, (V, ∅), vinit, T

)
such that |TM(v)| ≤ 1 holds for all v ∈ V . We

simply write M = (V, vinit, T ) for a Markov automaton M.

In this paper we only consider closed Markov automata which are not subject
to further composition operations. In this case, it is standard for Markov automata
to make an urgency assumption: Since nothing prevents probabilistic transitions
from happening instantaneously and the probability that a Markovian transition
is taken without delay is zero, probabilistic transitions take precedence over
Markovian transitions. Therefore we assume for MA that Markovian transitions
have been removed from all states which also exhibit an outgoing probabilistic
transition.

Paths through stochastic games. The dynamics of an SG is specified by paths.
An infinite path π ∈ (V × R≥0 × T )ω is an infinite sequence of states, sojourn
times, and transitions. A finite path is such a sequence which is finite and ends

in a state, i. e. π ∈ (V × R≥0 × T )? × V . We usually write v
t,tr−−→ instead of

(v, t, tr) ∈ (V ×R≥0×T ). We use Pathsfin and Pathsinf to denote the set of finite
and infinite paths, respectively. The length |π| of a path π is∞ if π is infinite, and
equal to the number of transitions on π if π is finite. The last state of a finite path

π is denoted by last(π). Given a finite or infinite path π = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · ·
and 0 ≤ i < |π|, vi is the (i + 1)-th state of π, denoted by π[i]; ti is the time
of staying at vi, denoted by time(π[i]); and trans(π[i]) = tri is the executed
transition at vi. Note that vi is left instantaneously, i. e. time(π[i]) = 0, if

trans(π[i]) has an infinite rate. For 0 ≤ i ≤ j ≤ |π|, the sub-path vi
ti,tri−−−→ · · · vj

is denoted by π[i ·· j].

Strategies. The nondeterminism that may occur at a state is resolved by functions,
which are called strategies (or policies or schedulers). Each player follows her
own strategy in order to accomplish her goal. A strategy of player i (i = 1, 2) is
a function σi : Vi ×R≥0 → T such that σi(v, t) ∈ T (v) for all v ∈ V and t ∈ R≥0.

4



This strategy class is called early total-time dependent positional deterministic
(ETTPD), since it uses the total time which has passed since the start of the
system and the current state to make its choice, and returns a fixed outgoing
transition. Early (in contrast to late) [26] means that the decision which transition
to take has to be made when entering a state and may not be changed while
residing in the state. ETTPD strategies can be easily extended to the more
general early total-cost dependent positional deterministic (ETCPD) strategies,
where the role of time is taken by costs. There are yet more general classes of
early strategies whose decision may depend, e. g. on the whole history since the
start of the system, and they may return a probability distribution over the
available transitions instead of a fixed transition. However, one can show for the
property classes we consider in this paper, that the supremum (and infimum)
over ETCPD strategies coincides with the supremum (infimum, respectively)
over this more general strategy class [25, 14, 15]. We denote the set of all ETCPD
strategies of player i that are measurable in cost by Σi.

Probability measure. Given strategies σ1, σ2 for both players and a state v ∈ V , a
probability space on the set of infinite paths starting in v can be constructed. The
set of measurable events is thereby the σ-algebra that is induced by a standard
cylinder set construction [2] together with a unique probability measure Prv,σ1,σ2

on the events. Prv,σ1,σ2(Π) is the probability of the set of paths Π, starting
from state v, given that player 1 and player 2 play with strategies σ1 and σ2,
respectively. Both the σ-algebra and the probability measure are constructed by
extending the existing techniques used for MA and IMCs. We omit the details
here; for more information see, e. g. [21, 25, 23].

Zenoness. It may happen that an SG contains an end component [5, Def. 10.117]
consisting of probabilistic transitions only. Such an end component leads to
the existence of sets of infinite paths π with finite sojourn times and non-zero
probability, i. e. limn→∞

∑n
i=0 time(π[i]) < ∞. This phenomenon is known as

Zenoness. Since such behaviour has to be considered unrealistic, we assume that
the SGs under consideration are non-Zeno, i. e. that they do not contain such
end components. Formally, an SG is non-Zeno iff

Prv,σ1,σ2

(
{π ∈ Pathsinf : lim

n→∞

n∑
i=0

time(π[i]) <∞}
)

= 0

holds for all states v ∈ V and all strategies σ1 ∈ Σ1 and σ2 ∈ Σ2.
For more on strategies and on SGs in general we refer to [29, 8].

Costs and rewards. We now extend stochastic games by costs and rewards to
analyse properties like “What is the maximal reward one can earn when the
accumulated cost is bounded by b?”

Definition 3 (Cost and reward structures). Let G be a stochastic game
as above. A cost function c : T → R≥0 assigns a non-negative cost rate to

5



each transition. A reward structure ρ is a triple ρ = (ρt, ρi, ρf) of functions
ρt, ρi : T → R≥0, and ρf : V → R≥0; ρt is the transient reward rate, ρi the
instantaneous reward, and ρf the final reward.

For a transition tr = (v, λ, µ) ∈ T , costs and transient rewards are granted
per time unit, i. e. residing in v for t time units before taking transition tr causes
a cost of t · c(tr), and a transient reward of t · ρt(tr) is granted. In contrast,
the instantaneous reward ρi(tr) is granted for taking the transition tr. The final
reward is granted for the state reached when the maximal cost has been spent.
This allows, e. g. to consider cost-bounded reachability probabilities as a special
case of expected cost-bounded rewards (for more details, see below).

Please note that we do not consider instantaneous costs in this paper. They
would render the transformation in Sec. 3 impossible, since there is no instan-
taneous time. In principle, adapting the analysis algorithm for time-bounded
rewards [19, 7] to cost bounds should be possible. That algorithm is based on dis-
cretising the time interval, yielding a discrete-time probabilistic game. However,
analysing cost-bounded properties for discrete-time models is expensive, even
more so as we have to support non-integer costs [1].

Cost and reward of paths. Given a finite path πfin = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · vn−1
tn−1,trn−1−−−−−−−→ vn, its cost is defined as cost(πfin) :=

∑n−1
i=0 c(tri) · ti. The cost can

be extended for an infinite path π = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · by cost(π) :=
limn→∞ cost(π[0 ·· n]). The cumulative reward of a finite and an infinite path

can be defined in a similar way, i. e. crew(πfin) :=
∑n−1
i=0

(
ρt(tri) · ti + ρi(tri)

)
and crew(π) := limn→∞ crew(π[0 ·· n]). Furthermore we define the cost-bounded
reward of π by

cbrGρ,c(π, b) :=


crew(π), if cost(π) ≤ b,
crew(π[0 ·· n∗]) + b−cost(π[0··n∗])

c(trn∗ ) · ρt(trn∗)

+ ρf(π[n∗]), otherwise,

where n∗ ∈ N is the index of the state along path π such that cost(π[0 ·· n∗]) ≤ b
and cost(π[0 ·· n∗ + 1]) > b. More precisely, the cost exceeds b after residing
b−cost(π[0··n∗])

c(trn∗ ) time units in the n∗-th state of the path, and thereby the state

is subject to the final reward. Note that such an index exists, provided that
cost(π) > b.

Example 2. Consider again the stochastic game in Fig. 1(a). We extend it by
the cost function and reward structure shown in Fig. 1(b). Now consider the

path π = v0
3,tr1−−−→ v1

0,tr3−−−→ v3
2,tr5−−−→ v2

0,tr4−−−→ v0 → · · · and assume the cost
bound b = 20. The cost incurring in v0 before taking tr1 is 5 · 3 = 15. Since tr3 is
probabilistic, no cost incurs in v1. In v3 we have costs 3 · 2 = 6. Therefore the
cost bound is reached while staying in v3, after 1/3 · (20− 15) = 5/3 time units.
We then have n∗ = 2. Since v3 is the state in which the cost bound is reached,
we additionally get its final reward ρf(v3) = 3. The cost-bounded reward for this
path is accordingly cbrGρ,c(π, 20) = (3 ·1 + 4) + (0 ·0 + 1) + (5/3 ·1) + 3 = 12 2/3. ut

6



Given strategies σ1 ∈ Σ1 and σ2 ∈ Σ2 we can define the expected cost-bounded
reward (ECR) as the expectation of cbr:

Ecbrσ1,σ2

G,ρ,c (v, b) :=

∫
π∈Pathsinf (v)

cbrGρ,c(π, b) dPrv,σ1,σ2
(π) .

The two players can independently try to maximise or minimise the reward
earned until the cost bound is reached. Hence, for opt1, opt2 ∈ {inf, sup} we
define the optimal expected cost-bounded reward by

Ecbr
opt1,opt2
G,ρ,c (v, b) := opt1

σ1∈Σ1

opt2
σ2∈Σ2

Ecbrσ1,σ2

G,ρ,c (v, b) .

Two important classes of properties can be considered as special cases of
expected cost-bounded rewards:

For time-bounded rewards, denoted by random variable tbr, the time is limited
during which reward is collected. This corresponds to using the constant 1-
function as cost. We therefor define Etbrσ1,σ2

G,ρ (v, b) := Ecbrσ1,σ2

G,ρ,1 (v, b).
The second class encompasses cost-bounded reachability probabilities, i. e.

questions like “What is the maximal probability to reach a set Vgoal ⊆ V of
states with cost ≤ b?”. We first make the states in Vgoal absorbing and add a
Markovian self-loop trv = (v, λ, {v 7→ 1}) with arbitrary finite rate 0 < λ <∞
to each state v ∈ Vgoal and define the final reward by ρf(v) = 1 if v ∈ Vgoal, and
ρf(v) = 0 otherwise. The transient and instantaneous rewards are constantly 0.
Then the expected reward until cost b is reached corresponds to the probability
of reaching Vgoal with costs ≤ b.

Algorithms to compute optimal expected time-bounded rewards are available
both for Markov automata [19] and stochastic games [7]. To the best of our
knowledge, up to now there are no algorithms available to compute the optimal
expected cost-bounded rewards for MA and SG.

3 Transformation of Stochastic Games

In this section, we first give a fixed point characterisation of expected cost-
bounded rewards for stochastic games and prove its correctness. Similar to
time-bounded properties [7], this fixed point characterisation is not amenable
to an efficient solution. Therefore we transform the stochastic game so that
the optimal expected cost-bounded reward coincides with the optimal expected
time-bounded reward in the transformed game. This allows us to apply arbitrary
algorithms like [19, 7] for expected time-bounded rewards to compute optimal
expected cost-bounded rewards.

Theorem 1 (Fixed point characterisation). Let G be a stochastic game with
cost function c and reward structure ρ = (ρt, ρi, ρf). Let b ∈ R≥0 be a cost bound,

opt1, opt2 ∈ {inf, sup}, and opt[v] = opti if v ∈ Vi. Then, Ecbr
opt1,opt2
G,ρ,c (v, b) is

7



the least fixed point of the higher-order operator Ωopt1,opt2 : (V ×R≥0 → R≥0)→
(V × R≥0 → R≥0), such that

Ωopt1,opt2(F )(v, b) =

opt[v]
tr∈T (v)



b/c(tr)∫
0

λtr · e−λtr·t ·
∑
v′∈V

µtr(v
′) · F

(
v′, b− c(tr) · t

)
dt

+
(
ρt(tr)
λtr

+ ρi(tr)
)
·
(

1− e
−λtr·b
c(tr)

)
+ ρf(v) · e−

λtr·b
c(tr) ,

if tr ∈ TM(v) ∧ c(tr) > 0 ∧ b > 0,
ρt(tr)
λtr

+ ρi(tr) +
∑
v′∈V

µtr(v
′) · F (v′, b), if tr ∈ TM(v) ∧ c(tr) = 0,

ρi(tr) +
∑
v′∈V

µtr(v
′) · F (v′, b), if tr ∈ TP(v),

ρf(v), otherwise.

“Least” means in this context that ∀v ∈ V, b ∈ R≥0 : Ecbr
opt1,opt2
G,ρ,c (v, b) ≤

F (v, b), with F being another fixed point of Ωopt1,opt2 .
The fixed point characterisation of expected cost-bounded rewards yields

a system of integral equations, which are typically hard to solve. Instead, the
following transformation turns cost-bounded rewards into time-bounded rewards.
For the latter, not only a fixed point characterisation is available [7], but also a
more efficient algorithm, based on discretisation [19, 7].

Definition 4 (Cost-to-time transformation). Let G =
(
V, (V1, V2), vinit, T

)
be a stochastic game with cost function c : T → R≥0 and reward structure
ρ = (ρt, ρi, ρf). We define the cost-transformed game Gc =

(
V, (V1, V2), vinit, T

c
)

with

T c =
{

tr ∈ T
∣∣λtr =∞

}
∪
{

(v,∞, µ)
∣∣ ∃λ ∈ R≥0 : tr = (v, λ, µ) ∈ T ∧ c(tr) = 0

}
∪
{

(v, λ/c(tr), µ)
∣∣ tr = (v, λ, µ) ∈ T ∧ c(tr) 6= 0

}
.

and reward structure ρc = (ρct , ρ
c
i , ρ

c
f ) such that ρcf = ρf ,

ρct(tr) =

{
ρt(tr)/c(tr), if c(tr) 6= 0,

0, if c(tr) = 0, and

ρci (tr) =

{
ρi(tr) + ρt(tr)/λtr, if c(tr) = 0 ∧ λtr <∞,

ρi(tr), otherwise.

The motivation behind this transformation is as follows: Since we want to
transform the cost bound b into a time bound we have to divide b through the cost
gained per time unit. This is done by dividing the rate λ of a Markovian transition
tr ∈ TM through its cost c(tr). The same has to be done with the transient reward
ρt(tr). If tr has no cost, i. e. c(tr) = 0, the transition is transformed into a
probabilistic transition. The expected transient reward ρt(tr)/λtr has to be added
to the instantaneous reward of the transition in this case.

8



v0

v1

v2

v3

tr1
2

1/10

9/10

tr2

∞

1/5

4/5

tr3

∞
1/2

1/2

tr4

∞
3/5

2/5

tr5

5/3

3/10

7/10

(a) Transformed stochastic game

tr1 tr2 tr3 tr4 tr5 v0 v1 v2 v3

ρct 1/5 0 0 0 1/3
ρci 4 4 1 5 2
ρcf 1 0 2 3

(b) Transformed rewards

Fig. 2. Fig. 1 after transformation

The transformation does not change the structure or size of the SG, and the
transformed system is an SG as well. Additionally, Markov automata are closed
under this transformation, i. e. if the original SG is actually an MA, so is the
transformed system.

Example 3. Consider again the stochastic game in Fig. 1(a) with the costs and
rewards in Fig. 1(b). We assume a cost bound of b = 20. Then the rewards of
the five transitions after transformation are shown in Fig. 2(b). The Markovian
transitions tr1, tr2, and tr5 are modified as follows. Transitions tr3 and tr4 remain
unchanged as they are probabilistic. The expected residence time before taking
tr1 is scaled such that it matches the expected cost in the original game, i. e. the
new exit rate becomes λtr1/c(tr1) = 10/5 = 2. The transient reward rate is adjusted
accordingly and becomes ρt(tr1)/c(tr1) = 1/5. The instantaneous reward does not
change. The transition tr5 is modified in the same way. As the cost of tr2 is zero,
tr2 becomes probabilistic and the expected reward ρt(tr2)/λtr2 earned in v1 until
tr2 being taken is added to the instantaneous reward of tr2. The stochastic game
after the transformation is shown in Fig. 2(a). ut

Theorem 2 (Measure preservation). Let G be a stochastic game with reward
structure ρ, cost function c, cost bound b ∈ R≥0, v ∈ V , and opt1, opt2 ∈
{inf, sup}. Then we have

Ecbr
opt1,opt2
G,ρ,c (v, b) = Etbr

opt1,opt2
Gc,ρc (v, b) .

Proof. Here we sketch the proof of the theorem. It is done by showing that the
original and the transformed games have indeed the same fixed point charac-
terisation for the respective objectives. For this, on the one hand, we construct
the fixed point characterisation of the transformed game using Theorem 1 by
assigning the constant cost of one to all Markovian transitions. On the other
hand, we reinterpret the representation of the fixed point characterisation of
the original model by a series of sound variable substitutions, partly inspired

9



by the transformation. At the end we conclude that both of the fixed point
characterisations are the same, and thereby their least fixed points are exactly
equal. For more details, see the complete proof in [20]. ut

Zero-cost transitions3 in the original game can introduce Zenoness in the
transformed game. It happens if a set of such transitions constitutes an end
component in the transformed game. This will be problematic for the analysis, in
particular if the end component contains positive rewards. Therefore the strategy
that keeps the control of the game inside the end component delivers infinite
expected rewards, since staying there gains reward without any cost. Nevertheless
the analysis may ignore such a strategy in some cases, for instance in analysis of
MA against minimal expected ECR. By any means and for simplicity we exclude
such models from our analysis technique.

4 Case Studies and Experimental Results

For our experiments we used the following case studies:
(1) The Dynamic Power Management System (DPMS) [27] describes the following
scenario: A service requester generates tasks which are stored within a queue
until they are handled by a processor. This processor (P) can either be “busy”
with processing a job, “idle” while the queue is empty, in a “standby” mode,
or in a “sleep” mode. In the latter two modes P is inactive and cannot handle
tasks. The change between “busy” and “idle” occurs automatically, depending on
whether there are tasks in the queue or not. If P has been “idle” for some time, it
is switched into “standby” or “sleep” by a power manager. The power manager is
also responsible for switching from these two modes back to “idle”. P consumes
the least power in “standby” and “sleep” (0.35 W and 0.13 W, respectively),
whereas it consumes more power while “idle” (0.95 W) and the most if it is “busy”
(2.15 W) [27, 30]. We model the DPMS as an MRA with the costs representing
the power consumption of P. The reward corresponds to the number of served
tasks. For our experiments we varied the number of different task types (T ) and
the size of the queue (Q). We explore the expected cost-bounded reward. The
model instances are denoted as “DPMS-T -Q”.
(2) The Queueing System (QS) [21] stores requests of T different types into two
queues of size Q each. A server is attached to each queue, which fetches requests
from its corresponding queue, and then processes them. One of the servers might
insert, with probability 0.1, the already served request into the other queue to be
reprocessed by the other server. Power is consumed by both servers when they are
processing. We compute the minimum and the maximum number of processed
requests under different energy budgets. The model instances are denoted as
“QS-T -Q”.
(3) The Polling System (PS) [17, 32] consists of S station(s) and one server. Each
station comes with a queue of size Q, and buffers incoming jobs of T different

3 Note that the cost of probabilistic transitions is implicitly zero as the delay until
taking such transitions is zero.

10



Table 1. Expected reward in the dynamic power managment system

budget = 10 budget = 20 budget = 50
name #states min max min max min max

DPMS-2-5 508 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-10 1,588 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-20 5,548 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-3-5 5,190 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-10 29,530 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-20 195,810 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-4-5 47,528 0.784 0.877 1.617 1.889 4.143 4.936
DPMS-4-10 492,478 0.784 0.877 1.617 1.889 4.143 4.936

Table 2. Expected reward of the queueing system

budget = 1 budget = 5 budget = 10
name #states min max min max min max

QS-2-4 46,234 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-5 191,258 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-6 777,754 0.249 0.857 1.294 4.078 2.634 7.975
QS-3-3 117,532 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-4 1,080,865 0.125 0.857 0.649 4.078 1.332 7.972
QS-4-2 42,616 0.125 1.287 0.649 6.127 1.333 12.075
QS-4-3 708,088 0.125 1.287 0.649 6.127 1.333 12.075
QS-6-2 266,974 0.084 1.713 0.433 8.187 0.892 16.201

types. The jobs are then polled and processed by the server. There is a probability
of 0.1 for a job to be processed while erroneously remaining in the queue. Each
job brings an instantaneous reward when it is completely processed by the server.
Whenever processing, the server consumes energy. The model is subject to two
kinds of analysis: First we compute the minimum and the maximum probability
of encountering the error under some energy budget. The second analysis is on the
computation of the minimum and the maximum expected energy bounded reward
of the model. The instances of the polling system are denoted as “PS-S-T -Q”.

(4) The Stochastic Job Scheduling benchmark (SJS) [9] originally stems from
economy. In this setting, a number of jobs with different service rates are dis-
tributed between processors. Each processor consumes resources, e. g. energy
which has to be paid for. The costs in our model represent these expenses. The
goal is to have all jobs processed within a certain cost budget. In our experiments
we explore the reachability of this goal with homogeneous costs (“all processors
have the same costs”) and heterogeneous costs (“all processors have different
costs”), while varying the number of jobs (M) and the number of processors (N).
Since the system degenerates to a CTMC if the service rates are homogeneous,
we do not consider this case. The model instances are denoted as “SJS-N -M”.

We used SCOOP [31] to create the model files. The transformation from
cost to time was done with a python script; the computation time for this

11



Table 3. Results for the polling system

rechability reward
name #states min max min max

PS-2-2-2 455 0.743 0.773 3.128 3.219
PS-2-2-3 2,055 0.483 0.551 3.980 4.117
PS-2-3-2 2,392 0.995 0.996 1.209 1.253
PS-2-3-3 22,480 0.973 0.983 1.730 1.848
PS-3-2-2 3,577 0.888 0.917 2.549 2.685
PS-3-2-3 34,425 0.665 0.760 3.493 3.732
PS-3-3-2 35,659 1.000 1.000 0.918 0.965
PS-4-2-2 27,783 0.955 0.973 2.166 2.307
PS-4-2-3 570,375 0.793 0.879 3.116 3.403
PS-5-2-2 213,689 0.983 0.992 1.908 2.039

Table 4. Rechability in the stochastic job scheduling benchmark

homogeneous heterogeneous
costs costs

name #states min max min max

SJS-2-4 464 0.241 0.241 0.186 0.243
SJS-2-6 4,144 0.041 0.041 0.021 0.029
SJS-2-8 29,344 0.004 0.004 0.001 0.002
SJS-4-4 3,168 0.241 0.241 0.120 0.610
SJS-4-6 71,644 0.041 0.041 0.013 0.130
SJS-4-8 1,032,272 0.004 0.004 0.001 0.012
SJS-6-4 13,924 0.241 0.241 0.059 0.945
SJS-6-6 685,774 0.041 0.041 0.005 0.374
SJS-8-4 41,552 0.241 0.241 0.033 0.999
SJS-10-4 98,436 0.241 0.241 0.019 1.000

was negligible. We then employed the tool IMCA [16, 17, 19] to determine the
minimum and maximum expected cost-bounded reward or the minimum and
maximum cost-bounded reachability of the models. It would be possible to use
any other analyser for MA, e. g. MeGARA, the prototype from [7].

All experiments were run on an Intel Xeon quad-core processor with 3.3 GHz
per core and 64 GB of memory. We set a time limit of 12 hours. The memory
consumption was negligible; all experiments needed less than 300 MB.

We will not give detailed time measurements due to space restrictions, never-
theless we want to briefly discuss the computation times. The shortest compu-
tations took only fractions of a second, e. g. the computation of the minimum
reachability for SJS-2-4 with cost budget 5 took 0.06 seconds, whereas the longer
computations needed several hours, e. g. for DPMS-4-10 the computation of the
minimum reachability with cost budget 50 took almost 11 hours, which was the
longest computation time of all our experiments. In general it can be said that
larger systems need more time to analyse than smaller systems. The computation
time is also influenced by the size of the cost budget. For example, for cost budget

12



10 the computation of the minimum reachability for DPMS-4-10 took less than
6 min. This is due to the fact that IMCA uses discretisation [17–19] to compute
the values; for a larger bound more discretisation steps are needed. There is also
an interesting connection between the costs within the system, its maximum rate,
and the computation time: The size of a discretisation step depends on the maxi-
mum rate of the transformed system. The higher the maximum rate is, the smaller
the discretisation step must be chosen in order to satisfy the given accuracy level.
For the computation of cost-bounded rewards, this means that the computation
time is strongly influenced by the value of max

{
λtr/c(tr)

∣∣ tr ∈ TM : c(tr) > 0
}

.
For details on the discretisation, see [19, 7].

Tables 1 to 4 show the results of our experiments. The first two columns of
each table contain the name of the respective model instance and its number of
states.

In case of DPMS (Table 1) and QS (Table 2) we explore the minimum and
maximum expected reward under different cost budgets. For DPMS we used cost
budgets of 10, 20, and 50, whereas for QS we used cost budgets of 1, 5, and
10 (see the respective blocks in Table 1 and Table 2). It holds for both DPMS
and QS that the expected reward grows with the budget, as does the difference
between minimum and maximum reward, as to be expected. Another interesting
fact is that the size of the queues in the models – while having a big influence on
the size of the system – has practically no impact on the expected reward. It is
completely determined by the number of different task types. This observation
can be explained as follows: For the processing unit of DPMS (or of QS) it is not
important how many jobs exactly can be stored in the queue(s), as long as there
are jobs in the queue(s).

For PS (Table 3) we studied both minimum and maximum reachability
and minimum and maximum expected reward (see the respective blocks in the
table) under a cost budget of 5. If we increase the queue size, the minimum and
maximum probability for encountering the error decreases, while the expected
minimum and maximum reward increases. At the same time we can observe
that the reachability increases with the number of stations, e. g. for PS-2-2-2,
containing two stations, the maximum probability is 0.773, whereas for PS-5-2-2,
containing 5 stations, it is 0.992. This makes sense, since the error is caused by
the stations and the probability to encounter the error therefore increases with
having more stations.

For SJS (Table 4) we also used a cost budget of 5. Here we studied the minimum
and maximum reachability while assuming homogeneous or heterogeneous costs
for the different processors of the system (see the respective blocks in Table 4).
For homogeneous costs we can observe a similar effect as for DPMS and PS: The
number of processors influences the number of states in the system, but has a
negligible impact on the reachability. The latter is completely determined by the
number of jobs. What’s more, the minimum and the maximum reachability are
the same in this case. These effects vanish if we assume heterogeneous costs. In
this case, the distance between minimum and maximum reachability increases,
especially the maximum reachability becomes higher. These observations make

13



sense: In case of a homogeneous system it does not matter, which processor
handles which job. However, in a heterogeneous system there is a choice between
more and less expensive processors which can handle the jobs, which in turn
leads to a higher (lower) maximum (minimum) reachability.

5 Conclusion

We studied the computation of Markov automata and stochastic games against
cost-bounded reward objectives. In this regard, we provided a fixed point char-
acterisation for the optimal expected cost-bounded reward. Moreover, we pro-
posed an efficient measure-preserving transformation from cost-bounded to time-
bounded objectives. For the latter, an analysis technique based on discretisation
with strict error bound exists. Our experiments demonstrate the effectiveness of
the approach.

In the future, we plan to improve the efficiency of the proposed approach, e. g.
via an abstraction/refinement technique on very large games and automata.

References

1. Andova, S., Hermanns, H., Katoen, J.: Discrete-time rewards model-checked. In:
Proc. of FORMATS. LNCS, vol. 2791, pp. 88–104. Springer (2003)

2. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory. Academic Press,
2nd edn. (1999)

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: On the logical characterisation
of performability properties. In: Proc. of ICALP. LNCS, vol. 1853, pp. 780–792.
Springer (2000)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Reachability in continuous-
time Markov reward decision processes. In: Logic and Automata: History and
Perspectives [in Honor of Wolfgang Thomas]. Texts in Logic and Games, vol. 2, pp.
53–72. Amsterdam University Press (2008)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

6. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec. Comput.
7(2), 128–143 (2010)

7. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Hermanns, H., Becker,
B.: Abstraction-based computation of reward measures for Markov automata. In:
Proc. of VMCAI. LNCS, vol. 8931, pp. 172–189. Springer (2015)

8. Brázdil, T., Forejt, V., Krcál, J., Kret́ınský, J., Kucera, A.: Continuous-time
stochastic games with time-bounded reachability. Information and Computation
224, 46–70 (2013)

9. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. Journal of the ACM
28(1), 100–113 (1981)

10. Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision
processes over finite horizons. Computers & Operations Research 38(3), 651–659
(2011)

14



11. Cloth, L., Katoen, J., Khattri, M., Pulungan, R.: Model checking Markov reward
models with impulse rewards. In: Proc. of DSN. pp. 722–731. IEEE CS (2005)

12. Eisentraut, C., Hermanns, H., Katoen, J.P., Zhang, L.: A semantics for every GSPN.
In: Proc. of Petri Nets. pp. 90–109. No. 7927 in LNCS, Springer (2013)

13. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proc. of LICS. pp. 342–351. IEEE CS (2010)

14. Fu, H.: Maximal cost-bounded reachability probability on continuous-time Markov
decision processes. In: Proc. of FOSSACS. pp. 73–87 (2014)

15. Fu, H.: Verifying Probabilistic Systems: New Algorithms and Complexity Results.
Ph.D. thesis, RWTH Aachen University (2014)

16. Guck, D., Han, T., Katoen, J.P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive Markov chains. In: Proc. of NFM. LNCS, vol. 7226, pp. 8–23. Springer
(2012)

17. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Modelling, reduction
and analysis of Markov automata. In: Proc. of QEST. LNCS, vol. 8054, pp. 55–71.
Springer (2013)

18. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed and
long-run objectives for Markov automata. Logical Methods in Computer Science
10(3) (2014), http://dx.doi.org/10.2168/LMCS-10(3:17)2014

19. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Proc. of ATVA. LNCS, vol. 8837, pp.
168–184. Springer (2014)

20. Hatefi, H., Braitling, B., Wimmer, R., Ferrer Fioriti, L.M., Hermanns, H., Becker, B.:
Cost vs. time in stochastic games and Markov automata (extended version). Reports
of SFB/TR 14 AVACS 113, SFB/TR 14 AVACS (2015), http://www.avacs.org

21. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE-
ASST 53 (2012)

22. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality, LNCS,
vol. 2428. Springer (2002)

23. Johr, S.: Model checking compositional Markov systems. Ph.D. thesis, Saarland
University, Germany (2008)

24. Miller, B.L.: Finite state continuous time Markov decision processes with a finite
planning horizon. SIAM Journal on Control 6(2), 266–280 (1968)

25. Neuhäußer, M.R.: Model checking nondeterministic and randomly timed systems.
Ph.D. thesis, RWTH Aachen University and University of Twente (2010)

26. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in continuous-
time Markov decision processes. In: Proc. of QEST. pp. 209–218. IEEE CS (2010)

27. Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-
construction and optimization. IEEE Transactions on CAD of Integrated Circuits
and Systems 20(10), 1200–1217 (2001)

28. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Proc. of CONCUR. LNCS, vol. 962, pp. 234–248. Springer (1995)

29. Shapley, L.S.: Stochastic games. Proc. of the National Academy of Sciences of the
United States of America 39(10), 1095 (1953)

30. Simunic, T., Benini, L., Glynn, P.W., Micheli, G.D.: Dynamic power management
for portable systems. In: Proc. of MOBICOM. pp. 11–19 (2000)

31. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Efficient modelling and
generation of Markov automata. In: Proc. of CONCUR. LNCS, vol. 7454, pp.
364–379. Springer (2012)

32. Timmer, M., van de Pol, J., Stoelinga, M.: Confluence reduction for Markov
automata. In: Proc. of FORMATS. LNCS, vol. 8053, pp. 243–257. Springer (2013)

15


