
Dependability Engineering of Silent

Self-Stabilizing Systems⋆

Abhishek Dhama1, Oliver Theel1, Pepijn Crouzen2, Holger Hermanns2,
Ralf Wimmer3, and Bernd Becker3

1 System Software and Distributed Systems, University of Oldenburg, Germany
{abhishek.dhama, theel}@informatik.uni-oldenburg.de

2 Dependable Systems and Software, Saarland University, Germany
{crouzen, hermanns}@cs.uni-saarland.de

3 Chair of Computer Architecture, Albert-Ludwigs-University Freiburg, Germany
{wimmer, becker}@informatik.uni-freiburg.de

Abstract. Self-stabilization is an elegant way of realizing non-masking
fault-tolerant systems. Sustained research over last decades has produced
multiple self-stabilizing algorithms for many problems in distributed com-
puting. In this paper, we present a framework to evaluate multiple self-
stabilizing solutions under a fault model that allows intermittent tran-
sient faults. To that end, metrics to quantify the dependability of self-
stabilizing systems are defined. It is also shown how to derive models
that are suitable for probabilistic model checking in order to determine
those dependability metrics. A heuristics-based method is presented to
analyze counterexamples returned by a probabilistic model checker in
case the system under investigation does not exhibit the desired degree
of dependability. Based on the analysis, the self-stabilizing algorithm is
subsequently refined.

1 Introduction

Self-stabilization has proven to be a valuable design concept for dependable sys-
tems. It allows the effective realization of non-masking fault-tolerant solutions
to a problem in a particularly hostile environment: an environment subject to
arbitrarily many transient faults potentially corrupting the self-stabilizing sys-
tem’s run-time state of registers and variables. Consequently, designing a self-
stabilizing system is not an easy task, since many scenarios due to faults must
correctly be handled beyond the fact that the system has to solve a given prob-
lem when being undisturbed by faults. The formal verification of a self-stabilizing
solution to a given problem is therefore often quite complicated. It consists of a
1) convergence proof showing that the system eventually returns to a set of sys-
tem states (called safe or legal states) where it solves the given problem and 2)
a closure proof showing that once within the set of legal states, it does not leave
this set voluntarily in the absence of faults occurring. Whereas the closure proof
is often not too complicated, the convergence proof may become extremely chal-
lenging. It requires some finiteness argument showing the return of the system

⋆ This work was supported by the German Research Foundation (DFG) under grant
SFB/TR 14/2 “AVACS,” www.avacs.org.

2 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

to the legal state set in a finite number of computational steps in the absence of
newly manifested faults.

As discussed, finding a self-stabilizing solution to a given problem as well as
proving its self-stabilization property are generally not easy and present areas
of agile research. But what, if multiple self-stabilizing solutions to a problem are
already known? Which solution should be preferred and therefore be chosen?
Clearly, many criteria do exists and their relevance depends on the concrete
application scenario.

In this paper, we focus on dependability properties of those systems. For
example: “Does the given self-stabilizing system exhibit a system availability of
at least p?” with system availability being only an example of a dependability
metrics. Other metrics are, e.g., reliability, mean time to failure, and mean time
to repair. Based on the evaluation of relevant dependability metrics, a decision
should be taken of which solution out of the set of present solutions should
be chosen and put to work for ones purposes. By building on [1], we present
useful dependability metrics for differentiating among self-stabilizing solutions
and show how to evaluate them. For this purpose, we propose the modeling of
a self-stabilizing algorithm together with the assumed fault model in terms of a
discrete-time Markov decision process or a discrete-time Markov chain. Whereas
the former modeling allows – with the help of a probabilistic model checker
– to reason about the behavior of the system under any fair scheduler, the
latter modeling is suitable if concrete information about the scheduler used in
the system setting is available. The self-stabilizing solution exhibiting the best
dependability metrics value can then easily be identified and used.

Furthermore, we show a possible way out of the situation where all available
self-stabilizing solutions to a given problem have turned out to fail in the sense
described above: if the dependability property under investigation cannot be
verified for a particular system, then an automatically generated counterexample
(being a set of traces for which, as a whole, the property does not hold) is
prompted. By analyzing the counterexample, the self-stabilizing algorithm is
then refined and again model-checked. This refinement loop is repeated until the
dependability property is finally established or a maximal number of refinement
loops has been executed.

In the scope of the paper, wrt. abstraction scheme and system refinement, we
restrict ourselves to silent self-stabilizing algorithms and a dependability met-
rics being a notion of limiting (system) availability called unconditional limiting
availability in a system environment where faults “continuously keep on occur-
ring.” Silent self-stabilizing algorithms do not switch among legal states in the
absence of faults. Unconditional limiting availability is a generalization of limit-
ing availability in the sense that any initial state of the system is allowed. Finally,
with the more general fault model, we believe that we can analyze self-stabilizing
systems in a more realistic setting: contrarily to other approaches, we do not an-
alyze the system only after the last fault has already occurred but always allow
faults to hamper with the system state.

The paper is structured as follows: in Section 2, we give an overview of re-
lated work. Then, in Section 3, we introduce useful dependability metrics for
self-stabilizing systems. Additionally, we state the model used for dependability

Dependability Engineering of Silent Self-Stabilizing Systems 3

metrics evaluation based on discrete-time Markov decision processes or discrete-
time Markov chains. Section 4 describes the refinement loop and thus, depend-
ability engineering based on probabilistic model-checking, counterexample gen-
eration, counterexample analysis, and silent self-stabilizing system refinement
along with an abstraction scheme to overcome scalability problems. Section 5,
finally, concludes the paper and sketches our future research.

2 Related Work

The body of literature is replete with efforts towards the engineering of fault-
tolerant systems to increase dependability. In [2], a formal method to design a
– in a certain sense – multitolerant system is presented. The method employs
detectors and correctors to add fault tolerance with respect to a set of fault
classes. A detector checks whether a state predicate is satisfied during execution.
A corrector ensures that – in the event of a state predicate violation – the
program will again satisfy the predicate. It is further shown in [3] that the
detector-corrector approach can be used to obtain masking fault-tolerant from
non-masking fault-tolerant systems. But, despite its elegance, the fault model
used in their applications admits only transient faults.

Ghosh et al. described in [4] an approach to engineer a self-stabilizing system
in order to limit the effect of a fault. A transformer is provided to modify a
non-reactive self-stabilizing system such that the system stabilizes in constant
time if a single process is faulty. However, there is a trade-off involved in us-
ing the transformer as discussed in [5]. The addition of such a transformer to
limit the recovery time from a single faulty process might lead to an increase in
stabilization time.

A compositional method, called “cross-over composition,” is described in [6]
to ensure that an algorithm self-stabilizing under a specific scheduler converges
under an arbitrary scheduler. This is achieved by composing the target “weaker”
algorithm with a so-called “strong algorithm” such that actions of the target
algorithm are synchronized with the strong algorithm. The resultant algorithm
is self-stabilizing under any scheduler under which the strong algorithm is proven
to be self-stabilizing. However, the properties of the strong algorithm determine
the class of schedulers admissible by the composed algorithm.

Recent advances in counterexample generation for stochastic model checking
has generated considerable interest in using the information given by the coun-
terexamples for debugging or optimizing systems. An interactive visualization
tool to support the debugging process is presented in [7]. The tool renders vio-
lating traces graphically along with state information and probability mass. It
also allows the user to selectively focus on a particular segment of the violating
traces. However, it does not provide any heuristics or support to modify the
system in order to achieve the desired dependability property. Thus, the user
must modify systems by hand without any tool support. In addition to these
shortcomings, only models based on Markov chains are handled by the tool. In
particular, models containing non-determinism cannot be visualized.

We will next describe the method to evaluate dependability metrics of self-
stabilizing systems with an emphasis on silent self-stabilizing systems.

4 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

3 Dependability Evaluation of Self-Stabilizing Systems

We now present a procedure with tool support for evaluating dependability met-
rics of self-stabilizing systems. A self-stabilizing BFS spanning tree algorithm
given in [8] is used as a working example throughout the sections to illustrate
each phase of our proposed procedure. Note that the method nevertheless is
applicable to any other self-stabilizing algorithm as well.

3.1 Dependability Metrics

The definition and enumeration of metrics to quantify the dependability of a self-
stabilizing system is the linchpin of any approach for dependability evaluation.
This becomes particularly critical in the case of self-stabilizing systems as the
assumptions made about the frequency of faults may not hold true in a given
implementation scenario. That is, faults may be intermittent and the temporal
separation between them, at times, may not be large enough to allow the system
to converge. In this context reliability, instantaneous availability, and limiting
availability have been defined for self-stabilizing systems in [1]. An important
part of these definitions is the notion of a system doing “something useful.” A
self-stabilizing system is said to do something useful if it satisfies the safety
predicate (which in turn specifies the set of legal states) with respect to which
it has been shown to be self-stabilizing.

We now define the mean time to repair (MTTR) and the mean time to failure
(MTTF) along with new metrics called unconditional instantaneous availability
and generic instantaneous availability for self-stabilizing systems. These metrics
are measures (in a measure theoretic sense) provided the system under study
can be considered as a stochastic process. It is natural to consider discrete-state
stochastic processes, where the set of states is divided into a set of operational
states (“up states”) and of disfunctional states (“down states”).
The basic definition of instantaneous availability at time t quantifies the proba-
bility of being in an “up state” at time t [9]. Some variations are possible with
respect to the assumption of the system being initially available, an assumption
that is not natural in the context of self-stabilizing systems, since these are de-
signed to stabilize from any initial state. Towards that end, we define generic
instantaneous availability and unconditional instantaneous availability and apply
them in the context of self-stabilizing systems. Our natural focus is on systems
evolving in discrete time, thus where the system moves from states to states in
steps. Time is thus counted in steps, and si refers to the state occupied at time i.
Generic instantaneous availability at step k AG(k) is defined as probability
Pr(sk |= Pup | s0 |= Pinit), where Pup is a predicate that specifies the states
where the system is operational, doing something useful, Pinit specifies the ini-
tial states.
Unconditional instantaneous availability at step k AU (k) is defined as the prob-
ability Pr(sk |= Pup | s0 |= true).
Unconditional instantaneous availability is the probability that the system is
in “up state” irrespective of the initial state. Generic instantaneous availability
is the probability that the system is in “up state” provided it was started in
some specific set of states. As k approaches ∞ – provided the limit exists –

Dependability Engineering of Silent Self-Stabilizing Systems 5

instantaneous, unconditional, and generic instantaneous availability are all equal
to limiting availability.

The above definitions can be readily used in the context of silent self-stabili-
zing systems by assigning Pup = PS , where PS is the safety predicate of the
system. Hence, unconditional instantaneous availability of a silent self-stabilizing
system is the probability that the system satisfies its safety predicate at an
instant k irrespective of its starting state. Generic instantaneous availability of a
silent self-stabilizing system is the probability of satisfying the safety predicate
provided it started in any initial state characterized by predicate Pinit.

Mean time to repair (MTTR) of a self-stabilizing system is the average time
(measured in the number of computation steps) taken by a self-stabilizing system
to reach a state which satisfies the safety predicate PS . The average is taken over
all the executions which start in states not satisfying the safety predicate PS .
As mentioned earlier, a system has “recovered” from a burst of transient faults
when it reaches a safe state. It is also interesting to note that the MTTR mirrors
the average case behavior under a given implementation scenario unlike bounds
on convergence time that are furnished as part of convergence proofs of self-
stabilizing algorithms.

Mean time to failure (MTTF) of a self-stabilizing system is the average time
(again measured in the number of computation steps) before a system reaches
an unsafe state provided it started in a safe state. This definition may appear
trivial for a self-stabilizing system as the notion of MTTF is void given the closure
property of self-stabilizing systems. However, under relaxed fault assumptions,
the closure is not guaranteed because transient faults may “throw” the system
out of the safe states once it has stabilized. Thus, MTTF may well be finite.

There is an interplay between MTTF and MTTR of a self-stabilizing system
since its limiting availability also agrees with MTTF/(MTTR + MTTF) [9].
That is, a particular value of MTTF is an environment property over which a
system designer has often no control, but the value of MTTR, in the absence
of on-going faults, is an intrinsic property of a given implementation of a self-
stabilizing algorithm alongwith the scheduler used (synonymously referred to as
self-stabilizing system). One can modify the self-stabilizing system leading to
a possible decrease in average convergence time. The above expression gives a
compositional way to fine tune the limiting availability by modifying the MTTR
value of a self-stabilizing system despite a possible inability to influence the value
of MTTF.

3.2 Model for Dependability Evaluation

The modeling of a self-stabilizing system for performance evaluation is the first
step of the toolchain. We assume that the self-stabilizing system consists of
a number of concurrent components which run in parallel. These components
cooperate to bring the system to a stable condition from any starting state.
Furthermore, we assume that at any time a fault may occur which brings the
system to an arbitrary state

6 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

Guarded command language. We can describe a self-stabilizing system using a
guarded command language (GCL) which is essentially the language used by the
probabilistic model checker PRISM [10].

The model of a component consists of a finite set of variables describing the
state of the component, initial valuations for the variables and a finite set of
guarded commands describing the behavior (state change) of the component.
Each guarded command has the form

[label] guard -> prob1 : update1 + ... + probn : updaten

Intuitively, if the guard (a Boolean expression over the set of variables) is
satisfied, then the command can be executed. One branch of the command is se-
lected probabilistically and the variables are updated accordingly. Deterministic
behaviour may be modeled by specifying only a single branch. The commands
in the model may be labeled. Figure 1 gives a sketch of a self-stabilizing BFS
algorithm of [8] with three components representing a process each. Fault induc-
ing actions are embedded in every component. There are a number of important
properties inherent in the model in Figure 1. First, at every step, it is open
whether a fault step or a computational step occurs. If a computational step
occurs, it is also unclear which component executes a command. Finally, in the
case of a fault step, it is unclear which fault occurs, i.e. what the resulting state
of the system will be. The model in Figure 1 is thus non-deterministic since it
does not specify how these choices must be resolved.
Schedulers. To resolve the non-determinism in the model, and thus to arrive at a
uniquely defined stochastic process, one usually employs schedulers. In essence, a
scheduler is an abstract entity resolving the non-determinism among the possible
choice options at each time step. A set of schedulers is called a scheduler class.
For a given scheduler class, one them aims at deriving worst-case and best-
case results for the metric considered, obtained by ranging over all stochastic
processes induced by the individual schedules in the class. This computation is
performed by the probabilistic model checking machinery.

Schedulers can be characterized in many ways, based on the power they
have: A scheduler may make decisions based on only the present state (mem-
oryless scheduler) or instead based on the entire past history of states visited
(history-dependent scheduler). A scheduler may be randomized or simply be de-
terministic. A randomized scheduler may use probabilities to decide between
choice options, while deterministic ones may not. For instance, we can consider
the class of randomized schedulers that, when a fault step occurs, chooses the
particular fault randomly with a uniform distribution. When adding this as-
sumption to the GCL specification of the fault model, the resulting system model
becomes partially probabilistic as shown in Figure 2 for the root module. It is
still non-deterministic with respect to the question whether a fault step occurs,
or which component performs a step. Here, we encoded the probabilistic effect
of the schedulers considered inside the GCL specification, while the remaining
non-determinism is left to the background machinery. It would also be possible
to specify a choice according to a probability distribution that is obtained us-
ing information collected from the history of states visited (history-dependent
scheduler), or according to a distribution gathered from statistics about faults
occuring in real systems.

Dependability Engineering of Silent Self-Stabilizing Systems 7

module root
variable x02,x01 : int ...;
[stepRoot] true -> 1: x01’ = 0 & x02’=0
[faultRoot1] true -> 1: x01’ = 0 & x02’=1

...
[faultRootn] true -> 1: x01’ = 2 & x02’=2 ;

endmodule

module proc1
variable x10,x12,dis1 : int ...;
[stepProc1] true -> 1: (dis1’=

min(min(dis1,x01,x21)+1,N))
& (x10’ = ...) & (x12’=...) ;

[faultProc11] true -> 1: (dis1’=0)
&(x10’=0)&(x12’=1)

...
[faultProc1n] true -> 1:(dis1’=2)

&(x10’=2)&(x12’=2);
endmodule

module proc2
...

endmodule

Fig. 1. Non-deterministic self-stabilizing
BFS algorithm with faults.

Markov decision processes. The
formal semantics of a GCL model
is a Markov decision process
(MDP). A MDP is a tuple D =
{S, A, P} where S is the set of
states, A is the set of possible ac-
tions, and P ⊆ S × A × Dist(S)
is the transition relation that
gives for a state and an action the
resulting probability distribution
that determines the next state.
In the literature, MDPs are of-
ten considered equipped with a
reward structure, which is not
needed in the scope of this paper.

Intuitively, we can derive a
MDP from a GCL model in the
following way. The set of states of
the MDP is the set of all possible
valuations of the variables in the
GCL model. The set of actions is

the set of labels encountered in the GCL model. For each state we find a set of
commands for which the guard is satisfied. Each such command then gives us an
entry in the transition relation where the action is given by the label associated
with the command and the resulting distribution for the next state is determined
by the distribution over the updates in the GCL description. In Figure 3 (left),
we see an example of a MDP state with its outgoing transitions for our example
model from Figure 1 (where the choice of fault is determined probabilistically as
in Figure 2). We see that in every state either a fault may occur, after which the
resulting state is chosen probabilistically or a computational step may occur. The
choice between faults or different computational steps is still non-deterministic.

module root
variable x02,x01 : int ...;
[stepRoot] true -> 1: x01’ = 0 & x02’=0
[faultRoot] true -> 1/n: x01’ = 0 & x02’=1 +

...
1/n: x01’ = 2 & x02’=2;

endmodule

Fig. 2. Root module with a randomized
scheduler for n distinct faults.

Markov chain. When we consider
a specific scheduler that resolves
all non-deterministic choices ei-
ther deterministically or proba-
bilistically, we find a model whose
semantics is a particular kind
of MDP, namely that has for
each state s exactly one transition
(s, a, µ) in the transition relation
P . If we further disregard the ac-
tions of the transitions, we arrive

at a model which can be interpreted as a Markov chain. We define a Markov
chain as a tuple D = {S, P} where S is the set of states and P ⊆ S → Dist(S) is
the transition relation that gives for a state the probability distribution that de-
termines the next state. A Markov chain is a stochastic process which is amenable
to analysis.

8 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

s1 :
stateA = . . .

stateB = . . .

...

s2

.

.

.

sn−2

sn−1

sn

fault

stepA

stepB

1/n

1/n

1/n

1/n

1/n

s1 :
stateA = . . .

stateB = . . .

...

s2

.

.

.

sn−2

sn−1

sn

Pfault
n

Pfault
n

Pfault
n

PA +
Pfault

n

PB +
Pfault

n

Fig. 3. Segment of a self-stabilizing system modeled as an MDP (left) or a
Markov Chain (right)

For our example, we can find a Markov chain model if we assume a scheduler
that chooses probabilistically whether a fault occurs, which component takes a
step in case of normal computation and which fault occurs in case of a fault step.
Figure 4 shows the probabilistic model for the root module and Figure 3 (right)
shows part of the resulting model, where PA, PB and Pfault denote the probabili-
ties that, respectively, component A takes a step, component B takes a step, or a
fault occurs.

module root
variable x02,x01 : int ...;
[stepRoot] true -> STEP_PROB: x01’ = 0 & x02’=0+

(1-STEP_PROB)/n: x01’ = 0 & x02’=1+
...
(1-STEP_PROB)/n: x01’ = 2 & x02’=2;

endmodule

Fig. 4. Root module modeled to have a fully
randomized scheduler.

Choosing a scheduler class.
Scheduler classes form a hi-
erarchy, induced by set in-
clusion. For MDPs, the most
general class is the class
of history-dependent random-
ized schedulers. Deterministic
schedulers can be considered
as specific randomized sched-
ulers that schedule with prob-

ability 1 only, and memoryless schedulers can be considered as history-dependent
schedulers that ignore the history apart from the present state.

In the example discussed above (Figure 2 and Figure 4), we have sketched
how a scheduler class can be shrinked by adding assumptions about a particu-
lar probabilistic behaviour. We distinguish two different strategies of doing so:
Restricted resolution refers to scheduler classes where some non-determinstic op-
tions are pruned away. In partially probabilistic resolution some of the choices are
left non-deterministic, while others are randomized (as in Figure 3, left). A fully
randomized scheduler class contains a single scheduler only, resolves all non-
determinism probabilistically. Recall that deterministic schedulers are specific
randomized schedulers. Figure 5 provides an overview of the different resolution
strategies.

Choosing a class of schedulers to perform analysis on is not trivial. If we
choose too large a class, probability estimations can become so broad as to be
unusable (e.g. the model checker may conclude that a particular probability
measure lies somewhere between 0 and 1). Choosing a smaller class of sched-
ulers results in tighter bounds for our probability measures. However, choosing

Dependability Engineering of Silent Self-Stabilizing Systems 9

a small scheduler class requires very precise information about the occurrence of
faults and the scheduling of processes. Furthermore, such analysis would only
inform us about one very particular case. A more general result is usually
desired, that takes into account different fault models or scheduling schemes.

Arbitrary
Resolution

Partially
Probabilistic
Resolution

Partially
Restricted
Resolution

Part. Prob. Res.
Part. Rest. Res.

Fully prob. res.

Fully det. res.

Fig. 5. Overview of different resolution
strategies.

More advanced scheduler classes are
also possible. For the scheduling of n
processes, we allow only those sched-
ules where each process performs a
computational step at least every k
steps. This is akin to assuming that
the fastest process is at most twice
as fast as the slowest one. While such
assumptions are interesting to inves-
tigate, they also make analysis more

difficult. To implement such a k-bounded scheduler, it is required to track the
last computational step of every process. Though, the size of the state space does
not scale well for large n and k.
Model checking. A model checker, such as PRISM [10] may be employed to
answer reachability questions for a given MDP model. The general form of such
a property is P<p

[

A ∪≤k B
]

which checks whether the probability that a state
with property B is reached within k steps via a path consisting of states in which
A holds only, is smaller than p. In this way instantaneous availability properties
can be checked. If the property does not hold, a counterexample is generated.

We next explain the methods to re-engineer a self-stabilizing system based
on a counterexample provided by a probabilistic model checker.

4 Dependability Engineering for Self-Stabilizing Systems

In order to meet the quality of service requirements, the counterexample re-
turned by the model checker can be used to optimize the system. An important
distinction between counterexample generation of qualitative model checking
versus quantitative model checking is the fact that quantitative model checking
returns a set of paths as counterexample. This distinction needs to be taken into
account while devising a method for exploiting the counterexample. We explain
a heuristics-based method to modify a system given such a set of paths. The self-
stabilizing BFS spanning tree algorithm implemented on a three-process graph
under a fully randomized scheduler is used as an illustrative example. We used
the stochastic bounded model checker sbmc [11] alongwith PRISM to generate
counterexamples. Please note that this particular method applies beneficently
only to scenarios where faults follow a uniform probability distribution over the
system states.

4.1 Counterexample Structure

An understanding of the structure of the elements of the set of paths returned
as counterexample is important to devise a method to modify the system. In
the scope of this section, we are interested in achieving a specific unconditional

10 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

instantaneous availability AU (k) which is basically the step-bounded reachabil-
ity probability of a legal state. However, the tool used to generate the coun-
terexample can only generate counterexamples for queries that contain an upper
bound on the probability of reaching a set of certain states. Therefore, a refor-
mulated query is presented to the model checker. Instead of asking queries of
the form “Is the probability of reaching a legal state within k steps greater than
p?,” i.e. P>p

[

true ∪≤k legal
]

the following query is given to the model checker:

P≤(1−p)

[

¬legalW≤k false
]

. The reformulated query ascertains whether the prob-
ability of reaching non-legal states with in k steps is less than 1− p. The prob-
ability p used in the queries is equal to the desired value of AU (k), namely
unconditional instantaneous availability at step k.

In case the probability of reaching non-legal states is larger than the desired
threshold value, the probabilistic model checker returns a set of paths of length
k. This set consists of k-length paths such that all the states in the path are non-
legal states. The probability of these paths is larger than the threshold specified
in the query. This set of paths constitutes a counterexample because the paths
as a whole violate the property being model-checked.

In order to devise a system optimization method we“dissect”a generic path –
annotated with transition probabilities – of length 2 (shown below) for a system
with a uniform fault probability distribution.

si sj sk

si1

sim

sj1

sjm

sl1

slm

pc1 pc2

pf

pf

pf

pf

pf

pf

pc1 and pc2 are probabilities of state transitions due to a computation step
whereas pf is the probability of a fault step. Note that due to the uniform fault
probability distribution there is a pair of fault transitions between each pair of
system states. If the above path is seen in contrast with a fault-free computation
of length 2, one can identify the reason for the loss of probability mass. Consider
a path that reaches state sk from state si in two steps.

si sj sk
1 1

Such a path can be extracted from a MDP-based model by choosing a specific
scheduler. It results in a fully deterministic model because of the absence of
fault steps, thereby leaving the model devoid of any stochastic behavior. The
probability associated with each of the two transitions is 1 and therefore the
probability of the path is 1 as well [12]. However, the addition of fault steps
to the model reduces probabilities associated with computation steps and thus,
reduces the probability of the path. In the light of this discussion, we next outline
a method to modify the system in order to achieve a desired value of AU (k).

Dependability Engineering of Silent Self-Stabilizing Systems 11

4.2 Counterexample-guided System Re-engineering

We consider the set of paths of length k returned by the probabilistic model
checker. In Step 1, we remove the extraneous paths from the counterexample. In
Step 2, we add and remove certain transitions to increase AU (k).
Step 1. As explained above, a counterexample consists of all those paths of
length k whose probability in total is greater than the threshold value. This set
also consists of those k-length paths where some of the transitions are fault steps.
The number of possible paths grows combinatorially as k increases because the
uniform fault model adds transitions between every pair of states. For example,
as there are (fault) transitions between each pair of states, the probabilistic model
checker can potentially return all the transitions of the Markov chain for k = 1.
Hence, the problem becomes intractable even for small values of k. Therefore,
such paths are removed from the set of paths. The resultant set of paths consists
of only those k-length paths where all the transitions are due to computation
steps. The self-stabilizing BFS spanning tree algorithm was model checked to
verify whether the probability of reaching the legal state within three steps is
higher than 0.65. The example system did not satisfy the property and thus, the
conjunction of PRISM and sbmc returned a set of paths as counterexample. This
set contains 190928 paths in total out of which a large number of paths consist
of fault steps only. An instance of such a path is shown below.

〈2, 2, 1, 2, 2, 1, 1, 2〉 → 〈2, 2, 1, 2, 2, 0, 0, 0〉 → 〈2, 2, 0, 0, 0, 0, 0, 0〉 → 〈2, 2, 0, 0, 0, 0, 0, 1〉

A state in the path is represented as a vector si = 〈x01, x02, x12, x10, dis1, x20,
x21, dis2〉 where xij is the communication register owned by process proci and
disi is the local variable of proci. The removal of such extraneous paths lead to
a set of 27 paths.
Step 2. The probability of a path without a loop is the product of the indi-
vidual transition probabilities. Due to the presence of fault steps and associated
transition probabilities, one cannot increase the probability measure of the path
without decreasing the path length. Consider a path

si sj sk sl
pi pj pk

and the modified path obtained by 1) adding a direct transition between states
si and sl and 2) disabling the transition between states si and sj .

si sj sk sl

pi

pj pk

The addition of a direct transition to state sl and thereby the reduction of the
path length leads to an increase in probability of reaching state sl from state si.
The method thus strives to increase the value of AU (k) by reducing the length
of the paths. As we have no control over the occurrence of fault steps, such
transitions can neither be removed nor the probabilities associated with these
transitions be altered. Thus, in essence, we increase the number of paths with
length less than k and decrease k-length paths to the legal state.

12 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

The paths in the counterexample are arranged in decreasing order of proba-
bility. The following procedure is applied to all the paths starting with the most
probable path. We begin with the first state s0 of a path. In order to ensure that
a transition is feasible between si and sj , we determine the variables whose valu-
ations need to be changed to reach state sj from state si. A transition is deemed
feasible for addition to a system if the variable valuations can be changed in a
single computation step under a specific sequential randomized scheduler. If a
transition from state s0 to the legal state sl is deemed feasible, then a guarded
command to effect that state transition is added to the system. In case such a
direct transition is not feasible, then transitions are added to modify the local
states of the processes to decrease the convergence time. This method can be
iterated over the initial states of the paths returned till the desired threshold is
achieved or all the returned paths are used up.

Addition of such transitions, however, requires some knowledge of the algo-
rithm under consideration. For instance, a state transition to sl that leads to a
maximal decrease in convergence time might require change of variables belong-
ing to more than one process. Such a transition is not feasible if an algorithm is
implemented with a sequential scheduler. Infeasibility of a direct state transition
to sl may also result from the lack of “global knowledge.” Let si −→ sl be the
transition that leads to a maximal decrease in convergence time and let procx be
the process whose local state must be changed to effect the aforementioned state
transition. Process procx, therefore, needs a guarded command that changes its
local state if system is in a specific global state. However, process procx can-
not determine local states of all processes in a system unless the communication
topology of system is a completely connected graph. Transition si −→ sl, in this,
is infeasible for communication topologies which are not completely connected.
This is, however, an extremal case because usually processes – instead of global
knowledge – require knowledge of their extended “neighborhood.”

We applied the above procedure on the example system by analyzing the
resultant set of paths after removing paths with fault steps. The state sb =
〈2, 2, 1, 2, 2, 1, 1, 2〉 was the most probable illegal state. The paths having this
state as the initial state were inspected more closely; a direct transition to the
legal state 〈0, 0, 1, 1, 1, 1, 1, 1〉 was not feasible because it required changes in
variable valuations in all three processes in a single step. However, a transition
could be added to correct the local state of the non-root processes so that if the
system is in state sb, then the (activated) process corrects its local state. The
communication topology of the example system allows each process to access the
local states of all the process. Thus, guarded commands of the form

[stepstateB] state=stateB -> state’= correctstate

were added to the processes proc1 and proc2. The modification of the system
led to an increase in probability (of reaching the legal state from state sb) from
0.072 to 0.216.

The method described above can be used to modify the system for a given
scheduler under a fault model with ongoing faults. However, the very fact that the
scheduler is fixed limits the alternatives to modify the system. For instance, many
transitions which could have potentially increased AU (k) were rendered infeasible

Dependability Engineering of Silent Self-Stabilizing Systems 13

for the example system. This, in turn, can lead to an insufficient increase in AU (k)
or a rather large number of iterations to achieve the threshold value of AU (k).
The problem can be circumvented if one has leeway to fine-tune the randomized
scheduler or modify the communication topology.

4.3 Randomized Scheduler Optimization

The probabilities with which individual processes are activated in each step by a
scheduler affects the convergence time and thus the unconditional instantaneous
availability of the system. However, a counterexample can be exploited to identify
the processes whose activation probabilities need to be modified. For instance,
consider a path returned by the conjunction of PRISM and sbmc:

〈2, 2, 1, 2, 2, 1, 1, 2〉 → 〈0, 0, 1, 2, 2, 1, 1, 2〉 → 〈0, 0, 1, 1, 1, 1, 1, 2〉 → 〈0, 0, 1, 1, 1, 1, 1, 2〉

In the second last state of the path, activation of the root process does not
bring any state change and thus leads only to an increase in convergence time.
Hence, if the probability of activating a non-root process in the scope of the
example algorithm is increased, then the probability associated with such sub-
optimal paths can be decreased. We varied the probability of activating the root
process in the example system to see the effect on AU (k). As Figure 6 shows,
unconditional instantaneous availability increases as the probability of activat-
ing the root is decreased. This is because one write operation of the root process
alone corrects its local state; further activations are time-consuming only. But
once the root process has performed a computation step, any activation of a
non-root process corrects its local state. The paths in the counterexample can
be analyzed in order to identify those processes whose activations lead to void
transitions. The respective process activation probabilities of the scheduler can
then be fine-tuned to increase AU (k).

4.4 Abstraction Schemes for Silent Self-Stabilization

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

U
nc

on
di

tio
na

l I
ns

ta
nt

an
eo

us
 A

va
ila

bi
lit

y
(k

=
3)

Root Activation Probability

Self-Stabilizing BFS Algorithm

"Availability"

Fig. 6. Variation of unconditional instantaneous
availability

Probabilistic model checking
of self-stabilizing systems suf-
fers from the state space ex-
plosion problem even for a
small number of processes.
This is due to the fact that
the set of initial states of a
self-stabilizing system is equal
to the entire state space.
As we intend to quantify
the dependability of a self-
stabilizing algorithm in an
implementation scenario, we
may be confronted with sys-
tems having a large number of

processes. This necessitates a method to reduce the size of the model before giv-
ing it to the model checker. Often, data abstraction is used to reduce the size

14 A. Dhama, O. Theel, P. Crouzen, H. Hermanns, R. Wimmer, and B. Becker

of large systems while preserving the property under investigation [13]. We next
evaluate existing abstraction schemes and identify a suitable abstraction scheme
for silent self-stabilizing systems.

Data abstraction constructs an abstract system by defining a finite set of
abstract variables and a set of expressions which maps variables of the concrete
system to the domain of the abstract variables. A form of data abstraction is
predicate abstraction where a set of Boolean predicates is used to partition the
concrete system state space [14]. Doing so results in an abstract system whose
states are tuples of boolean variables. However, predicate abstraction can only
be used to verify safety properties as it does not preserve liveness properties [15].
Since convergence is a liveness property, predicate abstraction cannot be used to
derive smaller models of self-stabilizing systems.4

Ranking abstraction overcomes the deficiency of predicate abstraction by
adding a non-constraining progress monitor to a system [15]. A progress moni-
tor keeps track of the execution of the system with the help of a ranking function.
The resulting augmented system can then be abstracted using predicate abstrac-
tion.

An important step in abstracting a system using a ranking abstraction is
the identification of a so called ranking function core. This need not be a sin-
gle ranking function – parts of it suffice to begin the verification of a liveness
property. The fact that we are trying to evaluate a silent self-stabilizing system
makes the search of a ranking function core easier. The proof of the convergence
property of a self-stabilizing system is drawn using either a ranking function [17],
for instance a Lyapunov function [18], or some other form of well-foundedness
argument [19]. Thus, one already has an explicit ranking function (core) and,
if that is not the case, then the ranking function core can be “culled” from the
proof of a silent self-stabilizing system. Further, we can derive an abstracted
self-stabilizing system with the help of usual predicate abstraction techniques
once the system has been augmented with a ranking function.

5 Conclusion and Future Work

We defined a set of metrics, namely unconditional instantaneous availability,
generic instantaneous availability, MTTF, and MTTR, to quantify the depend-
ability of self-stabilizing algorithms. These metrics can also be used to compare
different self-stabilizing solutions to a problem. We also showed how to model a
self-stabilizing system as a MDP or as a MC to derive these metrics. Further,
heuristic-based methods were presented to exploit counterexamples of proba-
bilistic model checking and to re-engineer silent self-stabilizing systems.

There are still open challenges with respect to dependability engineering
of self-stabilizing systems. An abstraction scheme suitable for non-silent self-
stabilizing algorithms is required to make their dependability analysis scalable.

4 However, for the properties considered here, which are step-bounded properties, this
reasoning does not apply. In fact, we experimented with the predicate-abstraction-
based probabilistic model checker PASS [16] that also supports automatic refinement.
This was not successful because PASS seemingly was unable to handle the many
distinct guards appearing in the initial state abstraction.

Dependability Engineering of Silent Self-Stabilizing Systems 15

As discussed, there are multiple ways to refine a system which in turn leads to
the challenge of finding the most viable alternative. We would also like to in-
crease the tool support for dependability engineering of self-stabilizing systems.
We believe that the identification of optimal schedulers and the determination of
feasible transitions are the most promising candidates for solving the problem.

References

1. Dhama, A., Theel, O., Warns, T.: Reliability and Availability Analysis of Self-
Stabilizing Systems. In: Stabilization, Safety, and Security of Distributed Systems.
Volume 4280 of LNCS., Springer (2006) 244–261

2. Arora, A., Kulkarni, S.S.: Component Based Design of Multitolerant Systems.
IEEE Trans. Software Eng. 24(1) (1998) 63–78

3. Arora, A., Kulkarni, S.S.: Designing Masking Fault-Tolerance via Nonmasking
Fault-Tolerance. IEEE Trans. Software Eng. 24(6) (1998) 435–450

4. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-Containing Self-
Stabilizing Algorithms. In: PODC. (1996) 45–54

5. Ghosh, S., Pemmaraju, S.V.: Tradeoffs in fault-containing self-stabilization. In:
WSS. (1997) 157–169

6. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized Self-Stabilizing and Space
Optimal Leader Election under Arbitrary Scheduler on Rings. Distributed Com-
puting 20(1) (2007) 75–93

7. Aljazzar, H., Leue, S.: Debugging of Dependability Models Using Interactive Visu-
alization of Counterexamples. In: QEST, IEEE Computer Society (2008) 189–198

8. Dolev, S., Israeli, A., Moran, S.: Self-Stabilization of Dynamic Systems Assuming
Only Read/Write Atomicity. Distributed Computing 7(1) (1993) 3–16

9. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. John Wiley and Sons (2001)

10. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A Tool for Au-
tomatic Verification of Probabilistic Systems. In: TACAS. Volume 3920 of LNCS.
(2006) 441–444

11. Wimmer, R., Braitling, B., Becker, B.: Counterexample Generation for Discrete-
Time Markov Chains Using Bounded Model Checking. In: VMCAI. Volume 5403
of LNCS. (2009) 366–380

12. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
13. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL.
(1977) 238–252

14. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: CAV.
Volume 1254 of LNCS. (1997) 72–83

15. Balaban, I., Pnueli, A., Zuck, L.: Modular Ranking Abstraction. Int. J. Found.
Comput. Sci. 18(1) (2007) 5–44

16. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: CAV. Volume
5123 of LNCS. (2008) 162–175

17. Kessels, J.L.W.: An Exercise in Proving Self-Stabilization with a Variant Function.
Inf. Process. Lett. 29(1) (1988) 39–42

18. Oehlerking, J., Dhama, A., Theel, O.: Towards Automatic Convergence Verification
of Self-Stabilizing Algorithms. In: Self-Stabilizing Systems. Volume 3764 of LNCS.,
Springer (2005) 198–213

19. Gouda, M.G., Multari, N.J.: Stabilizing Communication Protocols. IEEE Trans.
Computers 40(4) (1991) 448–458

	Dependability Engineering of Silent Self-Stabilizing Systems
	Abhishek Dhama, Oliver Theel, Pepijn Crouzen, Holger Hermanns, Ralf Wimmer, and Bernd Becker
	Introduction
	Related Work
	Dependability Evaluation of Self-Stabilizing Systems
	Dependability Metrics
	Model for Dependability Evaluation

	Dependability Engineering for Self-Stabilizing Systems
	Counterexample Structure
	Counterexample-guided System Re-engineering
	Randomized Scheduler Optimization
	 Abstraction Schemes for Silent Self-Stabilization

	Conclusion and Future Work

