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Abstract. In addition to rigorously checking whether a system con-
forms to a specification, model checking can provide valuable feedback in
the form of succinct and understandable counterexamples. In the context
of probabilistic systems, path- and subsystem-based counterexamples at
the state-space level can be of limited use in debugging. As many prob-
abilistic systems are described in a guarded command language like the
one used by the popular model checker Prism, a technique identifying
a subset of critical commands has recently been proposed. Based on re-
peatedly solving MaxSat instances, our novel approach to computing a
minimal critical command set achieves a speed-up of up to five orders of
magnitude over the previously existing technique.

1 Introduction

Algorithmic counterexample generation is a key component of modern model
checkers. Counterexamples are pivotal for debugging—experience has shown
that counterexamples are the single most effective feature to convince system
engineers about the value of formal verification [11]. They are an essential ingre-
dient in counterexample-guided abstraction refinement [10] (CEGAR) and can
be effectively used in model-based testing. Prominent model checkers such as
Spin and NuSmv include powerful facilities to generate counterexamples in var-
ious formats. Such counterexamples are typically provided at the modeling level,
like a diagram indicating how the change of model variables yields a property
violation, or a message sequence chart illustrating the failing scenario. Substan-
tial efforts have been made to generate succinct counterexamples, often at the
price of an increased time complexity [14,17,26]. Despite the growing popular-
ity of probabilistic model checkers, such facilities are absent in tools such as
Prism [22] and Mrmc[21]. This paper presents an efficient scalable technique
for computing minimal counterexamples for the Prism modeling language.
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man Research Council (DFG) as part of the Transregional Collaborative Research
Center AVACS (SFB/TR 14).
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Counterexample generation for probabilistic models is not easy. Showing that
the reachability probability of a bad state b does not stay below a given thresh-
old λ requires a set of finite paths leading to b, whose probability mass exceeds
λ. Computing minimal sets is a k-shortest path problem [16] and can be done
using heuristics [1] or bounded model checking [29] and may be enhanced by
post-processing steps, such as building a fault-tree to better explain the causal-
ity in the model [23]. A viable alternative is to determine minimal critical sub-
systems [30,31], i. e., model fragments for which the likelihood of reaching b
already exceeds λ. The drawback of most approaches in the literature is that
they work at the state space level. As the size of a set of finite paths can be
doubly exponential in the number of states [16], and minimal critical subsys-
tems can have thousands of states [30], state-based diagnostic feedback is often
incomprehensible and not effectively usable in CEGAR approaches for proba-
bilistic systems [18,9]. Although symbolic approaches diminish this problem to
some extent, the resulting counterexamples are still too large to handle [19].

We therefore take a radically different approach, and generate counterexam-
ples as Prism probabilistic programs. Our approach basically deletes commands
of a Prism probabilistic program yielding a smallest Prism probabilistic pro-
gram violating the reachability property at hand. Prism uses a stochastic version
of Alur and Henzinger’s reactive modules [2] as modeling language. A module de-
scription consists of a set of guarded commands providing discrete probabilistic
choices. The semantics of a module is a probabilistic automaton [27], a com-
positional variant of Markov decision processes. A Prism probabilistic program
consists of several modules that communicate by shared variables or using syn-
chronization on common actions. (Remark that our approach is also applicable
to other modeling formalisms for probabilistic automata such as PIOA [8], pro-
cess algebra [20] and the graphical component-wise representation of systems as
possible in Uppaal [7].)

The problem considered is: determine a minimal set of guarded commands
of a given Prism probabilistic program (constituting a Prism sub-program)
that refutes the reachability property at hand. This problem is NP-hard [32].
We present an incremental approach for computing minimal critical command
sets. The basic idea of our approach is to deduce necessary conditions for an
optimal solution by a static analysis of the probabilistic program. We then use a
MaxSat solver to compute a smallest set of commands that is in accordance with
these constraints. The resulting Prism probabilistic program is model checked
against the property at hand. If the reachability property is violated, the program
constitutes the desired minimal critical command set. Otherwise, it is excluded
from the search space and further conditions on the optimal solution are de-
duced. This paper presents the technical details of the approach and establishes
its correctness. We report on a prototype implementation and show the practi-
cal applicability of our incremental MaxSat approach on a number of Prism
benchmark case studies. The experimental results show that our approach scales
to models with millions of states and achieves a speed-up of up to five orders of
magnitude in comparison to a mixed-integer linear programming approach [32].
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Whereas this paper focuses on reachability probabilities, our approach can be
easily extended to properties ϕ that are monotonic in the sense that if A is a
sub-PA of A′ and A 6|= ϕ, then also A′ 6|= ϕ.

2 Preliminaries

2.1 Probabilistic Automata

Let S be a countable set. A probability distribution over S is a function µ : S →
[0, 1] such that

∑
s∈S µ(s) = 1. We denote by Dist(S) the set of all probability

distributions over S. A distribution µ is called Dirac if there exists an element
s ∈ S with µ(s) = 1 and µ(s′) = 0 for all s′ ∈ S with s 6= s′.

Definition 1 (Probabilistic Automaton [27]). A probabilistic automaton
(PA) is a tuple A = (S, sinit,Act ,P) where S is a finite set of states, sinit ∈ S
is the initial state, Act is a finite set of actions, and P : S → 2Act×Dist(S) is a
probabilistic transition relation such that P(s) is finite for all s ∈ S.

Intuitively, the evolution of a probabilistic automaton is as follows. Starting in
the initial state sinit, a transition (α, µ) ∈ P(sinit) is chosen nondeterministically.
Then, the successor state s′ ∈ S is determined probabilistically according to the
probability distribution µ. Repeating this process in s′ yields the next state and
so on. To prevent deadlocks, we require P(s) 6= ∅ for all s ∈ S.

Let succA(s, α, µ) = {s′ ∈ S | µ(s′) > 0} for (α, µ) ∈ P(s), succA(s) =⋃
(α,µ)∈P(s) succA(s, α, µ), and predA(s) = {s′ ∈ S | ∃(α, µ) ∈ P(s′) : µ(s) > 0}.

We will omit the subscript A if the PA is clear from the context.
An (infinite) path π in a PA A is an infinite sequence s0(α0, µ0)s1(α1, µ1) . . .

such that (αi, µi) ∈ P(si) and si+1 ∈ succ(si, αi, µi) for all i ≥ 0. A finite path
ρ in A is a finite prefix s0(α0, µ0)s1(α1, µ1) . . . sn of an infinite path π in A and
its last state is denoted last(ρ) = sn. Let π[i] denote the ith state in path π.
The sets of all infinite and finite paths in A starting in s ∈ S are denoted by
PathA(s) and Pathfin

A (s), respectively.

Example 1. Figure 2 on page 7 shows an example PA with five states. For in-
stance, the state s1 has a nondeterministic choice between the two transitions
(reset, µsinit

) and (proc, µproc) where µsinit is the Dirac distribution at sinit and
µproc is given by µproc(s3) = 0.99 and µproc(s4) = 0.01.

To define a suitable probability measure on PAs, the nondeterminism has to be
resolved by schedulers.

Definition 2 (Scheduler). A scheduler for a PA A = (S, sinit,Act ,P) is
a function σ : Pathfin

A (sinit) → Dist(Act × Dist(S)) mapping each finite path
ρ ∈ Pathfin

A (sinit) in A to a probability distribution over transitions such that
σ(ρ)(α, µ) > 0 implies (α, µ) ∈ P

(
last(ρ)

)
.

Intuitively, a scheduler resolves the nondeterminism in a PA by assigning proba-
bilities to the nondeterministic choices available in the last state of a given finite
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path. It therefore reduces the nondeterministic model to a fully probabilistic
one. Given a PA A and a scheduler σ for A, a standard probability measure on
paths, which we denote by Prσsinit,A (or, briefly, PrσA), can be defined [4].

In the context of this paper we are interested in probabilistic reachability
properties: is the probability to reach a set T ⊆ S of target states from sinit

at most λ ∈ [0, 1]? This property is denoted by P≤λ(♦T ). Note that checking
arbitrary ω-regular properties can be reduced to checking reachability proper-
ties, see [4] for details. A satisfies a probabilistic reachability property P≤λ(♦T ),
denoted A |= P≤λ(♦T ), if PrσA(♦T ) := PrσA({π ∈ PathA(sinit) | ∃i : π[i] ∈ T}) ≤
λ for all schedulers σ. Algorithmically, the maximal reachability probability
Prmax
A (♦T ) := supσ PrσA(♦T ) is computed using standard techniques, such as

value or policy iteration [5,25], and compared against the bound λ.

2.2 Prism’s Probabilistic Guarded Command Language

For a set Var of Boolean variables, let NVar denote the set of all variable valu-
ations, i. e., the set of functions ν : Var → {0, 1}.
Definition 3 (Probabilistic Program, Module, Command). A probabilis-
tic program is a tuple P = (Var , νinit,M) where Var is a finite set of Boolean
variables3, νinit ∈ NVar is the initial variable valuation, and M = {M1, . . . ,Mk}
is a finite set of modules.

A module is a tuple Mi = (Var i,Act i, Ci) where for 1 ≤ i, j ≤ k Var i ⊆ Var
is a finite set of Boolean variables such that Var i ∩ Var j = ∅ for i 6= j, Act i
is a finite set of synchronizing actions, and Ci is a finite set of commands.
Additionally, to be consistent with the program, we require Var =

⋃k
j=1 Var j.

Let τ 6∈
⋃k
i=1Acti denote the internal non-synchronizing action. A command

c ∈ Ci is of the form c = [α] g → p1 : f1 + . . . + pn : fn, where α ∈ Act i ∪̇ {τ}
is the action of c that is referred to as act(c), g is a Boolean predicate over Var
(called the guard of c), denoted by grd(c), pj ∈ [0, 1] is a rational number such
that

∑n
i=1 pi = 1, and fj : NVar → NVari

is an update function that assigns to
each variable of the module a new value based on the values of all variables in
the program for all 1 ≤ j ≤ n.

Note that each variable v ∈ Var i may be written only by the module Mi,
but the update may depend on variables of other modules. The restriction
(Var i,Act i, Ci ∩C) of module Mi to a set C of commands is denoted Mi|C and
P|C = (Var , νinit, {M1|C , . . . ,Mk|C}) is the restriction of the whole program to
this set of commands.

A model with k > 1 modules is equivalent to a model with a single module
resulting from the parallel composition M1 ‖ · · · ‖Mk of all modules. Intuitively,
the parallel composition of two modules corresponds to a new module that en-
ables all non-synchronizing behavior of the two modules as well as the composi-
tion of all command-pairs that need to synchronize because of a common action

3 Note that for Prism, the variables do not have to be Boolean. However, as finite
variable domains are required, every program can be transformed into one only
having Boolean variables.
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module coin

f : bool init 0; c: bool init 0;
(c1)[flip] ¬f → 0.5 : (f ′ = 1)&(c′ = 1) + 0.5 : (f ′ = 1)&(c′ = 0);
(c2)[reset] f ∧ ¬c→ 1 : (f ′ = 0);
(c3)[proc] f → 0.99 : (f ′ = 1) + 0.01 : (c′ = 1);

endmodule
module processor

p: bool init 0;
(c4)[proc] ¬p→ 1 : (p′ = 1);
(c5)[loop] p→ 1 : (p′ = 1);
(c6)[reset] true→ 1 : (p′ = 0);

endmodule

Fig. 1. A probabilistic program PEx in Prism’s input language.

name. Formally, the binary composition Mi ‖Mj = (Var i∪Var j ,Act i∪Actj , C)
of two modules Mi and Mj with i 6= j has the set of commands

C = {c | c ∈ Ci ∪ Cj ∧ act(c) ∈ ({τ} ∪Act i 	Actj)}
∪ {c⊗ c′ | c ∈ C1 ∧ c′ ∈ C2 ∧ act(c) = act(c′) ∈ Act i ∩Actj}

where A	B is the symmetric difference of the sets A and B. The composition
c⊗ c′ of two commands c = [α] g → p1 : f1 + . . .+ pn : fn and c′ = [α] g′ → p′1 :
f ′1 + . . .+ p′m : f ′m with the same action α is defined as

c⊗ c′ = [α] g ∧ g′ →
n∑
i=1

m∑
j=1

pi · p′j : fi ⊕ f ′j .

Here, the composition fr ⊕ fs : NVar → NVari∪Varj of two update functions
fr : NVar → NVari and fs : NVar → NVarj is defined by

(fr ⊕ fs)(ν)(v) =

{
fr(ν)(v), if v ∈ Var i,

fs(ν)(v), otherwise.

Example 2. Figure 1 shows a probabilistic program PEx with two modules coin
and processor. It models a system that first does a coin flip and then processes
some data. While doing so, it may erroneously modify the coin. Depending on the
outcome of the coin flip, the system may reset to the initial configuration. The
program uses three variables VarEx = {f, c, p} that indicate whether a coin has
been flipped (f), the coin shows tails (c = 0) or heads (c = 1) and whether some
data was processed (p). Initially the module coin can do a coin flip (command
c1). Then, both modules can process some data by synchronizing on the proc

action (c3 and c4). However, the processing step can by mistake set the coin to
show heads with probability 0.01 (c3). Additionally, if the coin showed tails, the
coin flip can be undone by a reset (c2 and c6). Finally, if data has been processed
the system may loop forever (c5).
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The semantics of a probabilistic program P = (Var , νinit, {M}) with only one
moduleM = (Var ,Act , C) is defined in terms of a PAA = JPK = (S, sinit,Act ,P).
S = NVar is the set of all valuations of the program variables4. Hence, each state
s ∈ S can be seen as a bit vector (x1, . . . , xm) with xi being the value of the
variable vi ∈ Var = {v1, . . . , vm}. The initial state sinit of the PA corresponds
to the initial valuation νinit of variables in the program. A guard g defines a
subset Sg ⊆ S of states in which the guard evaluates to true. Now, a command
c = [α] g → p1 : f1+. . .+pn : fn induces a probability distribution µs,c ∈ Dist(S)
for all states s ∈ Sg by setting

µs,c(s
′) =

∑
{i | 1≤i≤n∧ fi(s)=s′}

pi

for each s′ ∈ S. The transition relation P is then defined for all s ∈ S by

P(s) =
{

(α, µs,c)
∣∣∃c ∈ C : act(c) = α ∧ s ∈ Sgrd(c)} .

We say that the transition (α, µs,c) is generated by the command c. In case c
resulted from the parallel composition of a set of commands C from a proba-
bilistic program with more than one module, we say that the commands in C
(jointly) generate the transition. From now on we assume a labeling function
L : S × Act × Dist(S) → 2Lab that labels each transition (α, µ) ∈ P(s) with
a set of labels L(s, α, µ) ⊆ Lab = {`c | ∃i ∈ {1, . . . , k} : c ∈ Ci} to indicate
which commands generated the transition. Note that in case of synchronization
the labeling of a transition is a set with more than one element. In order to
distinguish the transitions generated by different commands later on, we create
different copies of the transition and label them appropriately, if a particular
transition is generated by different commands or command sets. We will abbre-
viate the set of states {s ∈ S | ∃(α, µ) ∈ P(s) : c ∈ L(s, α, µ)} that have an
outgoing transition generated by c ∈ C by src(c). Analogously, we let dst(c) be
the set of states that have an incoming transition (α, µ) from some state s′ with
c ∈ L(s′, α, µ). If a state s has no command enabled, i.e. s 6∈ Sgrd(c) for any
c ∈ C, the state is equipped with a self-loop transition (αs, µs) where αs 6∈ Act
is a new action and µs is the Dirac distribution on s. For all transitions added
this way, we let L(s, αs, µs) = ∅ to reflect that they were not generated by any
command, but were added to avoid deadlock states.

Example 3. A = JPExK is depicted in Figure 2 where all unreachable states are
omitted. The states of the automaton are given by the valuations of the variables
in the form 〈f, c, p〉 and the arrows between the states define the transition
relation P, where the highlighting of arrows only becomes relevant in a following
example and can be ignored for now. Assume that the probabilistic reachability
property ϕ = P≤0.5(♦{s4}) is given. Clearly, A 6|= ϕ, because, for example,

4 Actually, Prism programs also allow to specify discrete-time and continuous Markov
chains (DTMCs and CTMCs, respectively) and probabilistic timed-automata (PTA).
While this paper focuses on PAs, our technique can be readily applied to DTMCs
and PTA and also on CTMCs if the guards of commands are non-overlapping.
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〈0,0,0〉
sinit

〈1,0,0〉

s1

〈1,1,0〉
s2

〈1,0,1〉

s3

〈1,1,1〉
s4

flip

0.5

0.5

proc, 0.99

proc, 0.01

proc, 1

loop, 1

loop, 1

reset, 1

reset, 1

Fig. 2. The reachable fragment of the probabilistic automaton JPExK.

PrσA(♦{s4}) = 0.505 for the scheduler σ that chooses the proc action in both s1

and s2 and loops in s3 and s4.

Critical command sets. Consider a probabilistic program P = (Var , νinit, {M =
(Var ,Act , C)}), its associated PA A = JPK = (S, sinit,Act ,P), and the reacha-
bility property ϕ = P≤λ(♦T ) for a set of target states T ⊆ S. We assume ϕ to be
violated by JPK, i. e., A 6|= ϕ. We aim at identifying a set C ′ ⊆ C of commands
such that the program restricted to these commands still violates the property
ϕ, i. e., JP|C′K 6|= ϕ. We call these subsets of commands critical command sets,
as they induce a critical fragment of the probabilistic automaton that already
proves the violation of the property.

Example 4. Reconsider the probabilistic automaton JPExK and the probabilistic
reachability property ϕ = P≤0.5(♦{s4}) given in Example 3. While the program
PEx has 5 commands, the commands C∗Ex = {c1, c3, c4} are already critical,
because JPEx|C∗Ex

K 6|= ϕ. The transitions of the restricted model are drawn as
bold arrows in Figure 2.

2.3 MaxSat

Given two finite sets Φ, Ψ of propositional formulae over variables Var such that
Ψ is satisfiable, the goal is to determine an assignment ν ∈ NVar which satisfies
all formulae in Ψ and a maximal number of formulae in Φ, i. e., MaxSat(Φ, Ψ) =
ν such that ν |= Θ ∪ Ψ where Θ ∈ argmaxΦ′⊆Φ

{
|Φ′|

∣∣Φ′ ∪ Ψ is satisfiable
}

.

Note that by negating each formula in Φ, i. e., letting Φ = {¬ϕ |ϕ ∈ Φ},
MaxSat(Φ, Ψ) yields an assignment that satisfies a minimal number of formulae
of Φ while still satisfying all constraints in Ψ . Consequently, we let
MinSat(Φ, Ψ) := MaxSat(Φ, Ψ). There are different techniques to solve the
MaxSat problem for a given instance, but we focus on a counter-based tech-
nique that is particularly suited if an instance needs to be solved repeatedly after
adding additional constraints. For further details, we refer to [13].

3 Computing Minimal Critical Command Sets

In this section we present our novel approach to compute a critical command
set as introduced in Section 2.2. For the remainder of this section, let P =
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compute C =
MinSat(ΦC , ΦP)

add constraints
to ΦP

compute
Prmax
A|C (♦T ) analysis of A|C

model JPK

solution C∗

> λ

≤ λ

Fig. 3. A schematic overview of our MaxSat-based approach.

(Var , νinit,M) with M = {M1, . . . ,Mk} be a probabilistic program with modules
Mi = (Var i,Act i, Ci) for 1 ≤ i ≤ k. Let A = JPK = (S, sinit,Act ,P) and
A|C = JP|CK for a given set C of commands. We assume that the labeling L of
transitions with command labels according to Section 2.2 is given. Furthermore,
let T ⊆ S be a set of target states and λ ∈ [0, 1] such that A 6|= P≤λ(♦T ) in order
to guarantee the existence of a critical command set. The task is to compute a
minimal critical command set, i. e., a smallest set C∗ of commands such that
A|C∗ 6|= P≤λ(♦T ) or, equivalently, Prmax

A|C∗ (♦T ) > λ. The fact that this problem
is NP-hard in the size of the probabilistic program can be shown by a reduction
from exact 3-cover (X3C) very similar to the one in [32]. Note that a solution C∗

of this problem is not unique as there may be more than one set of commands
of size |C∗| that suffices to violate the reachability property.

3.1 Algorithm

Basic idea. Clearly, for realistic problems, an enumeration of all possible com-
mand sets is infeasible. Hence, it is crucial to obtain additional information
from the model to rapidly guide the search. For example, if an optimal so-
lution C∗ contains a synchronizing command c of module Mi, it must also
contain at least one command of each module Mj that needs to synchronize
with c, i. e., act(c) ∈ Actj . Likewise, if a command c does not lead to a tar-
get state in T directly, adding c to the set C∗ implies that it must also con-
tain at least one command (or command combination) that may directly follow
c in A, which in turn may trigger other implications. We therefore strive to
encode as much information as possible from the program P in the form of
a set ΦP of logical formulae. Primarily, the formulae are built over variables
ΦC := {xc | ∃i ∈ {1, . . . , k} : c ∈ Ci} whose truth values indicate whether a
certain command is included in the current hypothesis or not. We then use a
MaxSat solver to compute the smallest set C of commands that is in accor-
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dance with all constraints in ΦP by solving C = MinSat(ΦC , ΦP).5 Finally, a
model checker is invoked to determine p = Prmax

A|C (♦T ). If p exceeds λ, we do not
only know that the current set C suffices to exceed λ but also that C is among
the sets of minimal size for which this holds, because smaller candidate sets are
enumerated first by the solver. If, on the other hand, p ≤ λ, we analyze why C
was insufficient, add appropriate implications to ΦP and iterate the algorithm
until a sufficient set C was found. A schematic overview of this procedure is
depicted in Figure 3.

3.2 Building the Initial Constraint System ΦP

As previously mentioned, the first step of our algorithm consists of statically
deriving information about the model A = JPK to guide the search for a minimal
critical command set C∗. Note that it suffices to consider the reachable state
space of A for all the constraints we derive.

Guaranteed commands. For typical models, some commands need to be taken
along all paths from the initial state to a target state. It is thus beneficial to
determine this set in a preprocessing step to the actual search and thereby
possibly prune large parts of the search space. We therefore compute the set of
guaranteed commands using a standard fixed point analysis [24] on A.

Example 5. All paths that lead to the target state in JPExK must go along tran-
sitions generated by the commands c1, c3 and c4, so it is a priori known that a
solution must contain all of them.

Synchronization implications. By the semantics of the program P, it is required
that a synchronizing command c in module Mi can only generate a transition
together with synchronizing commands cj of all modules Mj , i 6= j, with act(c) ∈
Actj . Consequently, we can conclude that any optimal solution C∗ with c ∈ C∗
must also contain at least one command cj of each synchronizing module such
that the commands c and cj are simultaneously enabled. Formally, we assert

xc →
∨

s∈src(c)

∨
(α,µ)∈P(s)
`c∈L(s,α,µ)

∧
`c′∈L(s,α,µ)

c6=c′

xc′ for all Mi ∈M and c ∈ Ci. (1)

Example 6. In PEx, the command c3 in the first module and c4 in the second
module need to synchronize in order to generate a transition. The synchroniza-
tion implications xc3 → xc4 and xc4 → xc3 ensure that candidate sets must
either contain both or none of the two commands.

5 Formally, this is not entirely correct, since MinSat returns a satisfying assignment.
More formally, we let C = {c | ν(xc) = 1} where ν = MinSat(ΦC , ΦP).
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Successor and predecessor implications. Observe that a candidate set C is surely
sub-optimal if c ∈ C only participates in generating transitions in A|C that lead
to non-target states without outgoing transitions. In this case, no path from the
initial state to a target state can visit a transition that was generated by c and,
hence, c can be dropped from C without affecting the reachability probability.
Thus, we can assert that each c ∈ C either possibly leads to a target state
directly or leads to some state that has a non-empty transition set. Hence, we
add for all Mi ∈M and c ∈ Ci with dst(c) ∩ T = ∅ the constraint

xc →
∨

s′∈dst(c)

∨
(α,µ)∈P(s′)

∧
`c′∈L(s′,α,µ)

c 6=c′

xc′ (2)

to ΦP. Analogously, for each command c′ that is not enabled in the initial state,
i. e., sinit 6∈ src(c′), we select a combination of commands that leads to some
state s ∈ src(c′) by enforcing

xc′ →
∨

s∈src(c′)

∨
s′∈pred(s)

∨
(α,µ)∈P(s′)
s∈succ(s′,α,µ)

∧
`c∈L(s′,α,µ)

c6=c′

xc (3)

As slight variations of these implications, we can encode that at least one of the
transitions of the initial state and at least one transition that has a target state
as a direct successor are generated by (a subset of) C.

Example 7. In our running example PEx, the command c1 must be used in order
to reach states that have c3 enabled. Consequently, we can add the predecessor
implication xc3 → xc1 . Likewise, all transitions generated by c2 must be preceded
by either a transition generated by c1 or by the synchronization of c3 and c4,
so xc2 → xc1 ∨ (xc3 ∧ xc4) can be added to ΦPEx

. Finally, since the initial state
must have an outgoing transition, we can assert xc1 . Note that these are only a
few of the constraints that can be constructed for PEx.

Extended backward implications. Reconsider the probabilistic program PEx. Our
previously presented backward implications assert that if a candidate set C con-
tains command c2, it also contains either c1 or both c3 and c4, because both
command combinations may directly precede c2. However, it is obvious that c1
must always be executed before c2, because otherwise the guard of c2 never be-
comes true. Put differently, only command c1 “enables” c2 and should therefore
be implied by the choice of c2.

More formally, we say that a set of commands C ′ enables a non-synchronizing
command c if there is at least one state s such that (i) s 6∈ src(c), (ii) there is an
(α, µ) ∈ P(s) with L(s, α, µ) = C ′ and a successor state s′ ∈ succ(s, α, µ) such
that s′ ∈ src(c), (iii) c is not enabled in the initial state, i. e., sinit 6∈ src(c). Let
enab(c) denote the set of all command sets that enable c. We can then assert

xc →
∨

C′∈enab(c)

∧
c′∈C′

xc′ (4)



Fast Debugging of PRISM Models 11

s
s′

s′′

Cs′,1

Cs′,2

Cs′′

A B

Fig. 4. A restricted model with only unreachable target states.

for all commands c with sinit 6∈ src(c) without ruling out optimal solutions. A
similar, yet more involved implication can also be asserted for synchronizing
commands, but is omitted for the sake of simplicity.

Enforce reachability of a target state. Using a similar construction as the one in
[32], reachability of a target state can be encoded in the constraints if a MaxSmt
solver is used. For further details we refer to Appendix A.

3.3 Analysis of Insufficient Command Sets

After the initial constraint set was constructed, a MinSat problem is solved
to obtain a smallest command set C that adheres to these constraints. The
restricted model A|C is then dispatched to a model checker to verify or refute
P≤λ(♦T ). If the reachability probability in A|C exceeds λ, a solution for the
minimal critical command set problem has been found, because the set C is, by
construction, the smallest candidate set. However, in the more likely event of not
exceeding λ, we aim to derive additional constraints from the constrained model
that guide the solver towards a solution with a higher reachability probability.
While it is easily possible to rule out just the current (insufficient) candidate set
C by adding a formula to ΦP, we strive to rule out more insufficient candidate
sets to guide the search. We illustrate this procedure for the case where the
reachability probability is zero, i. e., the target states are unreachable altogether
(which can, of course, only happen if the constraints to enforce reachability
of a target state are not used). A similar reasoning can be applied in case the
probability is non-zero. Assume that the current candidate C induces a restricted
modelA|C in which the target states are unreachable. Figure 4 sketches the shape
of A|C in this scenario where A is the set of states reachable from the initial state
and B is formed by all states that can reach a target state. In order to increase
the probability of reaching T , any future candidate set C ′ ) C must generate
a path from A to B in A|C′ in order to reach a target state. More concretely,
we do not need to consider all states in A but rather those states that are on
the border borderC(A,B) of A, meaning that they possess a transition in the
unrestricted model A that is (i) not present in A|C , (ii) leaves the set A and
(iii) is the first transition of a finite path that ends in B. The states in question
can be obtained using efficient graph searches that are essentially breadth-first
searches. Having identified these states, we perform a usually cheap analysis that
for a given state s determines the set of commands Cs B that need to be taken
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along all paths from s to some state s′ ∈ B. We could then assert∧
c∈C

xc →
∨

s∈borderC(A,B)

∧
c∈Cs B

xc (5)

to express that any future candidate C ′ ) C must contain all commands nec-
essary for reaching B from some state s ∈ borderC(A,B). However, as the sets
Cs B are possibly empty, the above constraint does not necessarily eliminate
any candidate (not even C). Hence, to guarantee elimination of C as a candidate,
we take an intermediate step from a border state s to some state s′ 6∈ A to ensure
some transition leaving A is generated. Formally, this leads to the constraint∧
c∈C

xc →
∨

s∈borderC(A,B)

∨
(α,µ)∈P(s)

∨
s′∈succ(s,α,µ)

s′ 6∈A

( ∧
`c∈L(s,α,µ)

xc︸ ︷︷ ︸
s→s′

∧
∧

c′∈Cs′ B

xc′︸ ︷︷ ︸
s′ B

)
.

Example 8. Assume that the solver found the candidate set C = {c1} while
searching for a critical command set in PEx for ϕ. This would not be possible
if all previously mentioned constraints are added, but is assumed for the sake
of simplicity. Then, A|C comprises the three reachable states A = {sinit, s1, s2},
the latter two of which are on the borderC(A, {s4}). Since all transitions leaving
the two states s1 and s2 towards s4 are jointly generated by the commands c3
and c4, we add the constraint xc1 → xc3 ∧ xc4 to rule out C.

3.4 Correctness and Completeness

The correctness of our approach basically depends on the fact, that all possible
sets of commands are incrementally enumerated until one set fits the require-
ment given by the violated property. If no additional constraints are used, the
MaxSat method starts with the minimal possible subset of commands and in-
creases this size until the model checker reports the violation of the property for
the then optimal set of commands C∗. Completeness of the algorithm holds, as
all candidates are enumerated at most once and there are finitely many candidate
command sets.

What remains to be argued is that all constraints in the set ΦP are correct in
the sense that each optimal solution C∗ of the critical command set problem nec-
essarily satisfies all of these constraints. Put differently, every constraint ϕ ∈ ΦP

only restricts the solution space such that no optimal solution, i. e., no minimal
critical command set, is ruled out. Due to the page limit, we abstain from giving
a formal proof, but refer to Sections 3.2 and 3.3 where the correctness of all
constraints is explained.

4 Evaluation

Implementation. We implemented our technique in roughly 1000 lines of C++

code. The prototype was developed in the context of a model checker under
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development. We employ the counter-based MaxSat procedure described in
Section 2.3 using Z3 4.3 [12] as the underlying Sat/Smt solver. To provide a
fair comparison, we additionally implemented the MILP-based approach [32]
using the commercial solver Gurobi 5.6 [15]. We also added the detection of
guaranteed commands (see Section 3.2) as an optimization to the MILP approach
and added the resulting information to the problem encoding. As proposed in
[32], we added the so-called scheduler cuts, an additional set of constraints to
rule out suboptimal solutions, to the MILP encoding, because they strongly tend
to improve the performance of the solver. According to [32], all other cuts may
have a mixed influence on the performance of the solver and were thus omitted.

Case studies. For the evaluation of the prototype we used four benchmarks that
were all previously considered in [32]. They can be found on Prism’s website.

I Consensus Protocol. The probabilistic program coin(N,K) models the
shared coin protocol of a randomized consensus algorithm [3]. It is used to de-
termine a preference between two choices, each of which appears with a cer-
tain probability. The shared coin protocol is parametrized in the number N of
involved processes and a constant K > 1. Internally, the protocol is based on flip-
ping a coin to come to a decision. We consider the property
P<λ(♦(finished ∧ all coins equal 1)) that is satisfied if the probability to finish
the protocol with all coins showing the value 1 is below λ.

I Wireless LAN. The case study wlan(B,D) concerns the two-way hand-
shake mechanism of the IEEE 802.11 Wireless LAN protocol. Two stations try
to send data, but run into a collision. Therefore they enter the randomized expo-
nential backoff scheme. Parameter B denotes the maximally allowed value of the
backoff counter. We check the property P<λ(♦(num collisions = D)), putting an
upper bound on the probability that the maximal number of collisions D occurs.

I CSMA. The csma(N,B) model concerns the IEEE 802.3 CSMA/CD net-
work protocol with N the number of processes wanting to access a common
channel and B is the maximal value of the backoff counter. We check that the
probability of all stations successfully sending their messages before a collision
with maximal backoff occurs is less than λ, i. e., P<λ(¬collision U delivered).

I Firewire. Finally, fw(N) models the Tree Identify Protocol of the IEEE 1394
High Performance Serial Bus (called “FireWire”) [28]. It is a leader election
protocol that is executed each time a node enters or leaves the network. The
parameter N denotes the delay of the wire. We check P<λ(♦leader elected), i. e.,
that the probability of finally electing a leader is below λ.

Experimental results. All experiments were conducted on an Intel Core i7 920
quadcore processor clocked at 2.66 GHz with 12 GB RAM running Mac OS 10.9.
We set a timeout of 12 hours for each individual (single-threaded) experiment.
Table 1 summarizes the results of our experiments. Next to some model statis-
tics about the particular model, the considered probability bound λ and the
maximal reachability probability p∗ of the unrestricted model are shown. Fur-
thermore, we give the number of relevant commands of the probabilistic program
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MILP[32] MaxSat

model states trans. λ/p∗ comm. |C∗| Time Mem. Time Mem. enum.

coin(2, 2) 272 492 0.4 / 0.56 10 (4) 9 TO > 0.04 0.08 0.02 54%
coin(4, 4) 43136 144352 0.4 / 0.54 20 (8) 17 TO > 2.60 1876 0.07 50%
coin(4, 6) 63616 213472 0.4 / 0.53 20 (8) 17 TO > 6.70 6231 0.09 50%
coin(6, 2) 1258240 6236736 0.4 / 0.59 30 (12) – TO > 8.36 TO > 1.54 –
csma(2, 4) 7958 10594 0.5 / 0.999 38 (21) 36 31.4 0.07 2.26 0.04 0.09%
csma(4, 2) 761962 1327068 0.4 / 0.78 68 (22) 53 TO > 9.60 18272 0.92 3.9E-9%
fw(1) 1743 2199 0.5 / 1 64 (6) 24 207.25 0.16 16.14 0.05 1.4E-10%
fw(10) 17190 29366 0.5 / 1 64 (6) 24 9196 0.84 90.47 0.07 1.4E-10%
fw(36) 212268 481792 0.5 / 1 64 (6) 24 TO > 3.20 1542 0.34 1.4E-10%
wlan(0, 2) 6063 10619 0.1 / 0.184 42 (22) 33 TO > 1.99 1.6 0.03 0.02%
wlan(2, 4) 59416 119957 4E-4 / 7.9E-4 48 (26) 39 TO > 4.03 50.27 0.07 0.01%
wlan(6, 6) 5007670 11475920 1E-7 / 2.2E-7 52 (30) 43 ERR – 5035 3.86 0.01%

Table 1. The results of the experiments.

and how many of them are guaranteed commands (see Section 3.2). Here, rel-
evant means that they appear on at least one path from the initial to a target
state. The size of an optimal solution C∗ as well as the runtimes and memory
consumption (in seconds and gigabytes, respectively) of both the MILP- and the
MaxSat-based approach are listed in the following five columns, where TO in-
dicates a timeout. For the MILP approach [32], we performed experiments with
and without using the scheduler cuts and report on the best of these results.
Encoding reachability of a target state (see Section 3.2) tended to be rather
expensive for Z3: in almost all cases it slowed down the overall computation
and thus we list the times obtained without adding these constraints. For all
considered models the MaxSat approach significantly outperforms the MILP-
based technique. While for the fw and csma models the speed-up is about one to
two orders of magnitude, for the coin and wlan case studies it goes as high as
five orders of magnitude. Enabling the multi-threading capabilities of Gurobi (8
threads on our machine) did not change the order of improvement we obtained.
Furthermore it can be seen that the MaxSat approach consistently uses one or-
der of magnitude less memory. For the largest wlan example, Gurobi reported a
wrong result (|C∗| = 38). Performing model checking on the restricted model re-
vealed that the computed command set does not suffice to violate the property.
After careful inspection of our implementation and considering that all other
results coincide, we believe this is due to numerical instabilities in the solving
technique that could not be eliminated by setting its tolerances to the lowest
possible value. Finally, to indicate to what extent the constraints in our new
approach guide the search as opposed to an unguided enumeration of candidate
sets, Table 1 also shows the fraction `∑k

i=0 (n
i)

(column enum.) where ` is the num-

ber of candidate sets enumerated, k is the number of commands in C∗ minus the
guaranteed commands, and n is the number of all relevant but not guaranteed
commands. It represents the ratio of candidate sets that were tested to all can-
didate sets with at most |C∗| commands that contain all guaranteed commands.
Hence, it indicates which fragment of the search space could be pruned. For all
case studies except the coin models, the constraints avoided huge parts of the
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search space. Interestingly, despite exploring more than half of the search space,
the MaxSat approach is still much faster on the coin examples, which is due
to the efficient underlying testing procedure for candidate sets.

Further, it is noteworthy that, depending on the model, the analysis of in-
sufficient command sets (see Section 3.3) consumes the largest fraction of the
runtime: for the csma and fw examples more than 80 % of the runtime is spent
on it, whereas for the other examples it only contributes a very small fraction
to the overall runtime, which is then clearly dominated by model checking.

Since it is a known characteristic of MILP solvers that good solutions are
found quickly, but the solver is unable to prove their optimality in reasonable
time, we also examined the solution progress of Gurobi on the models for which
it times out. For the smaller to medium-sized models, for example wlan(0,2) and
fw(10), the MILP solver finds a solution of optimal size in 4 and 388 seconds,
respectively, but then fails at proving optimality. However, for the largest models
of each case study that could be solved within time by the MaxSat approach,
Gurobi is unable to find any solution until the time limit is reached.

5 Conclusion

We have presented a novel technique for computing counterexamples at the mod-
eling level of probabilistic programs, which we believe to complement existing
counterexample techniques in the probabilistic setting. In contrast to the pre-
vious approach tackling the minimal command set problem, our new technique
substantially improves computation time and memory consumption and scales
to systems with millions of states. Furthermore, it can be readily applied to
the wider range of monotonic properties by introducing problem-specific con-
straints. However, the performance of the technique can still be improved. It
is easily parallelizable and could therefore benefit from accelerators like GPUs.
More sophisticated analysis techniques of candidate sets that failed to exceed
the probability threshold could be both more efficient to compute and more
beneficial with respect to the number of suboptimal sets that could be pruned.
Moreover, the computed counterexamples can be further reduced in size by ap-
plying branch minimization [32]. Future work also includes possible applications
in techniques that are guided by counterexamples, such as CEGAR [18,9] or
assume-guarantee reasoning [6].
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High-level counterexamples for probabilistic automata. In Proc. of QEST, volume
8054 of LNCS, pages 18–33. Springer, 2013.



18 C. Dehnert et al.

A Encoding Reachability of Target States

Depending on the model, our guided enumeration technique may produce many
hypotheses with unreachable target states (leading to reachability probability
0). However, it is possible to completely avoid such hypotheses at the expense
of adding additional SMT constraints and using a MaxSmt solver instead of
a MaxSat solver. To encode reachability of target states, we use additional
real-valued variables rs for each s ∈ S and Boolean variables ts,s′ for all pairs
(s, s′) ∈ S × S of states such that s′ ∈ succA(s). The rs variables are used to
associate each state with a real number to induce a partial ordering of states. A
variable ts,s′ may only be set to 1 if the value rs is strictly smaller than the value
of rs′ and s′ is a successor of s in the restricted model. We require that the initial
state sinit has a successor state s′ with tsinit,s′ = 1 and that each non-target state
s′ having a predecessor state s with ts,s′ = 1 also has a successor state s′′ with
ts′,s′′ = 1. This induces a path starting at the initial state and ending at a
target state. This path is loop-free since the rs-values strictly increase along the
path. This construction is similar to the one in [32] and comprises the following
constraints: ∨

s′∈succ(sinit)

tsinit,s′ (6a)

∀s ∈ S \ T :
∨

s′∈pred(s)

ts′,s →
∨

s′′∈succ(s)

ts,s′′ (6b)

∀s, s′ ∈ S : ts,s′ →
∨

(α,µ)∈P(s),
s′∈succ(s,α,µ)

∧
`c∈L(s,α,µ)

xc (6c)

∀s ∈ S, s′ ∈ S \ T : ts,s′ → rs < rs′ (6d)

Let T =
{

(s, s′)
∣∣ ts,s′ = 1

}
be the relation induced by the ts,s′ variables. Firstly,

the constraints (6c) make sure that T only relates states that are also related
by a generated transition. Secondly, (6a) and (6b) ensure that the initial state is
related to some other state and that (s, s′) ∈ T with s′ 6∈ T implies (s′, s′′) ∈ T
for some state s′′. Finally, (6d) guarantees a strictly ascending order between
related states. Roughly speaking, these constraints encode the reachability of a
target state, because the requirement of a strict ordering on the states along
the chosen transitions is only released when a target state is reached. While this
set of constraints possibly rules out a lot of unnecessary candidate sets C, it is
obvious that it might be costly regarding the runtimes of the MaxSmt solver.
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