Compositional Performability Evaluation for
STATEMATE

Eckard Bodé Marc Herbstritt  Holger Hermanns  Sven Joht
Thomas Peikenkamp Reza Pulungan Ralf Wimmef Bernd Becket

ISaarland University, Saarbriicken, Germany
2 Albert-Ludwigs-University Freiburg im Breisgau, Germany
3Kuratorium OFFIS e.V., Oldenburg, Germany

Abstract— This paper reports on our efforts to link an indus-
trial state-of-the-art modelling tool to academic state-f-the-art o _
analysis algorithms. In a nutshell, we enable timed reachality H
analysis of uniform continuous-time Markov decision processes, , 2 £
which are generated fromSTATEMATE models. We give a detailed 2¢E
explanation of several construction, transformation, rediction, - iz

. . . . . Failure mode ©
and analysis steps required to make this possible. The enér distributions =
tool flow has been implemented, and it is applied to a nontrial
example. Fig. 1. Tool chain overview.

I. MOTIVATION An overview of the tool chain is depicted in Fig. 1. Apart

hi is th h from a STATEMATE design, a collection ofailure modesand
This parijer reports a success stor)(/j. It is the storyho ,O:N WEifety requirementsonstitute the input of our symbolic trans-
manage .to Integrate very reqent advances in stoc gst|e MG4Brmations.Failure distributions describing the likelihood of
checking into a modelling environment with a stable indastr failure occurrences as time elapses, are another ingtteglien

user ghroupb Thg m(l)delllng de_nvwonmelnt _'SrAsEMgTE'_ 2 the problem specification, but are only considered in ther|at
Statechart-based toolset used in several avionic and atiem explicit stage of the tool chain, which finally yields the \wbr

companies like ARBUS or BMw. The model checking is case probability to violate the safety requirements at &mgiv
based on computing time bounded reachability probaba'litietime bpound y ¥ 1ed 9

and allows us to verify properties lik€Fhe probability to hit a We apply the entire tool chain to a parametric case study from

ﬁafety-_crlt[[cal s;;s(t)egl :_cr)]nﬁglurat_[[cr)]n W'th'n E\hmls&?n “Tft the train control domain. For this example, we manage todavoi
ours 1s at most £.U1.The algoritnimic WOTKNOrse 1o valldate g spaces in the order 623, and instead only need to

(or refute) such properties ihe firstimplementation of an handle models of up t60° states and 0° transitions.

glgonthm [1] which C‘?'T”p“tes th?. vv.orst_-case (or .beSt'Caﬁt??summary, the paper makes the following contributions. It
time bounded reachability probability inumiform continuous- o . :
reports on (1) the first implementation of a time bounded

time Markov decision procegsCTMDP). . . !
This combination of Statechart-modelling and uCTMDP an jeachability algor!thm for uCTMDPs, (2). the first — to our
nowledge — entirely BDD-based algorithm for computing

ysIS raises the_oret_|cal and practical questions, both O.tIWh branching bisimulation quotients, (3) a compositional moeit
are answered in this paper. On the theoretical side, weitlescr,

how the SATEMATE-model can be enriched with stochastié0 construct uniform CTMDPs, (4) the integration of these
time aspects, and then transformed into a CTMDP which ri)éeces In & useable tool chain, and (5) the application af thi
. P ' . . tool chain to a nontrivial example.

uniform by construction. One key feature of this approach 8 o . .

that the model construction steps rely heavily on compamsti rganization of the papefThe paper is organized as follows.
properties of the intermediate model, which is the model ction Il introduces some basic definitions. Section IH ex
interactive Markov chaingIMCs) [2]. On the practical side, plains the symbolic steps of our tool chain, V\.’h"e Sectpn v
we report how symbolic (i.e. BDD-based) representatioﬁ vers the subsequent explicit transformations. Section V

and compositional methods can be exploited to keep t 85(;r|be\?l SOW Wet |;an?[mentetq tlhfe eﬂbt!lr_f ]EOOI ﬂOW’I and
model sizes manageable. While the later steps in our asaly; peton emonstrates IS practical teasibility Tor aampie

trajectory use explicit-state representations, the eadteps rom the train control domain. Finally, Section VIl conchl
are symbolic, and cumulate in a novel symbolic branchir}Be Paper.
bisimulation minimization algorithm.

This work is supported by the German Research Council (DEG)aat of Il. MODEL BASICS
the Transregional Collaborative Research Center “Aut@mérification and . . . . .
Analysis of Complex Systems” (SFB/TR 14 AVACS). Sesw, avacs. o g This section briefly reviews the most important concepts

for more information. needed in this paper. The construction process revolvesmédro



different flavors ofinteractive Markov chain§?], an orthogo- e s
nal combination of labelled transition systems and cormtirs4 Statomate

time Markov chains. We consider a basic set of actighs £
which contains the distinguished action This action is
deemed unobservable and plays a crucial role in our approach

since it is used for abstracting behaviors of the systemghwvhiFig. 2. Symbolic tool flow for shrink-fitting $ATEMATE designs.
at certain stages are irrelevant for the transformatigosstieat pefinition 4 (CTMDP)

follow. A continuous-time Markov decision proce@8TMDP) is a
Definition 1 (IMC) triple (S, L,R) where S is a non-empty set of stateg, is a

An interactive Markov chain(IMC) is a tuple (S, A, 7, R) S€t of transition labels, anR C 5 x L x (5 — R*) is the
where S is a non-empty set of stated, is the above set of S€t Of transitions.

actions,T C S x A x S is a set of interacti_v_e transitions, andAny CTMDP can be viewed as a special IMC in which
RC5xRT xS is aset of Markov transitions. interactive transitions and Markov transitions occur itraty

By R(s,s') we denote the transition rate from to s, alternating manner. This will be used_in the fi_nal step of
i.e., R(s,s’) = X iff (s,\,s') € R and 0 otherwise. A OUr construction. As in [1], a CTMDP is callealnlf_orm_|ﬁ
labelled transition system (LTS) is a triplé, A, T) whenever ¢ € R' Sl/JCh thatvs € S andVvi € L : (s,1, R) € R implies

(S, A, T,0) is an IMC. A continuous-time Markov chain is aXves B(s) =e.

triple (S, A, R) whenever(S, A, 0, R) is an IMC.
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Notation: For IMC Z = (S, A, T, R), a states € S is stable I1l. FROM STATEMATE TO QUOTIENT LTS: SymBOLIC
written s /s, if Vs’ € S (s,7,5') ¢ T. Otherwises is called TRANSFORMATIONS
instable For stable state andC' C S we definer(s,C’) = In this section we describe the compilation ofASEMATE

> vec R(s,s"). For instables, r(s,C) = 0. The distinction designs together with a specification of failure occurrence
between stable and instable states is justified by the nofioninto a labelled transition system (LTS). Additionally, we
maximal progress, see [2] for details. IMOs calleduniform,  describe how this LTS is built and manipulated by symbolic
iff 3¢ € R such thatys € S : s & implies r(s,S) = e. representations and manipulations, and we describe how the
We write s = ¢ for (s,a,t) € T, and 2%, for the reflexive resulting symbolic representation, a BDD, is minimizedhwit
transitive closure of. If R(s,s’) = A > 0 we will sometimes our novel branching bisimulation minimization algorithm.

. . A . .
depict this ass --» s’. For an equivalence relatioB on S,
we let.S/B denote the set of equivalence classesBof A. Model Generation

The left part of Fig. 2 depicts the principal translation and
analysis steps necessary to successfully perform the tieduc
The main ingredients of the problem specification are: fast,
STATEMATE model specifying thenominal behaviorof the
system; second, a numberfailuresthat are injected, leading

Definition 2 (Stochastic Branching Bisimulation)

For a given IMCZ = (S, A, T, R), an equivalence relation
B C S x S is astochastic branching bisimulatioiff for all
s1, $2,t1 € S the following holds: If(s1, 1) € B then

1) s1 = s, implies to a model encompassing also the dysfunctional behavidr; an
eithera = 7 and (52*7 t) € B, third, a specification oafety-critical statesThe rationale for
or W, ta € S:ty ——=t) Lty A(s1,t)) € BA keeping the failures separated from the model is described
(s2,t2) € B, in [4]. It can be considered as a compositional approach in an
and otherwise non-compositional formalism.
2) s1 £ implies 1) Compilation: In the first step of the compilation the

* - STATEMATE model is translated into a simple intermediate

3yt — 1) 7 VO € §/B 1 x(s1,0) = x(t), 0). language by replacing graphical items of pthe specification

Two states arestochastic branching bisimilariff they are |anguage by state variables, replacing structured datestyp

contained in some stochastic branching bisimulatian by simple ones, and discretizing continuous variables (see

] for details). The generated intermediate model reprisse

e nominal behavior, and can be viewed as an LWS=

S, A, T).

2) Failure injection: In the second step, we inject failure

behavior to our model by an instantiation of elements of a

Definition 3 failure library. The behavior associated with these elasen

For a given LTSM = (S,A,T), an equivalence relation parametrized so that, e. gtuck-at failureshave a parameter

B C S x S is abranching bisimulationiff it is a stochas- indicating the value to which a certain variable is stuckgen

tic branching bisimulation onS, A, T, (). Two states are the failure occurs. The concrete values of these parameters

branching bisimilariff they are contained in some branchingare specified during instantiation. For the purpose of the

bisimulation. considerations that follow, it is sufficient to know that the
system extended with a set of failurEs'includes” the original

This notion is a variant of branching bisimulation [3] an(i5
stochastic weak bisimulation [2]. For LTSs, the definitio
coincides with that of the original branching bisimulation
which we can hence define as follows.



system in the following sense: A labelled transition systefgorithm 1 Computation of the coarsest branching bisimu-
M' = (S, A’, T is called anF-extension ofM = (S, A,T) lation
iff A’ is the disjoint union of A and F, T/ > T, and 1 Procedure BRANCHINGBISIMULATION

VseS:VfeF:3s€S: (s f ) €T (The compilation 3 vliﬁﬁe(}’(])z;l;; Igglal pertton

gurantees that the system deviates from the nominal balravioy. Py — P

if and only if a transition inT’ \ T is taken.) According to 5: for all blocks B of P4 do
this definition, any failure can occur at any time; the ragilen 6 P — P\ {B} Usigrefp(B)
being that we may not exclude some occurrences of failurgs__returmn P

a priori.

3) Safety-critical statesAfter introducing the failure behav-
ior, we need to identify safety-critical states, i. e., staivhere

safety requirements are violated. In a nutshell, theseestateflexive transitive closure of-. Inert means that the source

are characterized by a predicate over the basic states @ndgfy target state of a transition are contained in the sanublo
variable valuations of the design. _ _ By P(s) we denote the block oP that contains the state,

4) Cone-of-influence reduction and introductionreéctions: j g P(s)={teS|3BcP:se BAte B}.

The predica_te encoding safety-critical states is first_ used |, [9], Blom and Orzan present a novel approach for the
reduce the size of the model by performing a cone-of-infleengistributed computation of branching bisimulation. Trao-
reduction (COI) with respect to these states [6]. This réduc ithm is based on analyzing thegnaturesof states w.r.t. the
is achieved by eliminating variables whose values do ngfyrent partition. The signature of a state is like a fingietpr
contribute to the reachability of the safety-critical s&tThis identifying possible actions that can be executed in thiesta
elimination reduces the number of possible variable vadnat T preserve branching bisimilarity, the unobservablecacti
and therefore also the state space of the resulting modgliaken into account by ignoring sequences of ineattions.
This COI reduction is property-specific, and as such a cofg; p — {By,...,B,_1} be a partition of the state spase

step allowing us to associate small, property-specific 1$0dee signatureig () of a states w.r.t. partition P is formally
to large designs. It is implemented symbolically. To prepayefined as

for a further reduction step on the symbolic representation

write % for a transition that isnert w.r.t. P, and% for the

we replace all nominal actions, i.e., labels notAn by the sigp(s) ={(a,B;)|3s',s" € S:s L8 ¢ e BiA
unigue T action. In this way, the concrete nominal behavior B P
is abstracted away, but its effect on the reachability oétyaf (a#7Vsd B}

critical states remains. In other words, the vulnerabditghe  then 5 refinement of a partition can be computed by grouping
nominal system with respect to failures is still present.ak® 4 set of states having the same signature:

then left with a model where only failures andtransitions

are visible.

5) BDD generation of LTSThe previous reduction steps are sigref p(B) = {{s’ € 5| sigp(s) =sigp(s')} | s € B}.
carried out on a symbolic, but non-canonical representatio

of the system model. After the reduction steps the reducéhe fixpoint algorithm of [9] is sketched in Algorithm 1. We
model is translated into a canonical model with binary valu€xtend the algorithm such that we can start with an initial
only. The result is a BLIF-MV file suitable for the VIS modelPartition provided by the BDD representation of the above-
checker [7]. The latter is used to flatten the hierarchy of tHeentioned predicate separating safety-critical and rdiva
design and to transform the net-list-like input format irsto States. Additionally, we integrate a simple, but efficieptio
relational representation of the transition relation.rgsv1S, Mmization technique, not applicable in the distributed &t

we get a symbolic BDD-representation of our LTS. Furthe®f [9], that handles not all blocks altogether but takes one
the predicate representing Safety-critica| states is @t anto block at a time. For this block the Signature refinement is
a BDD. computed and the corresponding result is updatesitu in
These two BDDs are then passed on to the symbolic branchIHQ current partition. Thiblock forwardingtechnique results in
bisimulation algorithm, which will be described in the nextmpressive speedups within our experiments due to the eetluc
section. The partiton of the state space induced by tRgmber of iterations of the fixpoint algorithm (see [10] for

predicate (into safety-critical and non-critical states)l be details).
used as a starting point for this algorithm. In the following we describe briefly how the algorithm of [9]

can be lifted to BDDs. The starting point is a BDD for

the transition relation with7 (s,a,t) = 1 iff s % t. Note
that the state space is implicitly encoded By The BDD

In this section we describe tHally symbolicimplementation relies on a vector of variablesa, andt to encode the current
of a branching bisimulation algorithm that works entirely ostate, the action, and the target state, respectively.tisddily,
BDDs. We assume that the reader is familiar with standavee have a BDDS for the signatures wittS(s, a, k) = 1 iff
BDDs and the corresponding algorithms. For a comprehensive By;) € sig(s).

treatment see [8]. To shorten writing, we first introduce sonThe novelty of our approach is a dedicated BDD-operator for
notations. For LTSM = (S, A,T") and partitionP of S we identifying states that have the same signature, thus iegabl

B. Symbolic Minimization



a full BDD-based methodology. To do so, we place the »@)‘—>Q)‘—>@ »@’\->O->‘->
variables at the beginning of the variable order of the BDDs. 7

Then, level(s;) < level(a;) andlevel(s;) < level(k;) hold
for all i,j and[. This enables us to exploit the followingrig 4. A simple phase-type distribution (lefty and the effef elapse (right).
observation. Let be the encoding of a state amdthe BDD

node that is reached when following the path from the BDD

root according ta. Then, the sub-BDD at is a representation parallel and cyclic arrangements of exponential distidng.

of the signature o§. The point is that for all states having theThis means that the tractability and possibilities of esipli
same signature as the corresponding paths lead also to thisolutions that are encountered when dealing with expoalenti
BDD-nodewv. Therefore, to get the new block that contains distributions are retained when phase-type distributiare
andall other states having the same signature,age simply substituted in their stead. Furthermore, the class of phase
have to replace the sub-BDDaby the BDD for the encoding type distributions is topologically dense [13]. In prinigp

of the new block numbet. any probability distribution on0,c0) can be approximated

Finally, after we have reached the fixpoint in Algorithm 1, warbitrarily closely by a phase-type distribution given egb
have to extract the quotient LTS from the final partition. ThiPhases, i.e., states. Efficient approximation algorithmes a
can be performed by mapping all states of a block onto oA¥ailable [14], [15], [16], [17].

guotient state. The resulting model is represented in alioéxp
form, i. e., all states are explicitly enumerated, and phsseto
the next phase of the tool chain. We refer to [10], [11] for eno
details and for experimental evaluations of this minimiat
algorithm.

We now assume that the delay of each failyrec F' in

the system model is given by a phase-type distributiti}

rdetermining the time-to-failure. This phase-type disttibn

can be obtained by approximating the known failure mode

distribution with one of the available algorithms. We imple

mented a variant thereof, based on orthogonal distanaegfitti
IV. FROM QUOTIENT LTS T0 CTMDP ANALYSIS: [18]. The implementation ensures that the initial disttibo

EXPLICIT TRANSFORMATIONS is assigned to a single state.

This section describes the timed behavior of failures modes

their approximation by phase-type distributions, and ho@) Elapse: Structurally, PH; is a continuous-time Markov

we weave them into the minimized LTS obtained from thehain (S, A, R) with a distinguished initial staté and ab-

symbolic minimization phase (cf. Section 1lI-B). We will$ir sorbing statea. Operationally, the distributionPH; can be

lay out the principal philosophy and its technical constitis, viewed as describing the time up to which the occurrence

needed to integrate failure distributions in a composilonof failure f has to be delayed, since the start of the system.

manner. Then we turn our attention to a specific fine poirthis interpretation is a special case of what is calletiree

namely that we intend to ensure that the result of our coostriconstraintin [19], where anelapseoperator is introduced.

tion is auniform IMC, and how we indeed ensure this. As ahis operator enriche®H; with “synchronization potential”

final step, we describe how we transform the uniform IMC intneeded to effectivelyeavethe Markov chain ofPH; into the

a uniform CTMDP, from which we extract the performabilitypehavior described by some LTS or IMC.

measure of interest, namely the worst-case probabilitgach

a safety-critical state within a given time bound. To provide some intuition of the semantics of this operator,

we here discuss the effect of tledbapseoperator, which we
, : ” denote byelapse(PHy, f), on PH;. Recall thatPH; is given by
A. Time cc.)nstram.ts and composmor-\ _ aMC (S, A, R) with distinguished initial statéand absorbing
As noted in Section IlI-A, each failure mode is governegtatm_ Then,elapse(PH;, f) will generate IMC(S, 4, {a R

Loyfa_lconnnuousdprobab|l!wb|d|str|but|on, ddgscnl?ngt;_ thed- i}, R), i.e., atransition labelled now connects the absorbing
o-failure, a random variable corresponding to time up Qd the initial state, see Fig. 4.

which the occurrence of the failure is to be delayed, sinc

the initialization of the system. Typical distributions this 3) Weaving the time constraintn elapse( PH;, f), between
context are Weibull, deterministic or exponential digirib any two occurrences of failurg, there must be a delay which
tions, or distributions resulting from measurements ofl reg given by PH;. To enforce this also for the LTS of our
equipment. In the current state of the implementation V‘é‘?/stem under study, we weave this IMC with the LTS, where

consider non-repairable systems only, but this restnci® \e4ying is just another word for interleaving, with proper
not a methodological one. synchronization.

1) Phase-type Approximationthe approach we follow ren-

ders the model under study into a Markov model. To achieVe this end, we use the process algebraic parallel compositi
this, we must represent the failure distributions provided operator. Intuitively, given IMC< and 7, in Z|[f]|J both
us into a Markov model. This is achieved by a nowaday®iCs have to synchronize ofy while they interleave all other
widespread approach, which is basedprase-typeapproxi- transitions. ForZ = elapse(PH;, f), this has the expected
mation. A phase-type distribution is the distribution of time effect, namely that between any twbtransitions in7, the
until absorption in a finite and absorbing Markov chain [12MC associated withPH; is weaved. The semantic rules of
The class of phase-type distributions thus consists okaillhs parallel composition of IMCs are as follows.
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Fig. 3. Explicit tool flow for failure-distribution weavingnd CTMDP analysis.

s’ ag{ar..an} v’ ag{aran} uniformity. Without going into the technical details, this
slfar-an]lv=s"l[a1.an]lv sllar..an][v=s][ar..an][v! ensured due to the following properties [21]:
- vy at{oi-an} « The parallel composition of two uniform IMCs is a
sllar...ap]lv—s"|[a1...an]|v’ uniform IMC
A _i\_) ’ .
S_TS, S « Hiding of any action in a uniform IMC preserves unifor-
sl[ar...an]lv-=+s"|[a1...an]|v sllai...an]|v-"ss|[a1...an]|v’ mlty
With this operator, and the elapse-operator, we can weave th*® The stochgstic br_anching bisimulation quotient of a uni-
failure distributions one-by-one with the original systebur- form IMC is a uniform IMC.

ing this phase the IMC is explicitly represented and grows ifus, to preserve uniformity by construction, we are lethwi
size. One way of counteracting this is to minimize according the requirement that all our input models must be uniform.
stochastic branching bisimulation. For this we use a stgtaha Since any LTS is a uniform IMC by definition, we only
branching bisimulation minimization algorithm [20], tager Nneed to ensure that the time constraints, which are used for
with the abstraction (or hiding)- operator. The semantics ofcOmposition, are uniform, too.

the abstraction operator is as follows (we give it for singié&chnically, this can be achieved as follows. 6t A, ?) be
actions only here for the sake of brevity). the CTMC of some phase-type distributidtrl; with initial

statei and absorbing statg, and lete = maxscgr(s, S). We
associated a uniform CTMC by5, A, R’), whereR/(s, s’) =

b

s azb s e —r(s,S\{s}) if s = s’ and R(s, s') otherwise. Under the
hide a in (s)=>hide a in (s') hide a in (s)—hide a in (s') usual interpretation of CTMCs, there is no difference betwe
s-=2s' the two CTMCs (since the induced generator matrices are

hide a in (s)-=+hide a in (s’) identical). For our purposes, however, we note a seemingly

minor difference, namely that in the uniform CTMC, jumps

In other words, we start from the initial explicit LTS &/so, occur on average aftdr/e time units, regardless of the state

and incrementally build an IMC where the failure distrilouts

d. which is achieved b : considered
are weaved, which IS achieved by constructing For the example from Fig. 4, the uniform variants are obtine
hide f; in (elapse(PHy,, fi)[[fi]|Sysi-1) by equipping the rightmost states each with a looping

a_n(_j minimizing the result with respect to stochasti(_: brem®h 5 nsition. Here, and in general, the result can be eas#yreal
bisimulation to formSys;. If we are dealing with: different 1 e 4 yniform IMC. All in all, the time constraints, and the

failures, then the resulting IMGys,, does not contain any jnot | TS are uniform, and thus our construction preserves
failure transitions anymore, but the failure distribusonow uniformity all along.

interleave in the correct way governing the time to reach a

safety-critical state. C. CTMDP Transformation and Analysis

The above approach alternates construction and minim'rzatiI . . : . .
. . X n Section IV-A timed behavior was incorporated in the syste
steps, and as such it deviates from the sequential proced

e . .. . . )
indicated in Fig. 3: it replaces the trajectory froguotient é'escnpnon turning the LTS into an IMC, and Section V-B

LTSandtime constraintso quotient IMCby the one depicted 1The uniform CTMC is — strictly speaking — not an absorhing,asiace

in Fig. 5. This compositional approaclis justified, because the a-state is now equipped with anloop. Still, the time to hit this state
: : - L . - is distributed ding t&H;.

stochastic branching bisimulation is compatible with the t 15 distributed according 1oty

operators we have introduced: it is a congruence for paralle

composition and hiding. Sysn

Stochastic branching bisimulation of

Sysy 1| hide frn in (9|3P59(PHf,, s fn) |[fnll Sysp_1)

Stochastic branching bisimulation of

B. Uniformity Sysp_g| hide £, 1 in (clapse(PH;  , fr 1) |[fn_1]l Svsn_|2)
So far we have ignored the wordniforn? which is attached BT :
to the IMC models appearing in Fig. 3. We recall that IMC Stochastic branching bisimulation of
7 is called uniform, iff 3¢ € Rt such thatvs € S : Syshl bh'dehf2:(e'a:’se(PHffrwh)\[f2]\3y51)
. . . Stochastic branching bisimulation of
s 7 impliesr(s,S) = e. We will later understand why e 1 (elapse(PH:., £1) ILf1]1 Sysg)

we are aiming at a uniform quotient IMC. To arrive there,
we will ensure that our entire construction process preserkig. 5. Compositional weaving of phase-type distributions



discussed how to ensure uniformity of the result. This secti of probability measures, trace distributions and schedute
describes a transformation from uniform IMCs to uniforniMCs (and CTMDPs). Then, we can show that given an
CTMDPs. We also detail how we analyze the resulting modéhput IMC 7 together with scheduleP and its associated

to distill worst-case probabilities of hitting a safetyitimal output CTMDPC with schedulerD’ correspondingto D, it
state within a given time bound. holds that the scheduler dependent probabilities of reachi
1) Transformation: The model we are dealing with is thea particular setB of states withint time units coincide. A
complete description of the system under consideratiod, aformal proof of this property is not in the scope of this paper
can hence be viewed as @dosed systemThis means that but is presented in [21]. In addition, the transformation ba

the transformation to be carried out now is no longer conshown to preserve uniformity: If IMC is uniform, then the
positional, which is justified by the fact that all necessargssociated CTMDE is as well.

composition operations have been performed in earliersste®) Timed Reachability AnalysisThe model obtained after
of the tool chain. As a consequence we will now employ aserforming the transformation described above is a uniform
urgency assumptiom e., we assume that interactive transition€ TMDP. Our aim is to calculate the worst-case probability of
take zero time (which is a non-compositional hypothesi} [2freaching any of the safety-critical states within a giveneti
Given an IMCZ = (S, A, T, R), we can partition the sétinto  bound.

three disjoint sets of states. These are the sets afifjactive For CTMCs, the corresponding question can be reduced to
states where no Markov transitions are possible, {2arkov an instance of transient analysis [23], for which efficient
states where only Markov transitions are possible, (8)rid and numerically stable iterative algorithms are known ebas
stateswhere at least one Markov and at least one interactig@ uniformization Timed reachability analysis of stochastic
transition is possible. systems with nondeterminism is not that straightforwamt. F
Recall that any CTMDP can be viewed as a special IMC iiform CTMDPs this problem was tackled in [1]. The canon-
which interactive states and Markov states occur in a Btricical approach to associate a stochastic process to a stiochas
alternating manner. Thus, in order to turn an IMCinto a system with nondeterminism uses a sufficiently generakclas
CTMDP C we have to ensure that all states are either Markey scheduler A scheduler is a function that determines how to
or interactive state, and that they alternate strictly. \Akethis proceed next for a given state For a given stats, it resolves
class of IMCstrictly alternating nondeterminism by picking a particular enabled actionoks
We now sketch a transformation which turns any IMC into go on the basis of information about the current state and the
strictly alternating one [22], while preserving the proltiaic  history of the system evolution. In full generality, schisis
behavior. The transformation involves (1) identifying Mav may decide on the basis of the entire history of the systeth, an
and interactive states, (2) breaking sequences of Marko®st may decide using randomization (i. e., probability disttions

(3) merging sequences of interactive states — where the orgger enabled actions). In a timed model, the history of the
of steps 2 and 3 can be swapped. As a result we end gistem may even be a timed one. Intuitively, the more power
in a strictly alternating IMC which directly correspondsdo (in terms of knowledge and randomness) a scheduler class
CTMDP. Sched provides, the more widely the resulting probabilities
The first step is achieved by implementing the urgency hyary when ranging over all possible schedulersSithed.
pothesis: This means that we cut off all emanating Markqsor 3 uCTMDRC with uniform rateE we aim to calculate the

transitions from hybrid states, turing them into inters&t maximal probability to reach a given set of staf@swithin ¢
states. Step (2) is straightforward: As interactive tramss are time units from a particular state in C w.r.t. all schedulers

_deemed to consume no time, an intergctive transition can bec Sched. We denote this by
inserted in-between any two consecutive Markov transition p <t

: . o - sup Prp(s,~ B)
Step (3) is more involved, it is based on the transitive alesu DESched
of the interactive transition relation. For each intenaztitates  (and must refer to [1] for a precise definition of the uCTMC
that has at least one Markov state as direct predecessot an@@ced byD and the probability measuterp). [1] studies
least one interactive state as direct successor, we deiernthe problem of approximating this probability féthed being
the Markov states which terminate all these sequences ¢ class of alintimed history-dependent schedultrat may
interactive transitions. This means that the transitivesate UserandomizationIn short, their algorithm is based on three
on the interactive transition relation is calculated in shian observations: (1) randomization does not add to the power of
that returns all of these Markov states. These states acetasethe schedulers, (2) history-dependence only adds in the for
define a strictly alternating IMC where interactive traiosis ©Of step-dependence, (3) the step-dependence is only wecisi
are labelled by words ofA\{7})" U{r} and always end in a Up to a specific deptft which can be precomputed on the
Markov state. Interactive states whose direct predecesser basis ofE, ¢ and the accuracy of the approximation.
interactive states only (except the initial state) are needo Thus, it is sufficient to consider non-randomizedruncated
from the resulting state space. step-dependent schedul®r: S x {0,...,k} — L. Unfortu-
We note that step 3 destroys the branching structure ®dtely, the number of such schedulers can be exponenttain t
the IMC, and is as such not compositional. However, weélue of k. However, the authors show that in order to derive
can show that the entire transformation does not alter ttiee maximal value oPrD(s,% B), the actions to be selected
probabilistic behavior of the output CTMDP relative to théy a (worst-case) schedulér can be computed by a greedy
input IMC. Formalizing this property requires the introtion  backward strategy. For instancBys, k) for s € S needs to



choose an action such that the probability to rea¢hstate in file-format for explicit representations of LTSs, and is the
one step is maximal. Due to space constraints we refer to fidre format of the @bpp toolkit. CADP is a construction and
for an elaborate discussion of this greedy algorithm, wiiéch verification toolkit developed by the Agv-team of Hubert
linear in k and linear in the size of.. The algorithm returns Garavel at INRIA Rhone-Alpes, and is strictly based on
for each state the worst-case probability to reach a statd?  process algebraic principles [24]. It has been extendedhto e
within time ¢. By looking up the computed value for the initialable compositional performance evaluation with IMC [25]. |
state, we finally obtain the result we are looking for. particular, it provides genuine support for parallel cosipion
Given the uniform CTMDRC = (S, L, R), a set of goal states and hiding on IMC, and it provides an efficient implementatio
B C S, and a time point, the algorithm approximates theof stochastic branching bisimulation, in the form of theltoo

vectorPrD(éi B) containing state-wise maximal probabilitiescomponent BGmIN [20].

to reach B within time ¢. Thus, assuming that the s& Therefore, the compositional construction steps illustta

of states corresponds to safety-critical states, the dhgor in Fig. 5 are performed by interaction with AGP: time-
returns for each state the worst-case probability to reag@nstraint weavingand stochastic branching minimization

a safety-criticals € B within time t. By looking up the To enable mechanized interactiona@ provides a scripting
probability for the initial state, we finally answer that gtien language, 8L, which is particularly convenient to experi-
for the system studied. ment with different strategies to alternate constructionl a

It is worth noting that this algorithm requires the CTMDP tdninimization steps. Note that due to the considerations in
be uniform. Intuitively, the reason is that in uniform CTM®P Section IV-A.3, we can perform minimization after every
with uniform rate E, jumps occur on average aftéf £ time construction or after some construction steps, which gives
units, regardless of the state considered, while in nofermi  an interesting time-space tradeoff, further discussedeo- S
CTMDPs the average time between two jumps varies frotion VI-C.

state to state, and thus the precise history of visited stafehe phase-type approximation algorithm and the elapse-
provides more information about the estimated time that haperator are implemented as stand-alone tools, which take
elapsed, than just counting the number of steps. We referth@ input failure distribution, the failure mode, and some
[1] for a non-uniform CTMDP example where this fact idurther parameters (such as the number of phases used for
exploited to construct a history-dependent scheduler hwisic approximation). They produce a uniform IMC, stored io®

— with respect to timed reachability — strictly more powérfuformat.

than any step-dependent one. The final transformation to CTMDPs in turn takes &®
file of the final uniform IMC, and generates a uCTMDP in a
V. IMPLEMENTATION format readable by the #1cc model checkér ETMmccC is a

This section explains how the tool flow (cf. Fig. 2) descrilred CSL model checker for Markov chains [26]. We adapted the
detail in the preceding two sections is put into practice by alata structures and extend it with a sparse-matrix impléaen
interoperation of different toolkits: ®TEMATE, CADP, and tion of the timed reachability algorithm. This algorithmdity
ETmccC. calculates the worst-case probability to reach the setfetysa
The aforementioned symbolic manipulations have been im¥itical states within a user-specified time bound.

plemented as a plugin for TBTEMATE. After starting the The entire tool flow is running in a prototypical form, and
tool on the model to be investigated the compilation (lllwe are currently performing numerous experiments to iéienti
A.1) is performed. Then the user is allowed to enter failurigottienecks and to improve interoperability. One of ouesat
modes (l1I-A.2) and safety-critical states (Ill-A.3) basen the experiments is reported in the next section.

given model. After having completed the problem specifarati
the process continues with the symbolic cone-of-influence
reduction andr-relabelling (llI-A.4) followed by the BDD
generation (IlI-A.5). The subsequent symbolic minimiaati This section applies our tool chain to an example taken from
described in Section 1lI-B constitutes the final step caroat the context of the upcoming European train control system
by the SIATEMATE-plugin. It generates an ML -representation standard ETCS. At the current stage, the purpose of this ex-
of the quotient LTS, which can be either in symbolic formample is to study and demonstrate the strength and limitstio
or in explicit form. The latter enumerates all states anef the tool chain rather than providing new insight into the
transitions, together with the initial state of the modeacE case which has been studied in [27], [28], [29]. Therefore, w
state in this explicit representation is decorated with g flaleviate in some aspects from the true characteristicsésai
indicating whether the state is safety-critical or not. in the standard. Experiments related to th@&MATE-plugin

The explicit part of the tool flow first transforms thisMX- were carried out on a PC with P4 2.66 GHz processor with
file into a file in the Boc-formaf. The latter is a compact 1GB RAM running Windows XP SP2. All other experiments
were run on PCs with P4 2.66 GHz processor with 2 GB RAM
running Linux 2.6.15-1-k7.

V1. CASE STUDY

2All states in the XaL-file flagged as safety-critical are in thecB-
file decorated with a self-loop labelled “unsafe”. This etiog preserves
the relevant information, and is needed because the laitenat is strictly
transition-oriented, and does not allow information to beeatly attached 3In this transformation, all self-loops labelled “unsafehish identify the
to states. We remark that this strictness is what enablesca@upositional safety-critical system states are collected in an expéatimeration of the
approach, because state identities can be considere@leritielevant, the safety-critical states, thus re-assembling the predittatee used in the final
entire information is in the transition structure. model.
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Fig. 6. Model of the Connection between the Train and the RBC. Fig. 7. Model of the Train Internals.

(MovE) to the parallel state which represents the train. If a

A. Description . o .
) ) train successfully transmits its position report to the RBG
In level 3 of the upcoming ETCS standard, high-speed traigg;i:mative signal gove TONEXT) is sent to the next train.

will be aIIowe_d to. follow each oth(_er at cIosg distances. _T?wo types of errors can disturb the communication between
assure safety in this mode of operation, the trains commatmiCi,o RBC and the train. The occurrence BSRORSTARTS

with trackside “radio block centers” (RBCs), reporting ithe j,qicates errors in the communication. The condition

positions at periodic time intervals, and receiving thehtig CONNLGSS.STARTS, on the other hand, signals a connection

to move on (so-called “movement authorities”) from them ghos At the end of error and connection lost, the conditions
similar intervals. Communication between train and RBC

) ; BRROR ENDS and CONN_LOSS_ENDS, respectively, are set.
based on GM-R, an adaptation of &v wireless protocol. e train consists of two parallel activities, which are reitet

This _commun_ication infrastructure is_error-p_rone and eulbj_in STATEMATE by anAND-node (see Fig. 7). The lower node
to failures which may cause delays in sending and receivipgnrols the movement of the train. Upon gettingcee event

of critical messages. _ from the RBC, the train is in thepvi NG state until theBRAKE
Here. we study the effects of these failures on the ProP&Sndition is set. The train then waits in thRaki NG state until
functioning and safety of the system. When constructing teney, moving authorization arrives. The upper node controls

model, one of the main concerns was scalability. The currgpt, position reports. If the lower node is in stat® NG, a new
implementation can handle arbitrary many consecutivegrai

) : osition is reported (via thecsl TI oN event). Afterwards, the
on a single track. Here we report on instances of the moéj%in has to wait in the StatREPORT SENT for a new REPORT
with up to four trains.

event, which indicates, that all necessary informatiorafoew

For our case, we assumed the RBC to operate as follows;dh ot has been collected. It then changes tcRERERT READY
receives the current position of each moving train. To attleo

_state, from which it can send a new position report (provided

a train to move on, it sends an authorization message. The ige-. it is in thevovi NG state)

is that the RBC only sends a moving authorization once it h§§ Safety requirementsWe consider all system states as
received the position from the preceding train. Since ati®i unsafe where the system occupies the naexi NG

only allowed to send its new position if it is moving, eacpnra 3) Failure mode distributionsThe failure mode distributions
can only move if the previous trains did already send a "moveiseq are taken from [29], now interpreted for multiple tsain
before. A special case has to be observed for the first rayme of the delays associated with the failure modes are

since there is no predecessor train the moving authorizatigsyibyted according to exponential distributions, ethare

for this train is always valid. _ iven by deterministic distributions. The latter are appro
Several failures have been taken into account that can teaﬁfated directly by Erlang distributions with phases [30].

faulty and unsafe behavior. For example, the communicatig, made some experiments to understand the sensitivity of

between the RBC and the trains can be lost. the numerical results and of the state space sizes on differe
values ofn.

B. Modelling The delay ofTRANS_SUCCEEDS, indicating the delay to establish

1) STATEMATE Description and Failure Modesin Fig. 6 @ GSM-R connection, is at most 5 seconds with 95% and at

and 7, some actions are prefixed withwai t and some are Most 7.5 seconds with 99.9% probability. We approximated

not. All prefixed actions denote delayed actions. They age pihis delay by our prototype tool. Fig. 8 depicts the resgltin

served during minimization and will later be associatechwitCTMC obtained. To simplify the figure, the chain is not

phase-type distributions. In the terminology of SectidntHey

serve as oufailure modes -7 TEEI T~ -

Initially, the RBC is idle (statel bLE). Upon receiving a 7 //—2,0—93:\\\
position information from the train in front, i.e., event 16.07 — 1488 8.1 6. 47
MOVE_FROMPRED, it tries to transmit a moving authorization. - 7>Q\7>G - :>gj/§>

Depending on the environmental circumstances, this either
fails or succeeds (conditioIMRANS_FAI LS Or TRANS_SUCCEEDS).
The moving authorization will be submitted as an evelfig. 8. Phase-type approximation of the delayT&ANS_SUCCEEDS.
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uniform, i.e., self-loops are omitted. VII. CONCLUSION

This paper has made the following contributions. It repibrte
C. Statistics on (1) the first implementation of a time bounded reachabilit
algorithm for CTMDPs, (2) the first — to our knowledge —
tirely BDD-based algorithm for computing branching tmisi
fation quotients, (3) a compositional method to construct
uniform CTMDPs, (4) the integration of these pieces in a
useable tool chain, and (5) the application of this tool chai

In this section, we give some statistics we obtained fro
experiments on the ETCS case study where we vary t
number of consequtive trains. The delays of evertse and
REPORT are distributed by deterministic distributi@% and 5
seconds, respectively, and they are approximated by Erlqgga nontrivial example.

dr:strlbuutc))ns. ]:rhﬁ different sglttmgs(;/ve use ﬁre deter[_hinye We are currently experimenting with the tool chain to idBnti
the number of phases (namely5 and10) in the approximat- ) enecks and to improve interoperability. We feel tha t

N9 ErIang_d|str|but|ons. i ) _ tool chain as such is long and not easy to debug. In the
1) Symbolic TransformationTable | gives an overview of ¢,yre ‘we plan to make more phases of the tool flow work
the computation t|m_e and the model sizes for the Symbol}ﬁth purely symbolic data structures. Further, we are wayki
part of our tool _chaln (Cf,' Section I”_)' as ger]erated by oy, alleviating some of the modelling restrictions, whicle ar
STATEMATE-plugin. We display the bitvector sizes foR&®S o rently dictated by the way failure modes are handled by
an(_j_ransmons of th_e generate_d LTS, W!th and without CONG5 T ATEMATE. Concretely, we are going to open the approach
of-influence reduction. The bitvector size corresponds o 8wvards repairable systems and other types of failurest@nd

potential state space of the model, where a bitvector size of;} 5,y time constraints to be attached to non-failure evants
gives a potential 02”. We also show the actual reachable statg o system.

space, and the result of symbolic branching minimizatian, @ cknowledgementsve would like to thank Michael Adelaide
well as the overall computation time (in seconds) in theetabI(OFF|S Oldenburg) and Hubert Garavel (INRIA Rhénes-
2) IMC Construction: In Table Il and 1ll, we report results ajnes) for their valuable support during the preparation of
concerning the construction and minimization usingb@ g paper.
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TABLE |
SYMBOLIC STEPS STATEMATE SAFETY ANALYSIS AND MINIMIZATION STATISTICS
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Without COI With COI Branching Bisimulation
Trains Potential Reachable Time Potential Reachable Time Min. Result Time
s bits | t bits 3 t (sec.) || s bits | t bits 3 t (sec) || s t (sec.)
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TABLE I
MONOLITHIC CONSTRUCTION FORETCSWITH 2 TRAINS
Monolithic Construction
Phases States | Transitions| G Time (sec.)|[ M Time (sec.)
1 33600 518464 12 3
5 302400 4142016 22 402
10 | 1016400| 13521376 46 5154
TABLE Il
EXPLICIT STEPS COMPOSITION AND MINIMIZATION STATISTICS
; Compositional Construction Final Quotient IMC
Trains | Phases States | Transitions| G + M Time (sec.)| States [ Transitions
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5 10000 53625 61 5875 39500
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3 1 3240 16064 58 1375 5225
5 64440 354100 813 36070 159119
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TABLE IV
ExpLICIT STEPS CTMDP TRANSFORMATION AND ANALYSIS STATISTICS
Trains | Phases Quotient IMC Uniform CTMDP Time Time for Analysis of Formula (sec.)
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