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Abstract— This paper reports on our efforts to link an indus-
trial state-of-the-art modelling tool to academic state-of-the-art
analysis algorithms. In a nutshell, we enable timed reachability
analysis of uniform continuous-time Markov decision processes,
which are generated fromSTATEMATE models. We give a detailed
explanation of several construction, transformation, reduction,
and analysis steps required to make this possible. The entire
tool flow has been implemented, and it is applied to a nontrivial
example.

I. M OTIVATION

This paper reports a success story. It is the story of how we
managed to integrate very recent advances in stochastic model
checking into a modelling environment with a stable industrial
user group. The modelling environment is STATEMATE, a
Statechart-based toolset used in several avionic and automotive
companies like AIRBUS or BMW. The model checking is
based on computing time bounded reachability probabilities,
and allows us to verify properties like:“The probability to hit a
safety-critical system configuration within a mission timeof 3
hours is at most 0.01.”The algorithmic workhorse to validate
(or refute) such properties isthe first implementation of an
algorithm [1] which computes the worst-case (or best-case)
time bounded reachability probability in auniform continuous-
time Markov decision process(uCTMDP).
This combination of Statechart-modelling and uCTMDP anal-
ysis raises theoretical and practical questions, both of which
are answered in this paper. On the theoretical side, we describe
how the STATEMATE-model can be enriched with stochastic
time aspects, and then transformed into a CTMDP which is
uniform by construction. One key feature of this approach is
that the model construction steps rely heavily on compositional
properties of the intermediate model, which is the model of
interactive Markov chains(IMCs) [2]. On the practical side,
we report how symbolic (i. e. BDD-based) representations
and compositional methods can be exploited to keep the
model sizes manageable. While the later steps in our analysis
trajectory use explicit-state representations, the earlier steps
are symbolic, and cumulate in a novel symbolic branching
bisimulation minimization algorithm.

This work is supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). Seewww.avacs.org
for more information.
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Fig. 1. Tool chain overview.

An overview of the tool chain is depicted in Fig. 1. Apart
from a STATEMATE design, a collection offailure modesand
safety requirementsconstitute the input of our symbolic trans-
formations.Failure distributions, describing the likelihood of
failure occurrences as time elapses, are another ingredient of
the problem specification, but are only considered in the later,
explicit stage of the tool chain, which finally yields the worst-
case probability to violate the safety requirements at a given
time bound.
We apply the entire tool chain to a parametric case study from
the train control domain. For this example, we manage to avoid
state spaces in the order of1023, and instead only need to
handle models of up to105 states and106 transitions.
In summary, the paper makes the following contributions. It
reports on (1) the first implementation of a time bounded
reachability algorithm for uCTMDPs, (2) the first – to our
knowledge – entirely BDD-based algorithm for computing
branching bisimulation quotients, (3) a compositional method
to construct uniform CTMDPs, (4) the integration of these
pieces in a useable tool chain, and (5) the application of this
tool chain to a nontrivial example.
Organization of the paper.The paper is organized as follows.
Section II introduces some basic definitions. Section III ex-
plains the symbolic steps of our tool chain, while Section IV
covers the subsequent explicit transformations. Section V
describes how we implemented the entire tool flow, and
Section VI demonstrates its practical feasibility for an example
from the train control domain. Finally, Section VII concludes
the paper.

II. M ODEL BASICS

This section briefly reviews the most important concepts
needed in this paper. The construction process revolves around



different flavors ofinteractive Markov chains[2], an orthogo-
nal combination of labelled transition systems and continuous-
time Markov chains. We consider a basic set of actionsA
which contains the distinguished actionτ . This action is
deemed unobservable and plays a crucial role in our approach,
since it is used for abstracting behaviors of the system, which
at certain stages are irrelevant for the transformation steps that
follow.

Definition 1 (IMC)
An interactive Markov chain(IMC) is a tuple (S, A, T, R)
whereS is a non-empty set of states,A is the above set of
actions,T ⊆ S ×A× S is a set of interactive transitions, and
R ⊆ S × R

+ × S is a set of Markov transitions.

By R(s, s′) we denote the transition rate froms to s′,
i. e., R(s, s′) = λ iff (s, λ, s′) ∈ R and 0 otherwise. A
labelled transition system (LTS) is a triple(S, A, T ) whenever
(S, A, T, ∅) is an IMC. A continuous-time Markov chain is a
triple (S, A, R) whenever(S, A, ∅, R) is an IMC.
Notation: For IMC I = (S, A, T, R), a states ∈ S is stable,
written s 66

τ
−→, if ∀s′ ∈ S (s, τ, s′) 6∈ T . Otherwises is called

instable. For stable states and C ⊆ S we definer(s, C) =
∑

s′∈C R(s, s′). For instables, r(s, C) = 0. The distinction
between stable and instable states is justified by the notionof
maximal progress, see [2] for details. IMCI is calleduniform,
iff ∃e ∈ R

+ such that∀s ∈ S : s 6
τ
−→ implies r(s, S) = e.

We write s
a
−→ t for (s, a, t) ∈ T , and

a∗

−→ for the reflexive
transitive closure of

a
−→. If R(s, s′) = λ > 0 we will sometimes

depict this ass
λ
99K s′. For an equivalence relationB on S,

we let S/B denote the set of equivalence classes ofB.

Definition 2 (Stochastic Branching Bisimulation)
For a given IMCI = (S, A, T, R), an equivalence relation
B ⊆ S × S is a stochastic branching bisimulationiff for all
s1, s2, t1 ∈ S the following holds: If(s1, t1) ∈ B then

1) s1
a
−→ s2 implies

either a = τ and (s2, t1) ∈ B,

or ∃t′1, t2 ∈ S : t1
τ∗

−→ t′1
a
−→ t2 ∧ (s1, t

′
1) ∈ B∧

(s2, t2) ∈ B,

and
2) s1 6

τ
−→ implies

∃t′1 : t1
τ∗

−→ t′1 6
τ
−→: ∀C ∈ S/B : r(s1, C) = r(t′1, C).

Two states arestochastic branching bisimilar, iff they are
contained in some stochastic branching bisimulationB.

This notion is a variant of branching bisimulation [3] and
stochastic weak bisimulation [2]. For LTSs, the definition
coincides with that of the original branching bisimulation,
which we can hence define as follows.

Definition 3
For a given LTSM = (S, A, T ), an equivalence relation
B ⊆ S × S is a branching bisimulationiff it is a stochas-
tic branching bisimulation on(S, A, T, ∅). Two states are
branching bisimilariff they are contained in some branching
bisimulation.
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Fig. 2. Symbolic tool flow for shrink-fitting STATEMATE designs.

Definition 4 (CTMDP)
A continuous-time Markov decision process(CTMDP) is a
triple (S, L,R) whereS is a non-empty set of states,L is a
set of transition labels, andR ⊆ S × L × (S −→ R

+) is the
set of transitions.

Any CTMDP can be viewed as a special IMC in which
interactive transitions and Markov transitions occur in a strictly
alternating manner. This will be used in the final step of
our construction. As in [1], a CTMDP is calleduniform iff
∃e ∈ R

+ such that∀s ∈ S and∀l ∈ L : (s, l, R) ∈ R implies
∑

s′∈S R(s′) = e.

III. F ROM STATEMATE TO QUOTIENT LTS: SYMBOLIC

TRANSFORMATIONS

In this section we describe the compilation of STATEMATE

designs together with a specification of failure occurrences
into a labelled transition system (LTS). Additionally, we
describe how this LTS is built and manipulated by symbolic
representations and manipulations, and we describe how the
resulting symbolic representation, a BDD, is minimized with
our novel branching bisimulation minimization algorithm.

A. Model Generation

The left part of Fig. 2 depicts the principal translation and
analysis steps necessary to successfully perform the reduction.
The main ingredients of the problem specification are: first,a
STATEMATE model specifying thenominal behaviorof the
system; second, a number offailures that are injected, leading
to a model encompassing also the dysfunctional behavior; and
third, a specification ofsafety-critical states. The rationale for
keeping the failures separated from the model is described
in [4]. It can be considered as a compositional approach in an
otherwise non-compositional formalism.
1) Compilation: In the first step of the compilation the
STATEMATE model is translated into a simple intermediate
language by replacing graphical items of the specification
language by state variables, replacing structured data types
by simple ones, and discretizing continuous variables (see
[5] for details). The generated intermediate model represents
the nominal behavior, and can be viewed as an LTSM =
(S, A, T ).
2) Failure injection: In the second step, we inject failure
behavior to our model by an instantiation of elements of a
failure library. The behavior associated with these elements is
parametrized so that, e. g.,stuck-at failureshave a parameter
indicating the value to which a certain variable is stuck, once
the failure occurs. The concrete values of these parameters
are specified during instantiation. For the purpose of the
considerations that follow, it is sufficient to know that the
system extended with a set of failuresF “includes” the original



system in the following sense: A labelled transition system
M ′ = (S, A′, T ′) is called anF -extension ofM = (S, A, T )
iff A′ is the disjoint union ofA and F , T ′ ⊃ T , and
∀s ∈ S : ∀f ∈ F : ∃s′ ∈ S : (s, f, s′) ∈ T ′. (The compilation
gurantees that the system deviates from the nominal behaviour
if and only if a transition inT ′ \ T is taken.) According to
this definition, any failure can occur at any time; the rationale
being that we may not exclude some occurrences of failures
a priori.
3) Safety-critical states:After introducing the failure behav-
ior, we need to identify safety-critical states, i. e., states where
safety requirements are violated. In a nutshell, these states
are characterized by a predicate over the basic states and the
variable valuations of the design.
4) Cone-of-influence reduction and introduction ofτ -actions:
The predicate encoding safety-critical states is first usedto
reduce the size of the model by performing a cone-of-influence
reduction (COI) with respect to these states [6]. This reduction
is achieved by eliminating variables whose values do not
contribute to the reachability of the safety-critical states. This
elimination reduces the number of possible variable valuations
and therefore also the state space of the resulting model.
This COI reduction is property-specific, and as such a core
step allowing us to associate small, property-specific models
to large designs. It is implemented symbolically. To prepare
for a further reduction step on the symbolic representation,
we replace all nominal actions, i. e., labels not inF , by the
uniqueτ action. In this way, the concrete nominal behavior
is abstracted away, but its effect on the reachability of safety-
critical states remains. In other words, the vulnerabilityof the
nominal system with respect to failures is still present. Weare
then left with a model where only failures andτ -transitions
are visible.
5) BDD generation of LTS:The previous reduction steps are
carried out on a symbolic, but non-canonical representation
of the system model. After the reduction steps the reduced
model is translated into a canonical model with binary values
only. The result is a BLIF-MV file suitable for the VIS model
checker [7]. The latter is used to flatten the hierarchy of the
design and to transform the net-list-like input format intoa
relational representation of the transition relation. Using VIS,
we get a symbolic BDD-representation of our LTS. Further,
the predicate representing safety-critical states is encoded into
a BDD.
These two BDDs are then passed on to the symbolic branching
bisimulation algorithm, which will be described in the next
section. The partition of the state space induced by the
predicate (into safety-critical and non-critical states)will be
used as a starting point for this algorithm.

B. Symbolic Minimization

In this section we describe thefully symbolicimplementation
of a branching bisimulation algorithm that works entirely on
BDDs. We assume that the reader is familiar with standard
BDDs and the corresponding algorithms. For a comprehensive
treatment see [8]. To shorten writing, we first introduce some
notations. For LTSM = (S, A, T ) and partitionP of S we

Algorithm 1 Computation of the coarsest branching bisimu-
lation

1: procedure BRANCHINGBISIMULATION
2: Pold ← ∅, P ← initial partition
3: while Pold 6= P do
4: Pold ← P

5: for all blocksB of Pold do
6: P ← P \ {B} ∪ sigrefP (B)
7: return P

write
a
−→
P

for a transition that isinert w.r.t. P , and
a∗

−→
P

for the

reflexive transitive closure of
a
−→
P

. Inert means that the source

and target state of a transition are contained in the same block.
By P (s) we denote the block ofP that contains the states,
i. e., P (s) = {t ∈ S | ∃B ∈ P : s ∈ B ∧ t ∈ B}.
In [9], Blom and Orzan present a novel approach for the
distributed computation of branching bisimulation. Theiralgo-
rithm is based on analyzing thesignaturesof states w.r.t. the
current partition. The signature of a state is like a fingerprint
identifying possible actions that can be executed in the state.
To preserve branching bisimilarity, the unobservable action τ
is taken into account by ignoring sequences of inertτ -actions.
Let P = {B0, . . . , Bp−1} be a partition of the state spaceS.
The signaturesigP (s) of a states w.r.t. partitionP is formally
defined as

sigP (s) ={(a, Bi) | ∃s′, s′′ ∈ S : s
τ∗

−→
P

s′
a
−→ s′′ ∈ Bi ∧

(a 6= τ ∨ s 6∈ Bi)}.

Then, a refinement of a partition can be computed by grouping
the set of states having the same signature:

sigrefP (B) =
{

{s′ ∈ S | sigP (s) = sigP (s′)}
∣

∣ s ∈ B
}

.

The fixpoint algorithm of [9] is sketched in Algorithm 1. We
extend the algorithm such that we can start with an initial
partition provided by the BDD representation of the above-
mentioned predicate separating safety-critical and non-critical
states. Additionally, we integrate a simple, but efficient opti-
mization technique, not applicable in the distributed algorithm
of [9], that handles not all blocks altogether but takes one
block at a time. For this block the signature refinement is
computed and the corresponding result is updatedin situ in
the current partition. Thisblock forwardingtechnique results in
impressive speedups within our experiments due to the reduced
number of iterations of the fixpoint algorithm (see [10] for
details).
In the following we describe briefly how the algorithm of [9]
can be lifted to BDDs. The starting point is a BDDT for
the transition relation withT (s, a, t) = 1 iff s

a
−→ t. Note

that the state space is implicitly encoded byT . The BDD
relies on a vector of variabless, a, andt to encode the current
state, the action, and the target state, respectively. Additionally,
we have a BDDS for the signatures withS(s, a, k) = 1 iff
(a, Bk) ∈ sig(s).
The novelty of our approach is a dedicated BDD-operator for
identifying states that have the same signature, thus enabling



a full BDD-based methodology. To do so, we place thesi-
variables at the beginning of the variable order of the BDDs.
Then, level(si) < level(aj) and level(si) < level(kl) hold
for all i, j and l. This enables us to exploit the following
observation. Lets be the encoding of a state andv the BDD
node that is reached when following the path from the BDD
root according tos. Then, the sub-BDD atv is a representation
of the signature ofs. The point is that for all states having the
same signature ass, the corresponding paths lead also to this
BDD-nodev. Therefore, to get the new block that containss
andall other states having the same signature ass, we simply
have to replace the sub-BDD atv by the BDD for the encoding
of the new block numberk.

Finally, after we have reached the fixpoint in Algorithm 1, we
have to extract the quotient LTS from the final partition. This
can be performed by mapping all states of a block onto one
quotient state. The resulting model is represented in an explicit
form, i. e., all states are explicitly enumerated, and passed on to
the next phase of the tool chain. We refer to [10], [11] for more
details and for experimental evaluations of this minimization
algorithm.

IV. FROM QUOTIENT LTS TO CTMDP ANALYSIS:
EXPLICIT TRANSFORMATIONS

This section describes the timed behavior of failures modes,
their approximation by phase-type distributions, and how
we weave them into the minimized LTS obtained from the
symbolic minimization phase (cf. Section III-B). We will first
lay out the principal philosophy and its technical constituents,
needed to integrate failure distributions in a compositional
manner. Then we turn our attention to a specific fine point,
namely that we intend to ensure that the result of our construc-
tion is a uniform IMC, and how we indeed ensure this. As a
final step, we describe how we transform the uniform IMC into
a uniform CTMDP, from which we extract the performability
measure of interest, namely the worst-case probability to reach
a safety-critical state within a given time bound.

A. Time constraints and composition

As noted in Section III-A, each failure mode is governed
by a continuous probability distribution, describing the time-
to-failure, a random variable corresponding to time up to
which the occurrence of the failure is to be delayed, since
the initialization of the system. Typical distributions inthis
context are Weibull, deterministic or exponential distribu-
tions, or distributions resulting from measurements of real
equipment. In the current state of the implementation we
consider non-repairable systems only, but this restriction is
not a methodological one.
1) Phase-type Approximation:The approach we follow ren-
ders the model under study into a Markov model. To achieve
this, we must represent the failure distributions providedto
us into a Markov model. This is achieved by a nowadays
widespread approach, which is based onphase-typeapproxi-
mation. A phase-type distribution is the distribution of the time
until absorption in a finite and absorbing Markov chain [12].
The class of phase-type distributions thus consists of all serial,

λ λ

f

λ λ
i a i

Fig. 4. A simple phase-type distribution (left) and the effect of elapse (right).

parallel and cyclic arrangements of exponential distributions.
This means that the tractability and possibilities of explicit
solutions that are encountered when dealing with exponential
distributions are retained when phase-type distributionsare
substituted in their stead. Furthermore, the class of phase-
type distributions is topologically dense [13]. In principle,
any probability distribution on[0,∞) can be approximated
arbitrarily closely by a phase-type distribution given enough
phases, i. e., states. Efficient approximation algorithms are
available [14], [15], [16], [17].

We now assume that the delay of each failuref ∈ F in
the system model is given by a phase-type distributionPHf

determining the time-to-failure. This phase-type distribution
can be obtained by approximating the known failure mode
distribution with one of the available algorithms. We imple-
mented a variant thereof, based on orthogonal distance fitting
[18]. The implementation ensures that the initial distribution
is assigned to a single state.

2) Elapse: Structurally, PHf is a continuous-time Markov
chain (S, A, R) with a distinguished initial statei and ab-
sorbing statea. Operationally, the distributionPHf can be
viewed as describing the time up to which the occurrence
of failure f has to be delayed, since the start of the system.
This interpretation is a special case of what is called atime
constraint in [19], where anelapseoperator is introduced.
This operator enrichesPHf with “synchronization potential”
needed to effectivelyweavethe Markov chain ofPHf into the
behavior described by some LTS or IMC.

To provide some intuition of the semantics of this operator,
we here discuss the effect of theelapseoperator, which we
denote byelapse(PHf , f), onPHf . Recall thatPHf is given by
a MC (S, A, R) with distinguished initial statei and absorbing

statea. Then,elapse(PHf , f) will generate IMC(S, A, {a
f
−→

i}, R), i. e., a transition labelledf now connects the absorbing
and the initial state, see Fig. 4.

3) Weaving the time constraint:In elapse(PHf , f), between
any two occurrences of failuref , there must be a delay which
is given by PHf . To enforce this also for the LTS of our
system under study, we weave this IMC with the LTS, where
weaving is just another word for interleaving, with proper
synchronization.

To this end, we use the process algebraic parallel composition
operator. Intuitively, given IMCsI and J , in I|[f ]|J both
IMCs have to synchronize onf , while they interleave all other
transitions. ForI = elapse(PHf , f), this has the expected
effect, namely that between any twof -transitions inJ , the
MC associated withPHf is weaved. The semantic rules of
parallel composition of IMCs are as follows.
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Fig. 3. Explicit tool flow for failure-distribution weavingand CTMDP analysis.

s
a−→s′ a/∈{a1...an}

s|[a1...an]|v
a
−→s′|[a1...an]|v

v
a−→v′ a/∈{a1...an}

s|[a1...an]|v
a
−→s|[a1...an]|v′

s
a−→s′ v

a−→v′ a∈{a1...an}

s|[a1...an]|v
a−→s′|[a1...an]|v′

s
λ
99Ks′

s|[a1...an]|v
λ
99Ks′|[a1...an]|v

v
λ
99Kv′

s|[a1...an]|v
λ
99Ks|[a1...an]|v′

With this operator, and the elapse-operator, we can weave the
failure distributions one-by-one with the original system. Dur-
ing this phase the IMC is explicitly represented and grows in
size. One way of counteracting this is to minimize accordingto
stochastic branching bisimulation. For this we use a stochastic
branching bisimulation minimization algorithm [20], together
with the abstraction- (or hiding)- operator. The semantics of
the abstraction operator is as follows (we give it for single
actions only here for the sake of brevity).

s
b−→s′ a6=b

hide a in (s)
b−→hide a in (s′)

s
a−→s′

hide a in (s)
τ−→hide a in (s′)

s
λ
99Ks′

hide a in (s)
λ
99Khide a in (s′)

In other words, we start from the initial explicit LTS asSys0,
and incrementally build an IMC where the failure distributions
are weaved, which is achieved by constructing

hide fi in (elapse(PHfi
, fi)|[fi]|Sysi−1)

and minimizing the result with respect to stochastic branching
bisimulation to formSysi. If we are dealing withn different
failures, then the resulting IMCSysn does not contain any
failure transitions anymore, but the failure distributions now
interleave in the correct way governing the time to reach a
safety-critical state.
The above approach alternates construction and minimization
steps, and as such it deviates from the sequential procedure
indicated in Fig. 3: it replaces the trajectory fromquotient
LTSandtime constraintsto quotient IMCby the one depicted
in Fig. 5. This compositional approachis justified, because
stochastic branching bisimulation is compatible with the two
operators we have introduced: it is a congruence for parallel
composition and hiding.

B. Uniformity

So far we have ignored the word ‘uniform’ which is attached
to the IMC models appearing in Fig. 3. We recall that IMC
I is called uniform, iff ∃e ∈ R

+ such that∀s ∈ S :
s 6

τ
−→ implies r(s, S) = e. We will later understand why

we are aiming at a uniform quotient IMC. To arrive there,
we will ensure that our entire construction process preserves

uniformity. Without going into the technical details, thisis
ensured due to the following properties [21]:

• The parallel composition of two uniform IMCs is a
uniform IMC.

• Hiding of any action in a uniform IMC preserves unifor-
mity.

• The stochastic branching bisimulation quotient of a uni-
form IMC is a uniform IMC.

Thus, to preserve uniformity by construction, we are left with
the requirement that all our input models must be uniform.
Since any LTS is a uniform IMC by definition, we only
need to ensure that the time constraints, which are used for
composition, are uniform, too.
Technically, this can be achieved as follows. Let(S, A, R) be
the CTMC of some phase-type distributionPHf with initial
statei and absorbing statea, and lete = maxs∈S r(s, S). We
associated a uniform CTMC by(S, A, R′), whereR′(s, s′) =
e − r(s, S\{s}) if s = s′ and R(s, s′) otherwise. Under the
usual interpretation of CTMCs, there is no difference between
the two CTMCs (since the induced generator matrices are
identical). For our purposes, however, we note a seemingly
minor difference, namely that in the uniform CTMC, jumps
occur on average after1/e time units, regardless of the state
considered1.
For the example from Fig. 4, the uniform variants are obtained
by equipping the rightmost states each with a loopingλ-
transition. Here, and in general, the result can be easily ensured
to be a uniform IMC. All in all, the time constraints, and the
input LTS are uniform, and thus our construction preserves
uniformity all along.

C. CTMDP Transformation and Analysis

In Section IV-A timed behavior was incorporated in the system
description turning the LTS into an IMC, and Section IV-B

1The uniform CTMC is – strictly speaking – not an absorbing one, since
the a-state is now equipped with ane-loop. Still, the time to hit this statea
is distributed according toPHf .

Sys2

Stochastic branching bisimulation of

Sys1

Stochastic branching bisimulation of

Sysn

Stochastic branching bisimulation of

Sysn−1

Stochastic branching bisimulation of

hide f2 in (elapse(PHf2
, f2) |[f2]| Sys1)

hide fn in (elapse(PHfn
, fn) |[fn]| Sysn−1)

hide fn−1 in (elapse(PHfn−1
, fn−1) |[fn−1]| Sysn−2)

hide f1 in (elapse(PHf1
, f1) |[f1]| Sys0)

.
.
.

Sysn−2

Fig. 5. Compositional weaving of phase-type distributions.



discussed how to ensure uniformity of the result. This section
describes a transformation from uniform IMCs to uniform
CTMDPs. We also detail how we analyze the resulting model,
to distill worst-case probabilities of hitting a safety-critical
state within a given time bound.
1) Transformation: The model we are dealing with is the
complete description of the system under consideration, and
can hence be viewed as aclosed system. This means that
the transformation to be carried out now is no longer com-
positional, which is justified by the fact that all necessary
composition operations have been performed in earlier steps
of the tool chain. As a consequence we will now employ an
urgency assumption, i. e., we assume that interactive transitions
take zero time (which is a non-compositional hypothesis [2]).
Given an IMCI = (S, A, T, R), we can partition the setS into
three disjoint sets of states. These are the sets of (1)interactive
states, where no Markov transitions are possible, (2)Markov
states, where only Markov transitions are possible, (3)hybrid
stateswhere at least one Markov and at least one interactive
transition is possible.
Recall that any CTMDP can be viewed as a special IMC in
which interactive states and Markov states occur in a strictly
alternating manner. Thus, in order to turn an IMCI into a
CTMDP C we have to ensure that all states are either Markov
or interactive state, and that they alternate strictly. We call this
class of IMCstrictly alternating.
We now sketch a transformation which turns any IMC into a
strictly alternating one [22], while preserving the probabilistic
behavior. The transformation involves (1) identifying Markov
and interactive states, (2) breaking sequences of Markov states,
(3) merging sequences of interactive states – where the order
of steps 2 and 3 can be swapped. As a result we end up
in a strictly alternating IMC which directly corresponds toa
CTMDP.
The first step is achieved by implementing the urgency hy-
pothesis: This means that we cut off all emanating Markov
transitions from hybrid states, turning them into interactive
states. Step (2) is straightforward: As interactive transitions are
deemed to consume no time, an interactive transition can be
inserted in-between any two consecutive Markov transitions.
Step (3) is more involved, it is based on the transitive closure
of the interactive transition relation. For each interactive states
that has at least one Markov state as direct predecessor and at
least one interactive state as direct successor, we determine
the Markov states which terminate all these sequences of
interactive transitions. This means that the transitive closure
on the interactive transition relation is calculated in a fashion
that returns all of these Markov states. These states are used to
define a strictly alternating IMC where interactive transitions
are labelled by words of(A\{τ})+ ∪̇{τ} and always end in a
Markov state. Interactive states whose direct predecessors are
interactive states only (except the initial state) are removed
from the resulting state space.
We note that step 3 destroys the branching structure of
the IMC, and is as such not compositional. However, we
can show that the entire transformation does not alter the
probabilistic behavior of the output CTMDP relative to the
input IMC. Formalizing this property requires the introduction

of probability measures, trace distributions and schedulers for
IMCs (and CTMDPs). Then, we can show that given an
input IMC I together with schedulerD and its associated
output CTMDPC with schedulerD′ correspondingto D, it
holds that the scheduler dependent probabilities of reaching
a particular setB of states withint time units coincide. A
formal proof of this property is not in the scope of this paper,
but is presented in [21]. In addition, the transformation can be
shown to preserve uniformity: If IMCI is uniform, then the
associated CTMDPC is as well.
2) Timed Reachability Analysis:The model obtained after
performing the transformation described above is a uniform
CTMDP. Our aim is to calculate the worst-case probability of
reaching any of the safety-critical states within a given time
bound.
For CTMCs, the corresponding question can be reduced to
an instance of transient analysis [23], for which efficient
and numerically stable iterative algorithms are known, based
on uniformization. Timed reachability analysis of stochastic
systems with nondeterminism is not that straightforward. For
uniform CTMDPs this problem was tackled in [1]. The canon-
ical approach to associate a stochastic process to a stochastic
system with nondeterminism uses a sufficiently general class
of scheduler. A scheduler is a function that determines how to
proceed next for a given states. For a given states, it resolves
nondeterminism by picking a particular enabled action. It does
so on the basis of information about the current state and the
history of the system evolution. In full generality, schedulers
may decide on the basis of the entire history of the system, and
may decide using randomization (i. e., probability distributions
over enabled actions). In a timed model, the history of the
system may even be a timed one. Intuitively, the more power
(in terms of knowledge and randomness) a scheduler class
Sched provides, the more widely the resulting probabilities
vary when ranging over all possible schedulers inSched .
For a uCTMDPC with uniform rateE we aim to calculate the
maximal probability to reach a given set of statesB within t
time units from a particular states in C w.r.t. all schedulers
D ∈ Sched . We denote this by

sup
D∈Sched

PrD(s,
≤t
 B)

(and must refer to [1] for a precise definition of the uCTMC
induced byD and the probability measurePrD). [1] studies
the problem of approximating this probability forSched being
the class of alluntimed history-dependent schedulersthat may
userandomization. In short, their algorithm is based on three
observations: (1) randomization does not add to the power of
the schedulers, (2) history-dependence only adds in the form
of step-dependence, (3) the step-dependence is only decisive
up to a specific depthk which can be precomputed on the
basis ofE, t and the accuracyε of the approximation.
Thus, it is sufficient to consider non-randomizedk-truncated
step-dependent schedulerD : S × {0, . . . , k} 7→ L. Unfortu-
nately, the number of such schedulers can be exponential in the
value ofk. However, the authors show that in order to derive
the maximal value ofPrD(s,

≤t
 B), the actions to be selected

by a (worst-case) schedulerD can be computed by a greedy
backward strategy. For instance,D(s, k) for s ∈ S needs to



choose an action such that the probability to reach aB-state in
one step is maximal. Due to space constraints we refer to [1]
for an elaborate discussion of this greedy algorithm, whichis
linear in k and linear in the size ofL. The algorithm returns
for each state the worst-case probability to reach a states ∈ B
within time t. By looking up the computed value for the initial
state, we finally obtain the result we are looking for.
Given the uniform CTMDPC = (S, L,R), a set of goal states
B ⊆ S, and a time pointt, the algorithm approximates the

vectorPrD(
≤t
 B) containing state-wise maximal probabilities

to reachB within time t. Thus, assuming that the setB
of states corresponds to safety-critical states, the algorithm
returns for each state the worst-case probability to reach
a safety-criticals ∈ B within time t. By looking up the
probability for the initial state, we finally answer that question
for the system studied.
It is worth noting that this algorithm requires the CTMDP to
be uniform. Intuitively, the reason is that in uniform CTMDPs
with uniform rateE, jumps occur on average after1/E time
units, regardless of the state considered, while in non-uniform
CTMDPs the average time between two jumps varies from
state to state, and thus the precise history of visited states
provides more information about the estimated time that has
elapsed, than just counting the number of steps. We refer to
[1] for a non-uniform CTMDP example where this fact is
exploited to construct a history-dependent scheduler which is
– with respect to timed reachability – strictly more powerful
than any step-dependent one.

V. I MPLEMENTATION

This section explains how the tool flow (cf. Fig. 2) describedin
detail in the preceding two sections is put into practice by an
interoperation of different toolkits: STATEMATE, CADP, and
ETMCC.
The aforementioned symbolic manipulations have been im-
plemented as a plugin for STATEMATE. After starting the
tool on the model to be investigated the compilation (III-
A.1) is performed. Then the user is allowed to enter failure
modes (III-A.2) and safety-critical states (III-A.3) based on the
given model. After having completed the problem specification
the process continues with the symbolic cone-of-influence
reduction andτ -relabelling (III-A.4) followed by the BDD
generation (III-A.5). The subsequent symbolic minimization
described in Section III-B constitutes the final step carried out
by the STATEMATE-plugin. It generates an XML -representation
of the quotient LTS, which can be either in symbolic form,
or in explicit form. The latter enumerates all states and
transitions, together with the initial state of the model. Each
state in this explicit representation is decorated with a flag
indicating whether the state is safety-critical or not.
The explicit part of the tool flow first transforms this XML -
file into a file in the BCG-format2. The latter is a compact

2All states in the XML -file flagged as safety-critical are in the BCG-
file decorated with a self-loop labelled “unsafe”. This encoding preserves
the relevant information, and is needed because the latter format is strictly
transition-oriented, and does not allow information to be directly attached
to states. We remark that this strictness is what enables ourcompositional
approach, because state identities can be considered entirely irrelevant, the
entire information is in the transition structure.

file-format for explicit representations of LTSs, and is the
core format of the CADP toolkit. CADP is a construction and
verification toolkit developed by the VASY-team of Hubert
Garavel at INRIA Rhône-Alpes, and is strictly based on
process algebraic principles [24]. It has been extended to en-
able compositional performance evaluation with IMC [25]. In
particular, it provides genuine support for parallel composition
and hiding on IMC, and it provides an efficient implementation
of stochastic branching bisimulation, in the form of the tool-
component BCGMIN [20].
Therefore, the compositional construction steps illustrated
in Fig. 5 are performed by interaction with CADP: time-
constraint weavingand stochastic branching minimization.
To enable mechanized interaction, CADP provides a scripting
language, SVL , which is particularly convenient to experi-
ment with different strategies to alternate construction and
minimization steps. Note that due to the considerations in
Section IV-A.3, we can perform minimization after every
construction or after some construction steps, which gives
an interesting time-space tradeoff, further discussed in Sec-
tion VI-C.
The phase-type approximation algorithm and the elapse-
operator are implemented as stand-alone tools, which take
the input failure distribution, the failure mode, and some
further parameters (such as the number of phases used for
approximation). They produce a uniform IMC, stored in BCG-
format.
The final transformation to CTMDPs in turn takes a BCG-
file of the final uniform IMC, and generates a uCTMDP in a
format readable by the ETMCC model checker3. ETMCC is a
CSL model checker for Markov chains [26]. We adapted the
data structures and extend it with a sparse-matrix implementa-
tion of the timed reachability algorithm. This algorithm finally
calculates the worst-case probability to reach the set of safety
critical states within a user-specified time bound.
The entire tool flow is running in a prototypical form, and
we are currently performing numerous experiments to identify
bottlenecks and to improve interoperability. One of our latest
experiments is reported in the next section.

VI. CASE STUDY

This section applies our tool chain to an example taken from
the context of the upcoming European train control system
standard ETCS. At the current stage, the purpose of this ex-
ample is to study and demonstrate the strength and limitations
of the tool chain rather than providing new insight into the
case which has been studied in [27], [28], [29]. Therefore, we
deviate in some aspects from the true characteristics as laid out
in the standard. Experiments related to the STATEMATE-plugin
were carried out on a PC with P4 2.66 GHz processor with
1GB RAM running Windows XP SP2. All other experiments
were run on PCs with P4 2.66 GHz processor with 2 GB RAM
running Linux 2.6.15-1-k7.

3In this transformation, all self-loops labelled “unsafe” which identify the
safety-critical system states are collected in an explicitenumeration of the
safety-critical states, thus re-assembling the predicateto be used in the final
model.
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Fig. 6. Model of the Connection between the Train and the RBC.

A. Description

In level 3 of the upcoming ETCS standard, high-speed trains
will be allowed to follow each other at close distances. To
assure safety in this mode of operation, the trains communicate
with trackside “radio block centers” (RBCs), reporting their
positions at periodic time intervals, and receiving the right
to move on (so-called “movement authorities”) from them at
similar intervals. Communication between train and RBC is
based on GSM-R, an adaptation of GSM wireless protocol.
This communication infrastructure is error-prone and subject
to failures which may cause delays in sending and receiving
of critical messages.
Here we study the effects of these failures on the proper
functioning and safety of the system. When constructing the
model, one of the main concerns was scalability. The current
implementation can handle arbitrary many consecutive trains
on a single track. Here we report on instances of the model
with up to four trains.
For our case, we assumed the RBC to operate as follows: It
receives the current position of each moving train. To authorize
a train to move on, it sends an authorization message. The idea
is that the RBC only sends a moving authorization once it has
received the position from the preceding train. Since a train is
only allowed to send its new position if it is moving, each train
can only move if the previous trains did already send a “move”
before. A special case has to be observed for the first train,
since there is no predecessor train the moving authorization
for this train is always valid.
Several failures have been taken into account that can lead to
faulty and unsafe behavior. For example, the communication
between the RBC and the trains can be lost.

B. Modelling

1) STATEMATE Description and Failure Modes:In Fig. 6
and 7, some actions are prefixed withE.wait and some are
not. All prefixed actions denote delayed actions. They are pre-
served during minimization and will later be associated with
phase-type distributions. In the terminology of Section III, they
serve as ourfailure modes.
Initially, the RBC is idle (stateIDLE). Upon receiving a
position information from the train in front, i.e., event
MOVE FROM PRED, it tries to transmit a moving authorization.
Depending on the environmental circumstances, this either
fails or succeeds (conditionsTRANS FAILS or TRANS SUCCEEDS).
The moving authorization will be submitted as an event

Train_N

report ready report sent

moving braking

E.wait_report

move

[in(moving)]/position

E.wait_brake

Fig. 7. Model of the Train Internals.

(MOVE) to the parallel state which represents the train. If a
train successfully transmits its position report to the RBC, an
affirmative signal (MOVE TO NEXT) is sent to the next train.
Two types of errors can disturb the communication between
the RBC and the train. The occurrence ofERROR STARTS

indicates errors in the communication. The condition
CONN LOSS STARTS, on the other hand, signals a connection
loss. At the end of error and connection lost, the conditions
ERROR ENDS andCONN LOSS ENDS, respectively, are set.
The train consists of two parallel activities, which are modelled
in STATEMATE by anAND-node (see Fig. 7). The lower node
controls the movement of the train. Upon getting aMOVE event
from the RBC, the train is in theMOVING state until theBRAKE
condition is set. The train then waits in theBRAKING state until
a new moving authorization arrives. The upper node controls
the position reports. If the lower node is in stateMOVING, a new
position is reported (via thePOSITION event). Afterwards, the
train has to wait in the stateREPORT SENT for a newREPORT

event, which indicates, that all necessary information fora new
report has been collected. It then changes to theREPORT READY

state, from which it can send a new position report (provided
that it is in theMOVING state).
2) Safety requirements:We consider all system states as
unsafe, where the system occupies the nodeBRAKING.
3) Failure mode distributions:The failure mode distributions
used are taken from [29], now interpreted for multiple trains.
Some of the delays associated with the failure modes are
distributed according to exponential distributions, others are
given by deterministic distributions. The latter are approxi-
mated directly by Erlang distributions withn phases [30].
We made some experiments to understand the sensitivity of
the numerical results and of the state space sizes on different
values ofn.
The delay ofTRANS SUCCEEDS, indicating the delay to establish
a GSM-R connection, is at most 5 seconds with 95 % and at
most 7.5 seconds with 99.9 % probability. We approximated
this delay by our prototype tool. Fig. 8 depicts the resulting
CTMC obtained. To simplify the figure, the chain is not
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2.09

10.15
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Fig. 8. Phase-type approximation of the delay ofTRANS SUCCEEDS.



uniform, i.e., self-loops are omitted.

C. Statistics

In this section, we give some statistics we obtained from
experiments on the ETCS case study where we vary the
number of consequtive trains. The delays of eventsBRAKE and
REPORT are distributed by deterministic distribution25 and 5
seconds, respectively, and they are approximated by Erlang
distributions. The different settings we use are determined by
the number of phases (namely1, 5 and10) in the approximat-
ing Erlang distributions.
1) Symbolic Transformation:Table I gives an overview of
the computation time and the model sizes for the symbolic
part of our tool chain (cf. Section III), as generated by our
STATEMATE-plugin. We display the bitvector sizes for states
and transitions of the generated LTS, with and without cone-
of-influence reduction. The bitvector size corresponds to a
potential state space of the model, where a bitvector size ofx
gives a potential of2x. We also show the actual reachable state
space, and the result of symbolic branching minimization, as
well as the overall computation time (in seconds) in the table.
2) IMC Construction: In Table II and III, we report results
concerning the construction and minimization using CADP

(Section IV-A). Experimental results are displayed for mono-
lithic (Table II) and compositional (Table III) construction
(cf. Fig. 5). For each type of construction, we report the size of
the largest intermediate state spacewe needed to handle, the
construction time (Generation) and the Minimization time in
seconds. The state spaces of the final results are also provided.
For the compositional approach, we report the accumulated
time (G+M) over all steps.
The advantage of using compositional construction in termsof
space and time is apparent. Stepwise minimization keeps the
size of state spaces low. This, in turns, reduces the duration of
the minimization time in the next step, and so on, thus saving
significant amount of time.
3) CTMDP Transformation:Statistical results for the trans-
formation from IMC to CTMDP (Section IV-C) are displayed
in Table IV. We give the number of states and transitions
for the quotient IMC and the resulting CTMDP, together with
the computation time required for this transformation. The
column depicting the number of CTMDP transitions deserves
a special comment. Since transitions in CTMDPs are triples
(s, l, R) with a functionR assigning rates to successor states,
representing one transition may in the worst case already
require space in the order of the number of states. Of course,
this is not the case, the functions are very sparse. The numbers
denoted in brackets are the average number of nonzero entries
per transition.
4) CTMDP Analysis:The runtime of the extended ETMCC

model checker is shown in the last two columns of Table IV.
The computation time needed to compute the worst case
probability to reach the set of safety critical states has been
computed for time bounds of 10 and 180 seconds, respec-
tively. Since the timed reachability algorithm is implemented
prototypically so far, we are actually quite satisfied with its
performance.

VII. C ONCLUSION

This paper has made the following contributions. It reported
on (1) the first implementation of a time bounded reachability
algorithm for CTMDPs, (2) the first – to our knowledge –
entirely BDD-based algorithm for computing branching bisim-
ulation quotients, (3) a compositional method to construct
uniform CTMDPs, (4) the integration of these pieces in a
useable tool chain, and (5) the application of this tool chain
to a nontrivial example.
We are currently experimenting with the tool chain to identify
bottlenecks and to improve interoperability. We feel that the
tool chain as such is long and not easy to debug. In the
future, we plan to make more phases of the tool flow work
with purely symbolic data structures. Further, we are working
on alleviating some of the modelling restrictions, which are
currently dictated by the way failure modes are handled by
STATEMATE. Concretely, we are going to open the approach
towards repairable systems and other types of failures, andto
allow time constraints to be attached to non-failure eventsin
the system.
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