
Modeling Unknown Values
in Test and Verification

Bernd Becker, Matthias Sauer, Christoph Scholl, and Ralf Wimmer

Albert-Ludwigs-Universität Freiburg, Germany
{becker | sauerm | scholl | wimmer}@informatik.uni-freiburg.de

Abstract. With increasing complexities and a component-based design
style the handling of unknown values (e. g., at the interface of components)
becomes more and more important in electronic design automation (EDA)
and production processes. Tools are required that allow an accurate
modeling of unknowns in combination with algorithms balancing exactness
of representation and efficiency of calculation. In the following, state-of-
the-art approaches are described that enable an efficient and successful
handling of unknown values using formal techniques in the areas of Test
and Verification.

1 Introduction

Unknown (X) values increasingly emerge in different phases of the design and
production process, and have to be handled by corresponding electronic design
automation (EDA) tools. Examples include unspecified inputs or black boxes
in the design, uncontrolled sequential elements, clock domain crossings or A/D
boundaries. In all of these cases, the logic value of a signal is not defined and
hence, only partial information on the circuit is available.

In the following, we describe current state-of-the-art approaches that enable
(in principle) an exact handling of such unknown values using formal techniques
in two fundamental areas of the design process, i. e., Test and Verification. In
addition, efficient methods to trade off quality and computation times of the
analysis are reported.

1.1 Unknown Values in Circuit Test

Logic simulation, fault simulation and test pattern generation are fundamental
techniques in electronic design automation with applications, e. g., in validation,
test and also product quality estimation.

Automatic test pattern generation (ATPG) algorithms for stuck-at faults
either compute a pattern that detects a given fault or prove its untestability. They
are typically based on structural methods such as the D-algorithm [1], PODEM
[2] or FAN algorithm [3], or on Boolean satisfiability (SAT) reasoning [4–7].

However, depending on the circuit and test method, a very high fraction of
signals may have X-values (see e. g., [8], [9]) that have to be taken into account



during the test pattern generation process. Such X-sources include non-finalized
parts in early design steps. But also during operation and test application, X-
values may be caused by uncontrolled sequential elements, at clock domain
crossings, or A/D boundaries. Additional X-sources are introduced by specific
test methods such as faster-than-at-speed testing [10] or the consideration of
complex fault models (e. g., open fault models [11]).

Different extensions of the basic two-valued Boolean circuit logics have been
proposed to model signal states in the circuit in presence of X-values (e. g.,
[12–14]). However, all of them lead to pessimism of forward implication in test
generation as reconverging X-values that depend on each other cannot be modeled
accurately (cf. Section 3.1). To improve accuracy, restricted symbolic simulation
[15] extends the number of symbols to distinguish different X-states and their
inversion. This allows to reduce the pessimism [16], unless multiple X-states from
different X-sources converge at a gate.

In general, the limited number of symbols does not allow to reflect all correla-
tions between X-valued signals and at reconvergencies, where X-canceling may
occur, the accurate output value cannot be computed any more. Test generation
algorithms based on n-valued logic cannot prove the untestability of faults in the
support of X-valued signals and may not be able to find a detecting pattern for
all testable faults.

Therefore, design techniques that remove the impact of X-values on the circuit
have been proposed and are specifically employed in the context of so-called build-
in-self-test (BIST) schemes. X-canceling [17] or X-masking [18] allows to increase
the number of detected faults at the cost of additional hardware structures. The
overestimation of X-values in classical algorithms leads to unnecessary effort
invested in such X-avoidance techniques.

The accurate computation of signal states in a circuit in presence of X-values
can be achieved by formal reasoning for register-transfer and gate level simulation
[19–21]. The methods used rely on symbolic computation by Boolean satisfiability
(SAT), quantified Boolean formula (QBF) reasoning, or binary decision diagrams
(BDDs).

More accurate or even fully accurate fault simulation can be performed
even for large circuits by a combination of heuristics and SAT reasoning and
allows a significant increase of fault coverage [22–24]. In principle, both logic and
fault simulation in presence of X-values are NP-complete problems. And also
deterministic test pattern generation for stuck-at faults in presence of X-values
is at least an NP-hard problem [24].

In contrast to propositional formulae used for SAT, quantified Boolean formu-
lae [25], where variables are existentially or universally quantified, allow a succinct
representation for all possible X-values. The recent advances in the performance
of QBF solvers, for example conflict driven learning [26], resolution and expansion
based algorithms [27], or preprocessing [28] enable exact reasoning about fault
testability in presence of Xs even for larger circuits. Doing this, an efficient
stuck-at fault test generation algorithm able to prove testability or untestability



of faults in presence of X-values can be realized as outlined in greater detail in
Section 3.

1.2 Unknown Values in Verification

Unknown values in circuit verification can occur, for instance, when a circuit is
only partially available. Partially available means that for some of the circuit’s
components only their interface is known, i. e., the signals entering and leaving
the components, but neither their internal structure nor the computed function.
These missing parts are called black boxes. The actual values at their outputs are
unknown. Verification has to take this into account.

There are different reasons for considering such partial (or incomplete) circuits:
Errors in a circuit design should be detected as early as possible; the later errors
are corrected the higher are the incurred costs. Therefore it is desirable to apply
verification techniques already in an early stage of the design process when not
all parts of a circuit have been implemented yet.

A further reason for considering incomplete circuits is that some modules like
multipliers are notoriously hard to verify: If the property to be checked is expected
to be independent of such a module, the module can be removed from the circuit,
and instead it is checked whether the property under consideration holds for all
possible replacements of the missing part. If this is the case, then the property
also holds for the complete circuit. Otherwise either the remaining circuit is
faulty or the removed module and the property interact in some unexpected way.

Considering incomplete circuits can also be beneficial for error diagnosis during
debugging. Assume that an error is contained in one of the circuit’s modules, but
it is not known in which one. If, after removing one module, verification yields
that there is an implementation of the removed part such that the considered
property holds, then it is likely that the error is contained in the removed module.

If error diagnosis and error rectification are performed late in the design
cycle when already a lot of efforts have been made to perform logic synthesis
or even place & route steps for the complete design, then the question will be
whether the design can be rectified by changing locally confined black boxes only,
without introducing new connections to global signals leading to enormous costs
for re-synthesis. A similar situation occurs in case of Engineering Change Order
(ECO, small changes of specification late in the design cycle) where only locally
confined parts (black boxes) should be replaced in order to satisfy the changed
specification without sacrificing too much of the design efforts. In this case it is
particularly important to preserve the interface of the black boxes.

The synthesis of digital controllers [29, 30] that ensure certain properties of
the system at hand can also be considered as a black-box verification problem:
The controller to be synthesized is the black box, and one asks whether there is
an implementation such that the given property holds.

Depending on the application there are two different problem classes that are of
interest: On the one hand, realizability asks whether there is an implementation
of the black boxes such that the given property holds. On the other hand,



validity asks whether the property holds for all possible implementations. Since
validity and realizability are dual properties—a property ϕ is valid iff ¬ϕ is not
realizable—we concentrate in the following on realizability problems.

The problem whether an incomplete combinational circuit can be completed
such that it becomes equivalent to a given specification (partial equivalence
checking, PEC) was first considered in [31] where several approximate and exact
methods to solve the PEC problem have been presented. If an approximate
algorithm reports that there is no implementation for the black boxes such
that the specification holds, the desired specification is indeed not realizable.
However, if such an algorithm is not able to prove non-realizability, this can be
due to the approximate nature of the method, and the desired functionality may
nevertheless be not realizable. The algorithms in [31] are based on solving SAT or
QBF formulations of PEC. The SAT formulations are efficient to solve, but also
rather inaccurate due to a coarse approximation. Their accuracy is improved in
several steps, leading to a QBF formulation that can solve PEC for a single black
box exactly. In [31] additionally an exact characterization of realizability of PEC
for multiple black boxes has been proposed (based on the decomposability of a
certain Boolean relation). However, no feasible algorithmic method for solving
the problem has been given.

Nevertheless, [31] was the first paper to consider an exact solution of the
PEC problem taking into account that the interfaces of the black boxes in the
incomplete circuit have to be preserved. Apart from the approach in [32, 33],
the diagnosis and rectification problem respecting local interfaces has not been
addressed in the literature so far. In [34, 35], e. g., rectifications are computed,
but they are allowed to depend on arbitrary signals in the circuit. (Moreover,
in contrast to [35], [34] uses a SAT formulation to compute rectifications for
a given set of counterexamples only, without considering correctness for all
possible inputs.) The approach of [32, 33] solves the PEC problem exactly, but it
is restricted to problem instances of moderate sizes, since the black boxes are
replaced by function tables using an exponential number of Boolean variables.
A more efficient complete approach, based on solving dependency quantified
Boolean formulas (DQBFs) was presented in [36].

We have extended the application of realizability checking to sequential
circuits which are specified by a set of properties (safety properties or more
general properties formulated in Computation Tree Logic (CTL [37]). Here the
question is whether an incomplete sequential design may be extended by black
box implementations such that a set of given properties is satisfied. Also the
problem of deciding validity is considered. We developed various approaches for
solving the realizability problem either in an approximate or an exact manner.
In the following we discuss some representative approaches: In [38], we provided
a series of approximate methods with different precision and costs for deciding
the realizability of CTL properties using symbolic methods. The approximations
are based on different methods to model the effect of the unknowns at the black
box outputs to the overall circuit. Moreover, [38] presents an exact method
for deciding realizability for incomplete circuits with several black boxes under



the assumption that the black boxes may contain only a bounded amount of
memory. This exact method is based on introducing an exponential number of
new variables and is therefore only suitable for small problem instances. In [39]
similar approximation methods are applied in the context of realizability checking
of safety properties based on bounded model checking techniques (BMC—here a
sequential circuit is “unrolled” for a number of time frames). This approximate
approach leads to SAT or QBF problems. Here, the precision of modeling is not
given by the user, but it is adapted automatically based on the difficulty of the
problem. The approach is guided by proofs that non-realizability can not be shown
using the weaker methods, independently from the number of BMC unrollings,
i. e., independently from the length of a counterexample which does not depend
on the implementation of the black boxes. [39] has been enhanced later on by [40]
which provides proofs based on inductive arguments that non-realizability can
not be shown even by our most exact QBF based methods (also independently
from the number of BMC unrollings). The approach of [40] provides an exact
decision procedure for realizability in the case that the design contains exactly
one black box which is allowed to read all input signals (which means that it has
“complete information”).

In Section 4 we sketch some of the state-of-the-art techniques to solve the
realizability problem of incomplete circuits.

1.3 Minimization/Maximization in Test and Verification

We finish this introductory remarks by mentioning an interesting application of
unknowns to optimize the quality of patterns. More details can be found in the
papers referenced.

Modeling of unknown values can be used to generalize results by forcing a
target property to hold while, at the same time, requiring a maximal number
of unknown values. Such a solution is helpful as only a minimal set of informa-
tion needed to guarantee the property is computed and hence the solution is
generalized.

A well-known instance of such an optimization problem in the test domain is
the problem of finding a test pattern for a given fault requiring only a minimal
set of inputs to be defined. In the verification domain, a likewise problem is
finding a generalized trace that leads to an (unwanted) error state.

Both problems can be solved (optimally) using maximization techniques such
as [41, 42]. They work on top of the encoding techniques presented in this book
chapter by requiring a certain primary property (e. g., the detection of a fault)
to hold, while at the same time maximizing secondary objectives such as the
number of inputs set to X.

2 Basics

In this section, we provide an overview on the underlying formal methods consid-
ered in the chapter as well as the handling and encoding of Boolean circuits.



2.1 Boolean Satisfiability and Extensions

The following two subsections provide a brief overview on the satisfiability problem
(SAT) and on quantified Boolean formula (QBF). The interested reader is referred
to [25] for more details.

Deciding the satisfiability of a propositional Boolean formula (SAT) is an NP-
complete problem [43]. The formula is typically provided in conjunctive normal
form (CNF). A CNF is a conjunction of clauses, and a clause is a disjunction of
literals, e. g., (a ∨ ¬b) with the Boolean variables a and b.

Many SAT-related formalisms have been introduced in recent decades. A
prominent extension to the Boolean satisfiability problem is the Maximum Satis-
fiability problem (MaxSAT), an optimization problem, which is used e.g. for the
applications referenced in Subsection 1.3. Intuitively, in a MaxSAT problem we
try to satisfy as many clauses as possible in ϕ. In this context the clauses are also
called soft clauses. There are several natural extensions of MaxSAT like Weighted
MaxSAT and Partial MaxSAT. In the former extension the clauses are labeled
with non-negative weights and the goal is to maximize the sum of the weights
of the satisfied clauses. In the latter extension there are additional so-called
hard clauses, which must be satisfied, whereas the soft clauses are treated as
in MaxSAT. Likewise SAT, one obtains a model which indicates the MaxSAT
objective: the number of soft clauses (or the sum of the clause weights) which
are satisfied simultaneously.

2.2 Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula in which the
variables are quantified or bounded by existential (∃) or universal (∀) quanti-
fiers. A QBF can be transformed into the prenex normal form (PCNF) ψ =
Q1X1Q2X2 . . .QnXnϕ, with Qi ∈ {∃,∀} and Xi disjoint sets of Boolean vari-
ables. In a PCNF all quantifiers are grouped together in a so-called prefix and
precede a quantifier-free propositional formula in CNF, called the matrix ϕ. We
define the quantifier level by the number of quantifier alternations (i. e., from ∃ to
∀ or vise versa), reading the prefix from left to right. Without loss of generality,
we assume that level 0 is always existential.

As an example, a QBF in PCNF ψ with three quantifier levels is satisfied if
and only if: there exists an assignment for all variables on quantifier level 0 such
that for every assignment for all variables on quantifier level 1, an assignment
for all variables on quantifier level 2 exists, such that the matrix is satisfied.

Modern QBF solvers are also able to provide a model for free (unbounded)
variables of the QBF. Semantically these free variables are similar to variables
quantified at level 0. To increase readability, we write in the following that we
extract the model for the variables on level 0 instead of using the terminology of
free variables.

The complexity of QBF satisfiability is determined by the number of quantifier
alternations between existential and universal quantifiers and vice versa in the
prenex form. The general problem of QBF satisfiability is a PSPACE-complete
problem [44].



2.3 Dependency Quantified Boolean Formulas

Dependency quantified Boolean formulas (DQBF) are a generalization of QBF.
In QBF, each existential variable depends on all universal variables on lower
quantification levels. DQBF relaxes this restriction and allows existential variables
to depend on arbitrary sets of universal variables.

This section mainly follows the descriptions in [36, 45].
Let ϕ be a Boolean formula over the Boolean variables x1, . . . , xn, y1, . . . , ym,

andD1, . . . , Dm ⊆ {x1, . . . , xn} sets of Boolean variables. A dependency-quantified
Boolean formula (DQBF) ψ has the form:

ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ.

The sets Di are called dependency sets of yi and the formula ϕ is ψ’s matrix.
We denote V ∃ = {y1, . . . , ym} as the set of existential variables and V ∀ =

{x1, . . . , xn} the set of universal variables. If yi ∈ V ∃ψ is an existential variable with
dependency set Di, a Skolem function for yi is a function syi,Di : ADi → {0, 1}.
In this case, ϕ[syi,Di

/yi] denotes the expression resulting from ϕ by replacing
each occurrence of yi by a Boolean expression for the Skolem function syi,Di

.
For a variable x ∈ Di we denote by syi,Di|x=0 the Skolem function syi,Di\{x} :

ADi\{x} → {0, 1} which results from syi,Di
by setting the variable x constantly

to 0. Accordingly for syi,Di|x=1.
Let ψ := ∀x1∀x2 . . . ∀xn∃y1(D1)∃y2(D2) . . . ∃ym(Dm) : ϕ be a DQBF. ψ

is satisfied (written � ψ) if and only if there are Skolem functions syi,Di
for

i = 1, . . . ,m such that ϕ[syi,Di
/yi ∀yi ∈ V ∃] is a tautology.

First solver implementations for DQBF are already available. We refer the
reader to, e. g., [45, 46] for more information on solving DQBFs.

Every QBF can be understood as a DQBF: the QBF Ψ := ∀X1∃Y1 . . . ∀Xn∃Yn :
ϕ, where Xi ⊆ {x1, . . . , xn} and Yi ⊆ {y1, . . . , yn} are disjoint sets of variables,
is equivalent to the DQBF

ψ := ∀x1 . . . ∀xn∃y1(Dy1) . . . ∃ym(Dym) : ϕ

where Dyj =
⋃k
`=1X` if Yk is the unique set with yj ∈ Yk.

2.4 From Circuits to Formulas

By using a Tseitin encoding [47], a SAT instance (as CNF representation) ΦC of
a circuit C can be generated, whose size is linear in the circuit size. A Tseitin
encoding of a circuit defines a Boolean variable for each line. These variables are
used to represent the function of each gate based on its inputs using a two-valued
logic (01-logic).

For instance, an AND gate with the inputs a and b and the output g is
characterized by g ↔ (a ∧ b). The corresponding encoding Φg for this gate g
would be

Φg :=
{
{a,¬g}, {b,¬g}, {¬a,¬b, g}

}
.



In extension to the two-valued Tseitin encoding of a circuit, the three-valued
01X-encoding based on [14] is often used to represent unknown (X) values.

The 01X-logic consists of three values {0, 1, X}, which are encoded using two
Boolean variables as follows: 0 = (1, 0), 1 = (0, 1), X = (0, 0). The combination
(1, 1) is not allowed.

The 01X-encoding for the same AND gate g, Φg, would be

Φg :=
{
{¬a1, g1}, {¬b1, g1}, {a1, b1,¬g1}, {a2,¬g2}, {b2,¬g2}, {¬a2,¬b2, g2}

}
.

In comparison to a standard Tseitin encoding, the support for the X-symbol
leads to larger SAT instances and hence usually harder instances but at the
same time allows reasoning about unknown values. A drawback of this formu-
lation is its pessimism that may incorrectly predict unspecified values on path
reconvergencies.

3 Unknown Values in Circuit Test

As already mentioned an unknown (X) value models an unknown binary state of
a signal. This excludes undefined values that are not binary resulting for example
from undefined voltage levels. Signals at which unknown values originate are
called X-sources. Of course, depending on the circuit structure these unknown
values may imply further unknown values within the circuit, and an efficient and
effective determination of signals with unknown values turns out to be of major
interest with respect to test algorithms.

Logic and fault simulation as well as solving the ATPG problem are essential
techniques in electronic design automation. The accuracy and therefore effec-
tiveness of standard algorithms is compromised by unknown or X-values. As
demonstrated in the following, using standard three-valued 01X logic this results
in a pessimistic overestimation of X-valued signals in the circuit and a pessimistic
underestimation of fault coverage.

3.1 Standard X-Logic Simulation

Standard X-logic simulation algorithms are based on n-valued logic systems with
a limited number of symbols to denote the signal states in the simulation (i. e.,
three-valued 01X logic). Not all X-states, and the correlations between them, are
represented accurately. The result may either underestimate the number of X-
values as in the case of logic simulation using Verilog models [48], or pessimistically
overestimate their number.

Example 1. Fig. 1 shows a circuit with three gates and three inputs. The simula-
tion result of pattern (a, b, c) = (1,X, 1) with a standard 3-valued logic simulator
is annotated to the circuit lines. The signals d, e, and f are evaluated to the
unknown value X by the simulator. However, exhaustive simulations assuming
b = 0 and b = 1 would show that the output f has the logic value 1 in both cases
as the signals d and e always have opposite logical values. Hence, three-valued
simulation overestimates the number of signals with an unknown value.



a

b

c

d

e

f

1

1

X

X

X

X

Fig. 1. Pessimistic simulation result with a 3-valued logic simulator.

For fault simulation like the parallel pattern single fault (PPSFP) or the
concurrent algorithm [49], [50], [51], [52] this leads to the fact that they either
pessimistically underestimate the number of detected faults or vice versa, the
number of potentially detected faults is overestimated and count a fraction of
potentially detected faults as detected [53]. Both inaccuracies impact product
quality and may increase test overhead and cost.

3.2 Accurate Logic Simulation

Removing the pessimism of classical n-valued fault simulation requires to solve
the problem of distinguishing reconverging X-values (as present in Fig. 1) that
depend on each other.

FEX REX

Random Assignments to 

X-sources

FEX 

candidates

SAT-based classification of 

remaining REX/FEX candidates

H
e

u
ri
s
ti
c
 a

n
a

ly
s
is

F
o

rm
a

l 
a

n
a

ly
s
is

G
a

te
 p

ro
c
e

s
s
in

g
 i
n

 

to
p

o
lo

g
ic

a
l 
o

rd
e

r

Pattern-parallel 

2-valued logic simulation

Restricted symbolic 

simulation of p

Fig. 2. Exact fault free simulation for a pattern p [24].

In [24] an accurate logic simulation algorithm based on solving a sequence of
SAT-instances is proposed.

It consists of two consecutive steps as depicted in Fig. 2. In the first heuristic
analysis step a restricted symbolic simulator and a 2-valued logic simulator are
used as heuristics to classify a high number of REXs (Real X), FEXs (False X)
and FEX candidates at low computational cost. In the second formal analysis
step, the set of FEX candidates is formally analyzed. For the formal proof whether



a FEX candidate is a REX or not, the state-of-the-art incremental SAT solver
antom [54] is utilized. The details of the steps are described in the folowing.

Heuristic Analysis In the heuristic analysis the pattern p is simulated using
restricted symbolic simulation (RSS, [15]) and 2-valued pattern-parallel simulation
of randomized assignments to the X-sources to classify as many signals as REX,
FEX and FEX candidates as possible. The gates of the circuit are processed in
topological order and for each gate, RSS and 2-valued simulation are performed.
The identified FEX candidates are later classified using SAT reasoning.

In RSS, for each X-value at the X-sources a unique symbol Xi is introduced in
addition to the two symbols for logic-0 and logic-1. Hence, X-values from different
X-sources are distinguishable. Furthermore, each X-symbol can be negated. This
allows the correct evaluation of simple local reconvergences of X-valued signals
and increases accuracy compared to 3-valued simulators. For the example in Fig. 1,
RSS correctly computes the output value at f as logic-1, since the symbol Xb

introduced at X-source b is correctly tracked at d as ¬Xb and at signal e as Xb.
Hence, the reconvergence is exactly evaluated to logic-1. Thus, RSS identifies
a subset of FEXG(p). In the proposed algorithm, the resulting value of RSS of
signal s and pattern p is stored in vG(p, s).

A subset of REXG(p) is efficiently found by a 2-valued pattern-parallel logic
simulation. 64 random patterns are generated by assigning randomized values
to the X-sources. The signal values are computed in one simulation run. One
64-bit integer v = [v0, . . . , v63] is used to represent the values of each signal. For
input i, vi is derived from the simulated pattern p and set to vi = [0, . . . , 0] or
vi = [1, . . . , 1] if i is logic-0 or logic-1, respectively. At X-source q, a randomized 64-
bit integer is generated and assigned to vq = [v0q , . . . , v

63
q ], vkq ∈ {0, 1}, 0 ≤ k ≤ 63.

vq is used for the evaluation of the direct fanout of q.
After finishing both simulations, each signal is classified as logic-0, logic-1 or

REX, FEX or FEX candidate. If RSS derived a logic value, the signal does not
need to be considered in the subsequent steps. If an unknown value is calculated
for s, the values of vs = [v0s , . . . , v

63
s ] of the pattern-parallel simulation are taken

into account. If at least one pair of values vks , v
l
s(0 ≤ k, l ≤ 63) has complementary

values, the signal s belongs to REXG(p). If all vks bit are equal, s is marked as
FEX candidate. The classification of these signals is done with an incremental
SAT-solver as explained in the next section.

Classification of Remaining FEX Candidates The FEX candidates are
exactly classified by use of an incremental SAT solver. Input to the SAT solver is
a Boolean formula in conjunctive normal form (CNF) which maps the classification
of a signal to a Boolean satisfiability problem.

For each FEX candidate s it is already known that all 64 random assignments
to the X-sources force s to value vks (0 ≤ k ≤ 63) of either logic-0 or logic-
1. Signal s is a FEX, if and only if it can be proven that s cannot have the
complementary value ¬vks for any assignment to the X-sources. Thus, the Boolean
formula is constructed such that it is satisfiable, if and only if s can be driven to



¬vks . If the formula is satisfiable, s depends on the X-sources and is classified as
REX. Otherwise s is independent of the X-sources and classified as FEX.

The FEX candidates are evaluated starting from the X-sources in topological
order. To increase efficiency, the SAT instance is extended incrementally for each
FEX candidate exploiting the result from the simulation step as well as learnt
knowledge from analysis of previous FEX candidates.

To check whether s can be driven to ¬vks , the characteristic equations of the
gates in the adjustment cone, resp. transitive fanin, of s are translated into CNF
and added to the SAT instance using the Tseitin transformation (c.f. 2.4. The
size of the resulting SAT instance is reduced by only considering the gates which
have been classified as REX or FEX candidate for pattern p.

This SAT instance is extended by a temporary unit clause with only one
literal (called assumption) for FEX candidate s which constrains the value of s
in the search process of the SAT solver. If the value of s in the pattern parallel
simulation was vs = [0, . . . , 0], the assumption {s} is added to constrain the SAT
search to assignments to the X-sources which imply s to logic-1. If the instance is
satisfiable, s belongs to the set REX. Otherwise s is a FEX with value logic-0 and
vG(p, s) is updated. In the latter case, the unit clause {¬s} is added permanently
to the SAT instance to reduce runtime for subsequent calculations of the SAT
solver. Correspondingly, if the value of s in the pattern parallel simulation was
vs = [1, . . . , 1], the assumption {¬s} is added.

For the classification of the next FEX candidate s′ in topological order, the
CNF instance is extended incrementally to include the adjustment cone of s′,
i. e.,, only the clauses for gates which are not yet Tseitin transformed are added.

During exact simulation, the algorithm maintains a lookup table derived from
the result of the RSS step. The table contains the information if a symbol for an
X-state assigned to signals during RSS is a logic-0, a logic-1 or a REX. Before
analyzing a FEX candidate s using the SAT technique, a fast lookup is performed
to check whether the corresponding symbol Xs has already been computed. If
the classification for Xs is already known, s is set to the corresponding state.
Otherwise, s is classified as described above. This effectively restricts the use of
the SAT solver to signals at which REX values converge.

3.3 Accurate Fault Simulation

We distinguish definite detection (DD) and potential detection (PD) of a fault.
A fault f is definitely detected (DD) if an observable output o exists where the
fault effect is visible independent of the logic value assignment to the X-sources.
Let the functions vG(p, s) and vf (p, s) return the logic value of signal s under a
pattern p in the fault free and faulty case in presence of unknown values.

The definite detection of a stuck-at-φ fault f (φ ∈ {0, 1}) at line l under a
pattern p is given as

DDf (p) := ∃o ∈ O : vG(p, o), vf (p, o) ∈ {0, 1} ∧ vG(p, o) 6= vf (p, o), (1)

where O is the set of output signals of the circuit. If f is not definitely detected,
f is potentially detected (PD) if the fault is activated and an observable output o



exists where the fault effect can be deterministically measured for at least one
logic value assignment to the X-sources:

PDf (p) := ¬DDf (p) ∧ vG(p, l) = ¬φ ∧
∃o ∈ O : vG(p, o) ∈ {0, 1} ∧ o ∈ REXf(p). (2)

Note that 3-valued fault simulation underapproximates the number of defi-
nitely detected faults since three-valued simulation overestimates the number of
signals with X-values. Consequently, the number of potentially detected faults
provides an overapproximation.

The exact simulation classifies a set of target faults as definitely detected (DD),
potentially detected (PD) or undetected for a test set in presence of unknowns.
An overview of the fault simulation of a pattern p is given in Fig. 3. 3-valued
fault simulation is used to mark as many target faults as possible as DD. For the
remaining faults, an exact analysis is conducted.

Restricted symbolic 

simulation of p

Pattern-parallel 

2-valued logic simulation

DD PD

Random Assignments to 

X-sources

Exact SAT-based fault classification 

H
e

u
ri
s
ti
c
 

a
n

a
ly

s
is

3-valued fault simulation of p

Exact logic simulation of p to compute fault activation

OPD

Potential det.

OPossDD

Poss. def. det.

OPossPD

Poss. potent. det. O
u

tp
u

t

c
la

s
s
if
ic

a
ti
o

n

G
a

te
 p

ro
c
e

s
s
in

g
 i
n

 

to
p

o
lo

g
ic

a
l 
o

rd
e

r

Fig. 3. Exact fault simulation for a pattern p and classification as definitely detected
(DD) or potentially detected (PD) [24].

The exact analysis starts with the exact logic simulation of the fault free
circuit for pattern p to compute the set of activated faults. These faults are then
analyzed serially. For the fault simulation of an activated fault f , f is injected
into the circuit model. The algorithm then proceeds in two phases similar to the
fault free approach: A heuristic simulation and an exact calculation step. During
the simulation step the behavior of the faulty circuit is simulated in event-driven
manner by RSS and 2-valued pattern-parallel logic simulation which evaluates
random assignments to the X-sources. If the results of the simulations allow
the fault classification as DD or undetected, a further analysis is not required.
Otherwise, the SAT solver is invoked for analysis of the outputs of the faulty
circuit. Internal signals in the faulty circuit do not need to be considered since
the values at observable outputs are sufficient to reason about fault detection.



3.4 Accurate Test Pattern Generation (X-ATPG)

The ATPG framework from [55] is able to prove the testability of stuck-at faults
in presence of X-values. Fig. 4 shows the complete flow which combines accurate
fault simulation (c.f. Section 3.3), incremental SAT-based test generation with a
classical three-valued encoding and accurate QBF-based reasoning to efficiently
analyze the faults.

Target

faults
1) No X-dep.

2) Some 

Outputs

3) Some 

Inputs
4) All Inputs

Hybrid two- and three- valued 

SAT- based ATPG

UntestableAborted

QBF-based  ATPG

Accurate fault simulation

D
e

te
c
ti
n

g
 p

a
tt
e

rn
 f
o

u
n

d

P
ro

v
e

n
 

u
n

te
s
ta

b
le

Pure two-value 

encoded CNF
Hybrid CNF

Topological 

untestability 

check

Definite 

Detection

Potential 

Detection

Fig. 4. Overview of the ATPG flow.

Using a topological analysis, the faults under analysis are partitioned into
four groups w. r. t. their relation to the X-sources in the circuit (cf. Fig. 4):

1. No structural dependence on the X-sources: Neither the justification cone of
the fault, nor its propagation cone depend on X-sources.

2. A subset of the outputs in the propagation cone depends on X-sources. The
justification cone and at least one output in the propagation cone do not
depend on X-sources.

3. A subset of the inputs in the justification cone of the fault depends on
X-sources. At least one input in its justification cone is a controllable input.

4. The justification cone is driven exclusively by X-sources.

Afterwards the faults of each group are processed using the most suitable
algorithms to keep the runtime as low as possible – while guaranteeing an accurate
classification. First, all faults without X-dependency are processed by the hybrid
SAT-based algorithms based on a pure two-valued signal encoding. In case a
constructed formula is satisfiable, a test pattern is extracted and accurately
simulated to implement fault dropping and to mark faults as potentially detected
(cf. Section 3.2). Otherwise, the fault is untestable.



All faults for which some outputs or some inputs depend on X-sources are
subsequently processed by the SAT-based ATPG using a hybrid two- and three-
valued encoding. In case a constructed formula is satisfiable, a test pattern is
extracted and simulated. Otherwise, the SAT-based approach only allows to prove
the untestability, if the fault site itself does not depend on X-sources and fault
activation is not possible. For all other faults which may still be detectable, a QBF
is constructed and analyzed using a QBF solver for the final classification. Faults
for which all inputs depend on X-sources and which have not been classified
as untestable by a topological untestability check are also analyzed using the
QBF-based approach.

Finally, each fault classified as untestable is analyzed again for potential
detection by the QBF solver (cf. Section 3.3).

QBF-based Detection of Stuck-at Faults The construction of the QBF is
split into the generation of the matrix and the quantification of the variables.

Construction of the Matrix The matrix of the QBF in CNF is constructed similar
to a classical two-valued SAT-based ATPG instance. The state of each signal is
modeled by a single binary variable. X-values are not explicitly specified in the
matrix but modeled by universal variable quantification.

To construct the matrix for a fault f , all necessary gates for the fault-free
circuit representation CG and the propagation cone CfP of the fault f in the
faulty circuit are modeled as formulae in CNF. Additionally, D-chains are added
to encode propagation paths from the fault site to the outputs and to guide the
search for a test pattern. For the D-chains, d-variables are added for each signal
in the propagation cone of the fault. If the signal s has complementary values in
CG and CfP , ds evaluates to 1.

Finally, a single clause D :=
∨
o∈O do is added to ensure that at least one

d-literal of a circuit output is logically 1. This leads to the following propositional
formula in CNF:

CUT = CG ∧ CfP ∧ (D-chain clauses) ∧ D.

Variable Quantification All variables used in the matrix need to be properly
quantified to guarantee a valid test in case the formula is satisfiable – or otherwise
to serve as a proof that a test pattern does not exist. It is important to respect
the scope of quantification, i. e., the sequence of quantifier alternations.

For fault detection, we search for one test pattern that satisfies the matrix for
all possible assignments to the X-sources. Thus, the variables representing the
circuit inputs are existentially quantified on level 0 and precede the universally
quantified variables representing the X-sources on level 1.

The internal signals S and the d-variables used for the D-chains are subse-
quently existentially quantified at level 2. This results in the following QBF:



∃ I︸︷︷︸
Controllable

inputs

X-sources︷︸︸︷
∀X ∃S ∃D︸ ︷︷ ︸

Int. signals,
D-chain variables

CUT.

This QBF is satisfiable if and only if there exists an input assignment which
excites an observable difference at at least one (not necessarily the same) output
for each possible assignment to the X-sources.

Enforcing Definite Detection at Circuit Outputs: To establish definite detection
according to Equation (1), the solution space is constrained by limiting the
detecting outputs to a single fixed one. That is, for all possible assignments to
the X-sources, the fault effect must be observable at one particular output.

This constraint is implemented by additional variables oi for the outputs in
the propagation cone which only evaluate to 1 if the fault effect is observable at
output i for all assignments to the X-sources. The clause (o1∨o2∨. . .∨on) enforces
that at least one of the variables oi evaluates to 1 and thus, the fault is always
observable at at least one output. To guarantee that the observable output is fixed
for all possible X-values, the variables in O = {oi | 1 ≤ i ≤ n} are existentially
quantified at quantifier level 0 preceding the universal quantification of the X-
sources on level 1. The relation between oi and the D-chains are established by
adding one implication per output (oi → di) to the matrix:

∃O ∃ I ∀X ∃S ∃D
(

CUT ∧
∨

i

oi ∧
∧

i

(oi → di)
)
.

This enforces a fixed detecting output over all assignments to X-sources.
However, the observable difference, i. e., the signal values in the fault-free and
faulty circuit at that output is still allowed to be one of the four possibilities
(0/1), (1/0), (xi,¬xi), (¬xi, xi). The latter two cases correspond to situations
where an output always shows complementary states in the fault-free and faulty
circuit for all assignments to the X-sources, but the value in the fault-free and
faulty circuit are not stable for all assignments to X-sources. In these cases, it
is not possible to distinguish between a fault-free and a faulty circuit during
testing.

Enforcing Known Binary Values at Circuit Outputs: A known binary value at
the observing output in the fault-free circuit is enforced by adding two variables
v0i , v

1
i per output to represent its stable value in the fault-free case when it detects

the fault. This automatically constrains the faulty case as well. If v0i (v1i ) is true,
output i has the stable value 0 (1) in the fault-free circuit. The two implications
(v0i → ¬si) and (v1i → si) for output i establish that relation, assuming that
si ∈ S is the signal variable representing the value of output i in the fault-free
circuit. In the formula φStable output, the implication (oi → (v0i ∨v1i )) ensures that
output i has a stable value if oi is asserted:

φStable output :=
∧

i

(
(oi → (v0i ∨ v1i )) ∧ (v0i → ¬si) ∧ (v1i → si)

)
.



With the existential quantification of the variables v0i , v
1
i ∈ V on level 0 we

obtain the following QBF:

DD := ∃O ∃V ∃ I ∀X ∃S ∃D
(

CUT∧
∨

i

oi ∧
∧

i

(oi → di) ∧ φStable output

)

This QBF is satisfiable if and only if a fault is testable according to the
definite detection condition of Section 3.3. If the formula is not satisfiable, it is
proven that no test pattern exists for definite detection.

Taken together, we depicted a complete ATPG flow able to prove testability
or untestability of stuck-at faults in presence of unknown values. The algorithm
combines incremental 2- and 3-valued SAT-based test pattern generation, accurate
fault simulation in presence of unknown values, and QBF-based test generation.

4 Unknown Values in Verification

In the following we turn to the formal verification digital circuits in the presence
of unkowns. We first define partial circuits and validity and realizability of a
property regarding a partial circuit. Then we present approaches how partial
circuits can be analyzed.

4.1 Incomplete Circuits

An incomplete (or partial) circuit is a combinational or sequential circuit con-
taining so-called black boxes (BBs). A black box is a module of a circuit whose
interface is known but not its internal structure. A partial sequential circuit is
sketched in Fig. 5. The circuit contains m black boxes BB1, . . . ,BBm, shown as
black rectangles. Their input signals are denoted by I1, . . . , Im and their output
signals by Z1, . . . ,Zm. The primary inputs of the circuit are x = (x0, . . . , xn),
the current state is given by the signals s = (s0, . . . , sr). The input cones of
the black boxes compute the functions Ii = F i(x, s,Z1, . . . ,Zi−1). We thereby
assume that there are no cyclic dependencies between the black boxes and that
they are topologically ordered, i. e., BBi only depends on the values computed
by BB1, . . . ,BBi−1. To simplify notation, we assume w. l. o. g. that no black box
output is directly connected to a black box input, i. e., Zi is disjoint from Ij
for all i, j. If this is not the case, we insert a buffer between the corresponding
black boxes, which does not modify the functionality of the circuit. Finally the
output y and the next state s′ of the circuit are given by the Boolean functions
(y, s′) = R(x, s,Z1, . . . ,Zm).

We assume that the contents of the black boxes are combinational circuits.
If we allow the black boxes to contain an arbitrary amount of memory, the
interesting decision problems (see below) become undecidable [56]. The case
of black boxes with a bounded amount of memory can be reduced to the case



BBi−1

BBi

Zi

F i(x, s,Z1, . . . ,Zi−1)

Ii

•
•Zi−1

Ii−1

•

...

R(x, s,Z1, . . . ,Zm)

...
...

...

•

Memory

x

s

s′

y

Fig. 5. Notations for an incomplete sequential circuit

of combinational black boxes by adding the memory of the black boxes to the
surrounding circuit such that these memory cells are read and written only by
the corresponding black box.

For a given property ϕ two questions regarding a partial circuit are of interest:
On the one hand, realizability asks whether there is an implementation of the
black boxes such that the complete circuit satisfies ϕ. On the other hand, validity
asks whether ϕ is satisfied for all possible implementations. Since validity of ϕ is
given iff ¬ϕ is not realizable, we restrict ourselves in the following to realizability
problems.

For partial combinational circuits we assume that the property ϕ is given
as a circuit. The resulting realizability problem is known as the partial equiv-
alence checking problem (PEC) [31]. We combine the property circuit and the
partial circuit into a single miter circuit: corresponding inputs are connected,
corresponding output are combined via an XOR gate; in case of several outputs,
the outputs of the XOR gates are combined via an OR gate. The resulting circuit
has the property that its single output is 1 for an assignment of the primary
inputs and an implementation of the black boxes iff the specification ϕ and the
implementation compute the same output values. Realizability means then: Are
there implementations of the black boxes such that the output of the miter circuit
is constantly 1?

For partial sequential circuits we consider invariant properties: Given a
Boolean formula inv(x, s,y), which describes the states of the circuit that satisfy



the invariant, are there implementations of the black boxes such that inv(x, s,y)
is satisfied in each step of the circuit? For more general classes of properties like
arbitrary CTL properties, we refer the reader to [57, 38, 58].

4.2 Incomplete Combinational Circuits

We will first show how the PEC problem can be solved for combinational circuits.
We extend the methods known from the previous sections, starting with SAT-
based symbolic 01X simulation, which were already used in the previous sections.
Finally, we extend these methods to DQBF-based formulations which constitute
a complete decision method for PEC.

SAT-based Approximations SAT-based methods use symbolic {0, 1, X} sim-
ulation: The outputs of the black boxes carry unknown values and are therefore
assigned the value X, while the primary inputs are forced to be either 0 or 1.
Realizability is refuted if an input pattern can be found which leads to value 0
at the primary output of the miter circuit. Realizability is proven if all input
patterns lead to output value 1.1 However, a third case is possible, namely that
the unknown value X propagates to the primary output for some input patterns.
In this case, no statement can be made regarding realizability.

To decide whether there exists an input pattern that refutes realizability,
a SAT-formulation can be used. To encode the three-valued logic we use the
encoding introduced in Section 2.4 and force the output y of the miter circuit to
be zero by adding appropriate unit clauses. The result is a Boolean formula in
CNF whose satisfiability proves that the design is not realizable.

While this method is efficient in practice, it has the drawback that it consti-
tutes a rather coarse approximation: If the unknown value X propagates to the
output, no statement about the realizability can be made.

QBF-based Approximations The quality of the approximation can be im-
proved by universal quantification over the possible input values: For all possible
values at the inputs, there have to be values of the black box outputs such that
the desired property is satisfied (i. e., the output of the miter circuit is 1). This
yields QBF formulations for deciding PEC. We first show how to derive the
matrix of the QBF formula and then define an appropriate quantifier prefix.

In contrast to circuit test applications where unknown values typically appear
at the primary or secondary inputs of the circuit, we have to take into account
here that black boxes are not necessarily directly connected to the primary inputs,
but to internal signals. In this case not all possible combinations of values may
arrive at the inputs of the black boxes. Since we use universal quantification for
the black box inputs we have to ensure that the matrix of our formula is satisfied
if the value of the black box inputs Ii deviates from the values obtained as a

1 Note that in this case also validity holds.



function F i(x,Z1, . . . ,Zi−1). This leads to the following formula:

ϕ :=
(
I1 6≡ F 1(x)

)
∨ · · · ∨

(
Im 6≡ Fm(x,Z1, . . . ,Zm−1)

)
∨R(x,Z1, . . . ,Zm).

By applying Tseitin transformation [47], which introduces auxiliary variables
H = (h1, . . . , hp) for the internal signals of the circuit, one can obtain a CNF ϕ′

that is satisfiability equivalent to ϕ and whose size is linear in the size of ϕ. The
variables in H are existentially quantified in the quantifier prefix.

As we will see later when we consider complete decision procedures for PEC,
QBF is—like the SAT-based method described above—only an approximation in
case that the design contains more than one black box. However, we can give both
under- and over-approximations: If an over-approximating QBF is unsatisfied,
we can conclude the unrealizability of the PEC. If an under-approximating
QBF is satisfied, this implies the realizability of the PEC. The other outcomes
do not allow a statement regarding the realizability of the PEC. Over- and
under-approximations only differ in their quantifier prefix.

For a QBF prefix Q1V1Q2V2 . . . QkVk with variables V = V1 ∪ · · · ∪ Vk and
quantifiers Qi ∈ {∃,∀} such that Qi 6= Qi+1 for all i = 1, . . . , k − 1, we say that
a variable u ∈ V is in the scope of variable w ∈ V if Vi, Vj are the unique sets
with u ∈ Vi, w ∈ Vj and j < i holds. We write w ≺ u if u is in the scope of w.
We extend this to vectors U ,W of variables such that U ≺W iff u ≺ w for all
u ∈ U and w ∈W .

For an over-approximating quantifier prefix we have to take care that each
black box output is (at least) in the scope of the (primary and black box) inputs
which are directly or indirectly read by the black box. For an under-approximating
prefix, each black box output is allowed to be at most in the scope of these
variables.

Formally spoken, the requirement on the quantifier order can be translated
as follows: Each over-approximating QBF prefix has to satisfy the constraint

∀i = 1, . . . ,m : Ii ⊆ {v ∈ V | v ≺ Zi}, (3)

while for each under-approximation we have

∀i = 1, . . . ,m : Ii ⊇ {v ∈ V | v ≺ Zi}. (4)

Since the Tseitin variables H are implied by the gate’s inputs, they are added as
the right-most existential quantifier block.

Example 2. An over-approximation is given by ∀I1 . . . ∀Im∃Z1 . . . ∃Zm∀x∃H :
ϕ′, an under-approximation by ∃Z1 . . . ∃Zm∀x∀I1 . . . ∀Im∃H : ϕ′.

Over- and under-approximating prefixes are not unique, and the choice of the
prefix can influence the truth value of the formula. It is therefore desirable to
make the approximation as strong as possible, i. e., having the black box outputs
in the scope of as few (many) universal variables as possible. An approximation
is exact if it is both an over- and an under-approximation, or equivalently, if (3)
and (4) are satisfied with equality. In general, such an exact QBF formulation
does not need to exist if the circuit contains more than one black box.



Example 3. Consider an incomplete circuit with a single black box, i. e., m = 1.
Then

∀I1∃Z1∀x∃H : ϕ′

is an exact QBF formulation, i. e., it is satisfiable if and only if the PEC is
realizable.

Complete Methods The QBF method provides more accuracy than the 01X-
approximation. However, in case the design contains more than one black box,
QBF is still not powerful enough to express realizability exactly, because there is
typically no QBF prefix that expresses the dependencies of the black box outputs
from the corresponding inputs exactly.

Example 4. Consider a design with two black boxes BB1 and BB2. The input
of BB1 is x1, its output y1, the input of BB2 is x2 and its output y2. There are
three admissible QBF prefixes: ∀x1∀x2∃y1∃y1, ∀x1∃y1∀x2∃y2, and ∀x2∃y2∀x1∃y1.
None of these is exact: in the first, both black box outputs depend on both inputs,
in the second prefix, BB2 depends on both inputs, and in the third this holds for
BB1.

In order to be able to express the dependencies correctly, one has to resort to
DQBF ([36], see also Section 2.3). It is able to express arbitrary dependencies
and therefore constitutes a complete decision method for arbitrary incomplete
combinational circuits.

We specify the quantifier prefix of the DQBF; the matrix is the same as
for the QBF approximations. The primary inputs x and the black box inputs
I1, . . . , Im are again universally quantified, all other variables are existentially
quantified. The dependency set of black box output zi,j contains exactly the
inputs Ii of BBi. Hence, the resulting DQBF is:

ψ := ∀x∀I1 . . . ∀Im∃Z1(I1) . . . ∃Zm(Im)∃H(x, I1, . . . , Im) : ϕ′.

The formula ψ is satisfied if and only if we can replace all Zi with Skolem
functions fZi,Ii such that ϕ′ becomes a tautology. The Skolem functions fZi,Ii

exist if and only if there are implementations for the black boxes BBi of the PEC,
such that the specification is realized. Therefore the Skolem functions constitute
implementations of the black boxes that satisfy the specification.

4.3 Incomplete Sequential Circuits

We have extended the application of realizability checking to sequential circuits
which are specified by a set of properties (safety properties or more general
properties formulated in Computation Tree Logic (CTL [37]). In [38], e. g., we
provided a series of approximate methods with different precision and cost
for deciding the realizability of CTL properties using symbolic methods. The
approximations were based on different methods to model the effect of the
unknowns at the black box outputs to the overall circuit and also an exact



· · ·

· · ·

......

x0
0 ... x0

n

Z0
0

.

.

.

Z0
l

y0
0 ... y0

m

black
box

· · ·

· · ·

...

x1
0 ... x1

n

Z1
0

.

.

.

Z1
l

s10

s1r

y1
0 ... y1

m

black
box

· · ·

· · ·

...

xk−1
0 ... xk−1

n

Zk−1
0

.

.

.

Zk−1
l

sk−1
0

sk−1
r

black
box

s20

s2r

...· · ·
sk0

skr

s00

s0r

TT T

I ¬P

yk−1
0 ... yk−1

m

Fig. 6. Encoding of the BMC Problem for Incomplete Designs [40].

method was presented for deciding realizability for incomplete circuits with
several black boxes under the assumption that the black boxes may contain only
a bounded amount of memory. In this overview however, we restrict our attention
to realizability checking of safety properties based on bounded model checking
techniques (BMC) [39, 40].

BMC for Incomplete Designs BMC for incomplete designs aims to refute
the realizability of a property, that is, it tells the designer, no matter how the
unknown parts of the system will be implemented, the property will always fail.
To put it in other words, the error is already in the implemented system. If
this is the case, then we call the property P unrealizable. Here we restrict the
properties to invariants. In a first formulation we make use of QBF modeling
where the variables representing the black box outputs are universally quantified.
We allow black box replacements to have arbitrary sequential behavior, that is,
the black box can produce different output values for the same input values at
different time steps. To encode the BMC problem of incomplete designs we are
naming the variables as shown in Fig. 6. We use an upper index to specify the
time instance of a variable. sji denotes the i-th state bit in the j-th unfolding

(let sj = sj0, . . . , s
j
r). The same holds for the primary inputs xj = xj0, . . . , x

j
n, the

primary outputs yj = yj0, . . . , y
j
m, and the black box outputs Zj = Zj0 , . . . , Z

j
l .

The next state variables sj+1 depend on the current state, the primary inputs
and the black box outputs. The whole circuit is transformed according to [47]
using additional auxiliary variables Hj for each unfolding depth j. The predicate
describing the initial states is given by I(s0). Since we assume a single initial
state in this paper, the initial state I(s0) is encoded by unit clauses, setting
the respective state bits to their initial value. The transition relation of time
frame i is given by T (si−1,xi−1,Zi−1, si). The invariant P (sk) is a Boolean
expression over the state variables2 of the k-th unfolding. Using this information,
the quantifier prefix (and the matrix) for the unrealizability problem results in the

2 In general the property can also check the primary outputs, but for sake of convenience,
we omit details here.



QBF formula (5). For the sake of simplicity we include the variables representing
the primary outputs of unfolding depth j into Hj .

BMC (k) := ∃ s0 x0 ∀ Z0 ∃ H0

∃ s1 x1 ∀ Z1 ∃ H1

...
∃ sk−1 xk−1 ∀ Zk−1 ∃ Hk−1

∃ sk

I(s0) ∧
k∧

i=1

T (si−1,xi−1,Zi−1, si) ∧ ¬P (sk) (5)

The semantics following from the prefix corresponds to the following question:

Does there exist a state s0 = s00, . . . , s
0
r and an input vector x0 =

x00, . . . , x
0
n at depth 0 such that for all possible values of the black box

outputs Z0 = Z0
0 , . . . , Z

0
m there exists an assignment to all auxiliary

variables H0 (resulting in a next state s1 = s10, . . . , s
1
r) and an input

vector x1 = x10, . . . , x
1
n at depth 1, etc. such that the property is violated?

The BMC procedure iteratively unfolds the incomplete circuit for k = 0, . . . ,K
until a predefined maximal unfolding depth K is reached. If a QBF solver finds
BMC (k) satisfiable, the unrealizability of the property P has been proven. In
that case the resulting system can reach a “bad state” after k steps, no matter
how the black box is implemented.

We can prove that, whenever BMC (k) is unsatisfiable, there is an implemen-
tation of the black box which is able to avoid error paths of length k as long as
the black box is allowed to read all primary inputs. However, if the black box in
the design at hand is not directly connected to all primary inputs, (i. e., if the
black box does not have “complete information”), such an implementation does
not need to exist. Thus, for black boxes having “incomplete information” the
property may be unrealizable although BMC with QBF modeling is not able to
prove this. In this case, DQBF is necessary to express the actual dependencies of
the black boxes on their inputs.

In the following we give an example illustrating the approach:

Example 5. Consider the incomplete circuit shown in Fig. 7. The state bits s0
and s1 depend on the current state, the primary input x, and the black box
outputs Z0 and Z1, respectively, and are computed by the transition functions
s′0 = x+Z0 and s′1 = x ·Z1 + s0 · ¬Z1. Let the invariant property P = ¬(s0 ∧ s1)
state that s0 and s1 must never be 1 at the same time. Let the initial state of
the system be defined as s00 = s01 = 0. After checking for an initial violation of
the property, the BMC procedure unfolds the system once, and tries to find an
assignment to x0 such that for all possible assignments to Z0

0 and Z0
1 the state

(1, 1) can be reached. Indeed, x0 = 1 implies s0 = 1 for all assignments to the
black box outputs, however, for Z0

1 = 0 s1 = 1 can not be obtained (neither by



s0

s1

x

clk

black
box

Z0

Z1

Fig. 7. Example Incomplete Design [40].

setting x0 = 0 nor x0 = 1). Thus, BMC (1) is unsatisfiable and BMC continues
by adding a second copy of the transition relation to the problem. If x0 = 1, the
current state bit s10 at the second unfolding evaluates to 1 as well. Furthermore,
if x1 is set to 1, the next state bits s20 and s21 evaluate to 1 for all values of Z1

0

and Z1
1 . Hence, when applying the input pattern x0 = x1 = 1, a state violating P

can be reached after two steps for all actions of the black box and thus, BMC (2)
is satisfiable and P is unrealizable.

SAT-based Approximations and 01X-Hardness As already shown in previ-
ous sections, QBF can be approximated using 01X-logic. In the previous example,
e. g., it is not necessary to use QBF encoding for Z0. When applying Z0 = X,
unrealizability still can be proven by applying x0 = x1 = 1.

Since the problem instances using 01X-modeling are typically easier to solve,
we are using the following verification flow:

Given an incomplete design and an invariant, we start the BMC process with
a pure 01X-modeling, that is we extend Boolean logic by a third value ‘X’ which
then is applied to all black box outputs. Using the two-valued encoding proposed
by Jain (cf. Section 2.4), the BMC unfoldings still yield SAT problems which
can be solved by a state-of-the-art SAT solver. However, 01X-modeling may be
too coarse to prove unrealizability leading to unsatisfiable BMC instances for
every unfolding depth (we call such verification problems 01X-hard). In [39] we
presented a method based on Craig interpolation to classify 01X-hard problems
on-the-fly along the BMC process, thus preventing the solver running into
unsatisfiable instances forever. Additionally, the computed Craig interpolants
provide information about the origin of the 01X-hardness and a subset of the black
box outputs which have to be modeled more precisely using QBF is heuristically
determined. Now a QBF-based BMC tool processes the information gathered
from the Craig interpolants and uses one universally quantified variable for
each black box output which needs a more precise modeling. Using a combined
01X/QBF-modeling (or a pure QBF-modeling) the BMC unfoldings yield QBF



formulas. In that way, the precision of modeling is not given by the user, but it
is adapted automatically based on the difficulty of the problem.

QBF-based Approximations and QBF-hardness However, even when us-
ing the more precise QBF modeling technique to model the unknown behavior
of the black box, no result is guaranteed. At this point an extension given in
[40] is introduced into the workflow. Similar to 01X-hardness for 01X-modeled
incomplete designs, a QBF modeled BMC problem can now be classified as
QBF-hard, if BMC would continuously run into unsatisfiable unfoldings.

As already discussed above, under certain conditions (black boxes having
“incomplete information”) the BMC procedure using a QBF formulation is not
able to prove unrealizability even if the property is indeed unrealizable. In
this sense the QBF formulation is a sound but incomplete approximation (just
as 01X-modeling which is also an approximation, but is strictly coarser). If
unrealizability can not be proven due to the approximative nature of the method
or if the property is really realizable, then the BMC procedure described above
would produce unsatisfiable QBF formulas for all unfoldings and would never
return a result.

The idea of proving QBF-hardness is as follows: The QBF-based BMC proce-
dure classifies a property as unrealizable, iff there exist input sequences of some
length k such that independently from the black box actions the property will be
violated after k steps. Conversely, the QBF-based BMC procedure is not able to
prove unrealizability with an unfolding of length k or smaller, if for each input
valuation in each time frame there is an action of the black box such that the
property is fulfilled after k steps, and additionally all states on these paths also
fulfill the property. Furthermore, if we can prove for this scenario that after at
most k steps every state has already been visited before, we can be sure that
the QBF-based BMC procedure will never produce a satisfiable instance, since
for every input pattern it is possible to determine at least one realization of the
black box leading to a state which does not violate the property, independently
from the length of the unfolding.

This concept is illustrated in Fig. 8. Let s 0 = σ0
1 be the initial state which

fulfills P . Next, the graph branches for all possible assignments ξ01, . . . , ξ
0
m to the

primary inputs x0. For each of these values ξ0i there exists an action of the black
box outputs Z0 = ζ0i leading to next states s1 = σ1

i which all fulfill P . Once
a state is equivalent to a state which was visited before (which is indicated by
a dashed backward arrow in Fig. 8 stating that σ1

1 = σ0
1, σ2

1 = σ1
2, σ2

m = σ0
1,

respectively), this branch does not need to be further explored. If at some depth
all so far explored states point back to already visited states, then the black box
outputs are set in a way that the system remains in “good states” forever, i. e.,
we are in the situation sketched above and we can be sure that the QBF-based
BMC procedure will never produce a satisfiable instance, independently from
the length of the unfolding. Thus, determining whether a graph fulfilling the
aforementioned properties exists answers the question of whether a design is
QBF-hard.



~s 0=~σ0
1

~s 1=~σ1
2

~Z0=~ζ02

~x0

~x1

~Z0=~ζ01
~Z0=~ζ0m

~Z1=~ζ11
~Z1=~ζ12

~Z1=~ζ1m

~s 1=~σ1
1

...

...
~s 2=~σ2

1 ~s 2=~σ2
m

k = 1





k = 2





~ξ01 ~ξ02

~ξ0m

~ξ11 ~ξ12

~ξ1m

Fig. 8. QBF-Hardness Graph [40].

In [40] it has been shown that the existence of a QBF-hardness graph can be
checked using a series of QBF formulas. Once the QBF-hardness of the design
under verification is proven, two options are considered. In case of a combined
01X/QBF-modeling an abstraction refinement procedure will identify more black
box outputs for QBF-modeling (in an extreme case yielding a pure QBF-modeled
problem) and repeat the QBF-based BMC procedure. If all black box outputs are
already QBF-modeled, the design is passed to a BMC tool supporting DQBF with
Henkin quantifiers providing the next level of accuracy of black box modeling.
Fig. 9 illustrates the complete verification flow.

5 Conclusion

In this paper, we have seen that unknown values appear at several points in
the design process of a digital circuit. We have presented different methods for
modeling such unknown values: (1) 01X-logic, which is efficient, but pessimistic
and over-estimates the set of signals which carry an unknown value, (2) quantified
Boolean formulas, which constitute an accurate formalism for modeling many
problems arising in the test of digital circuits, and (3) dependency-quantified
Boolean formulas, which are accurate if partial knowledge has to be taken into
account, e. g., when black boxes in a circuit design have only access to a subset
of the circuit’s signals.

References

1. Roth, J.P.: Diagnosis of automata failures: A calculus and a method. IBM J. Res.
Dev. 10(4) (1966) 278–291

2. Goel, P.: An implicit enumeration algorithm to generate tests for combinational
logic circuits. In: Proc. Fault Tolerant Computing Symposium. (1980) 145–151



partial
design

invariant

SAT-based BMC tool
using Craig interpolation

01X-modeling

01X-hard?

SAT?

unrealizability
proven

heuristically identify
black box outputs for

QBF-modeling

partial
design

invariant

QBF-based BMC tool

combined
01X/QBF-
modeling

set of black
box outputs

QBF-hard?

Henkin-based BMC tool

SAT?

Fig. 9. Workflow.

3. Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. IEEE
Trans. on Computers C-32(12) (1983) 1137 –1144

4. Larrabee, T.: Test pattern generation using Boolean satisfiability. IEEE Trans. on
Computer-Aided Design 11(1) (1992) 4–15

5. Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: Combinational test generation
using satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems 15(9)
(1996) 1167–1176

6. Czutro, A., Polian, I., Lewis, M., Engelke, P., Reddy, S.M., Becker, B.: Thread-
parallel integrated test pattern generator utilizing satisfiability analysis. Interna-
tional Journal of Parallel Programming 38(3-4) (2010) 185–202

7. Eggersglüß, S., Drechsler, R.: Atpg based on Boolean satisfiability. In: High Quality
Test Pattern Generation and Boolean Satisfiability. Springer (2012) 59–70

8. Wohl, P., Waicukauski, J., Neuveux, F.: Increasing scan compression by using
X-chains. In: Int’l Test Conference (ITC). (2008) 1–10

9. Ramdas, A., Sinanoglu, O.: Toggle-masking scheme for X-filtering. In: European
Test Symposium (ETS). (2012) 1–6

10. Ahmed, N., Tehranipoor, M.: A novel faster-than-at-speed transition-delay test
method considering IR-drop effects. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems 28(10) (2009) 1573–1582

11. Hillebrecht, S., Polian, I., Engelke, P., Becker, B., Keim, M., Cheng, W.T.: Ex-
traction, simulation and test generation for interconnect open defects based on
enhanced aggressor-victim model. In: Int’l Test Conference (ITC). (2008) 1–10

12. Muth, P.: A nine-valued circuit model for test generation. IEEE Trans. on
Computers C-25(6) (1976) 630–636

13. Flores, P., Neto, H., Marques Silva, J.: An exact solution to the minimum size
test pattern problem. In: IEEE Int’l Conf. on Computer Design (ICCD). (1998)
510–515



14. Jain, A., Boppana, V., Mukherjee, R., Jain, J., Fujita, M., Hsiao, M.: Testing,
verification, and diagnosis in the presence of unknowns. In: IEEE VLSI Test
Symposium (VTS). (2000) 263–268

15. Carter, J., Rosen, B., Smith, G., Pitchumani, V.: Restricted symbolic evaluation is
fast and useful. In: IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD).
(1989) 38 –41

16. Kundu, S., Nair, I., Huisman, L., Iyengar, V.: Symbolic implication in test generation.
In: Proc. Conference on European Design Automation. (1991) 492–496

17. Touba, N.: X-canceling MISR : An X-tolerant methodology for compacting output
responses with unknowns using a MISR. In: Int’l Test Conference (ITC). (2007)
1–10

18. Tang, Y., Wunderlich, H., Engelke, P., Polian, I., Becker, B., Schloffel, J., Hapke,
F., Wittke, M.: X-masking during logic BIST and its impact on defect coverage.
IEEE Trans. on Very Large Scale Integration (VLSI) Systems 14(2) (2006) 193–202

19. Elm, M., Kochte, M.A., Wunderlich, H.J.: On determining the real output Xs by
SAT-based reasoning. In: IEEE Asian Test Symposium (ATS). (2010) 39–44

20. Chou, H.Z., Chang, K.H., Kuo, S.Y.: Accurately handle don’t-care conditions in
high-level designs and application for reducing initialized registers. IEEE Trans. on
Computer-Aided Design 29(4) (2010) 646–651

21. Wilson, C., Dill, D., Bryant, R.: Symbolic simulation with approximate values. In
Hunt, W., Johnson, S., eds.: Int’l Conf. on Formal Methods in Computer Aided
Design (FMCAD). Vol. 1954 of LNCS. Springer (2000) 507–522

22. Kochte, M.A., Elm, M., Wunderlich, H.J.: Accurate X-propagation for test appli-
cations by SAT-based reasoning. IEEE Trans. on Computer-Aided Design 31(12)
(2012) 1908–1919

23. Hillebrecht, S., Kochte, M.A., Wunderlich, H.J., Becker, B.: Exact stuck-at fault
classification in presence of unknowns. In: European Test Symposium (ETS). (2012)
1–6

24. Erb, D., Kochte, M.A., Sauer, M., Hillebrecht, S., Schubert, T., Wunderlich, H.J.,
Becker, B.: Exact logic and fault simulation in presence of unknowns. ACM Trans.
on Design Automation of Electronic Systems (TODAES) 19(3) (2014)

25. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds. Frontiers in Artificial
Intelligence and Applications 185. In: Handbook of Satisfiability. IOS Press (2009)

26. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: IEEE/ACM Int’l Conf. on Computer Aided Design (ICCAD). (2002)
442–449

27. Biere, A.: Resolve and expand. In: Int’l Conf. on Theory and Applications of
Satisfiability Testing (SAT). Vol. 3542 of LNCS, Springer (2005) 59–70

28. Giunchiglia, E., Marin, P., Narizzano, M.: sQueezeBF: An effective preprocessor for
QBFs based on equivalence reasoning. In: Int’l Conf. on Theory and Applications
of Satisfiability Testing (SAT). Vol. 6175 of LNCS. Springer (2010) 85–98

29. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety
specs. In: Int’l Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI). Vol. 8318 of LNCS, Springer (2014) 1–20

30. Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods
for circuit synthesis. In: Int’l Conf. on Formal Methods in Computer Aided Design
(FMCAD), IEEE (2014) 31–34

31. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In:
ACM/IEEE Design Automation Conference (DAC), ACM Press (2001) 238–243



32. Jo, S., Matsumoto, T., Fujita, M.: SAT-based automatic rectification and debugging
of combinational circuits with LUT insertions. In: IEEE Asian Test Symposium
(ATS), Niigata, Japan, IEEE Computer Society (2012) 19–24

33. Jo, S., Gharehbaghi, A.M., Matsumoto, T., Fujita, M.: Debugging processors
with advanced features by reprogramming LUTs on FPGA. In: Int’l Conf. on
Field-Programmable Technology (FPT), Kyoto, Japan, IEEE (2013) 50–57

34. Smith, A., Veneris, A.G., Ali, M.F., Viglas, A.: Fault diagnosis and logic debugging
using boolean satisfiability. IEEE Trans. on CAD of Integrated Circuits and Systems
24(10) (2005) 1606–1621

35. Sülflow, A., Fey, G., Drechsler, R.: Using QBF to increase accuracy of SAT-based
debugging. In: Int’l Symposium on Circuits and Systems (ISCAS), Paris, France,
IEEE (2010) 641–644

36. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified Boolean formulae. In: IEEE
Int’l Conf. on Computer Design (ICCD), Asheville, NC, USA, IEEE Computer
Society (2013) 396–403

37. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite–State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. on Pro-
gramming Languages and Systems 8(2) (1986) 244–263

38. Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flexible
modeling of unknowns. IEEE Trans. on Computers 62(6) (2013) 1234–1254

39. Miller, C., Kupferschmid, S., Lewis, M.D.T., Becker, B.: Encoding techniques, craig
interpolants and bounded model checking for incomplete designs. In: Int’l Conf.
on Theory and Applications of Satisfiability Testing (SAT). Vol. 6175 of LNCS,
Springer (2010) 194–208

40. Miller, C., Scholl, C., Becker, B.: Proving QBF-hardness in bounded model checking
for incomplete designs. In: Int’l Workshop on Microprocessor Test and Verification
(MTV), IEEE Computer Society (2013)

41. Sauer, M., Reimer, S., Polian, I., Schubert, T., Becker, B.: Provably Optimal Test
Cube Generation Using Quantified Boolean Formula Solving. In: Asia and South
Pacific Design Automation Conference (ASPDAC). (2013) 533–539

42. Reimer, S., Sauer, M., Schubert, T., Becker, B.: Using maxbmc for pareto-optimal
circuit initialization. In: Int’l Conf. on Design, Automation & Test in Europe
(DATE), IEEE (2014) 1–6

43. Cook, S.A.: The complexity of theorem-proving procedures. In: Annual ACM
Symposium on Theory of Computing (STOC), ACM (1971) 151–158

44. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (prelimi-
nary report). In: Annual ACM Symposium on Theory of Computing (STOC), New
York, NY, USA, ACM (1973) 1–9

45. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Int’l Conf. on Design, Automation &
Test in Europe (DATE), Grenoble, France, IEEE (2015)

46. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Intl. Workshop on Pragmatics of SAT (POS), Vienna, Austria (2014)

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1970) 115–125

48. Turpin, M.: The dangers of living with an X (bugs hidden in your Verilog). In:
Boston Synopsys Users Group Meeting. (2003) 1–34

49. Ulrich, E.G., Baker, T.: The concurrent simulation of nearly identical digital
networks. In: Papers on Twenty-five years of electronic design automation. 25 years
of DAC (1988) 318–323



50. Waicukauski, J., Eichelberger, E., Forlenza, D., Lindbloom, E., McCarthy, T.: Fault
simulation for structured VLSI. VLSI Systems Design 6(12) (1985) 20–32

51. Antreich, K., Schulz, M.: Accelerated fault simulation and fault grading in com-
binational circuits. IEEE Trans. on Computer-Aided Design 6(5) (1987) 704 –
712

52. Lee, H., Ha, D.: An efficient, forward fault simulation algorithm based on the
parallel pattern single fault propagation. In: Int’l Test Conference (ITC). (1991)
946–955

53. Rudnick, E., Patel, J., Pomeranz, I.: On potential fault detection in sequential
circuits. In: Int’l Test Conference (ITC). (1996) 142–149

54. Schubert, T., Lewis, M., Becker, B.: Antom—solver description. SAT Race (2010)
55. Hillebrecht, S., Kochte, M.A., Erb, D., Wunderlich, H.J., Becker, B.: Accurate

QBF-based test pattern generation in presence of unknown values. In: Int’l Conf.
on Design, Automation & Test in Europe (DATE). (2013) 436–441

56. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Annual Symposium on Foundations of Computer Science, IEEE Computer Society
(1990) 746–757

57. Miller, C., Nopper, T., Scholl, C.: Symbolic CTL model checking for incomplete
designs by selecting property-specific subsets of local component assumptions. In:
Workshop “Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen” (MBMV), Universitätsbibliothek Berlin, Germany
(2009) 87–96

58. Nopper, T., Scholl, C.: Approximate symbolic model checking for incomplete
designs. In: Int’l Conf. on Formal Methods in Computer Aided Design (FMCAD).
Vol. 3312 of LNCS, Springer (2004) 290–305


