P i UNIVERSITAT
e DES
#=>" ALBERT-LUDWIGS- / SAARLANDES

UNIVERSITAT FREIBURG

AVACS - Automatic Verification and Analysis of
Complex Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Analysis of Large Safety-Critical Systems:
A quantitative Approach

by
Marc Herbstritt Ralf Wimmer
Thomas Peikenkamp Eckard Bode
Michael Adelaide Sven Johr Holger Hermanns
Bernd Becker

AVACS Technical Report No. 8
February 2006
ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)

Editors: Bernd Becker, Werner Damm, Martin Franzle, Ernst-Riidiger Olderog,
Andreas Podelski, Reinhard Wilhelm

ATRs (AVACS Technical Reports) are freely downloadable from www.avacs.org

Copyright © February 2006 by the author(s)
Author(s) contact: Marc Herbstritt (herbstri@informatik.uni-freiburg.de).

Analysis of Large Safety-Critical Systems:
A quantitative Approach*

Marc Herbstritt!, Ralf Wimmer!, Thomas Peikenkamp?, Eckard Bode?,
Michael Adelaide®, Sven Johr*, Holger Hermanns*, and Bernd Becker!

1 Albert-Ludwigs-University, Freiburg im Breisgau, Germany
{herbstri|wimmer |becker}@informatik.uni-freiburg.de
2 Kuratorium OFFIS e.V., Oldenburg, Germany
{thomas.peikenkamp | eckard.boede}@offis.de
% Carl von Ossietzky University, Oldenburg, Germany
michael.adelaide@informatik.uni-oldenburg.de
* Saarland University, Saarbriicken, Germany
{johr |hermanns}@cs.uni-sb.de

Abstract. The ever increasing complexity of systems requires combined
efforts with respect to analysis and verification to close the so-called veri-
fication gap. On the modeling side, to face this problem, expressive high-
level methodologies are used to manage system complexity. From the
analysis side it is therefore essential to also start at this level. Due to
powerful symbolic tools — often based on BDDs — consistent high-level
representations can be generated. The bottleneck for subsequent system
analysis, however, is still the incredible state space of such representa-
tions. This fact gains even more importance when the intended analysis
is bound to explicit tools, e.g., for a quantitative analysis using stochastic
model checking.

In this work, we are bridging the gaps between high-level system de-
scriptions of safety-critical systems and corresponding explicit state space
representations that can be handled by explicit quantitative analysis tools.
In a first step, our approach safely integrates failure behavior of safety-
critical systems into their high-level description. Then, structural reduc-
tions are applied. Manageable explicit representations are finally obtained
by a novel BDD-based symbolic branching bisimulation algorithm.

We provide experimental data demonstrating the efficiency of our meth-
ods: safety-critical systems whose size seems to be prohibitive for any
explicit analysis tool at the beginning are reduced by orders of magni-
tude, thus paving the way to quantitative analysis without losing relevant
information.

* This work was partly supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www . avacs.org for more information.

1 Introduction

The verification gap, i.e. the discrepancy between the modeling power and the
capability to analyze these models, is still widening (see e.g. [1,2]). High-level
methodologies like StaTemaTE [3] allow the design of very complex systems,
while verification tools can in general not keep pace with this trend. But espe-
cially for safety-critical systems, where faulty system behavior can lead at best
to financial losses but in the worst case has impact on humans, it is indispens-
able to prevent malfunctioning by rigorous system analysis. This analysis is
getting even more difficult when stochastic events must be taken into account,
i.e., when the occurrence of failures exhibits timed stochastic behavior.

The challenge for tackling these problems is not only to define interfaces for
the corresponding modeling and analysis tools, but to develop a clear semantic
flow that on the one hand enables the removal and reconstruction of parts
of the system consistently so that the system is manageable, and on the other
hand preserves all important system characteristics that are mandatory to check
the intended properties. A solution to this problem must be able to drastically
reduce the size of the system’s state space, since current quantitative analysis
tools are restricted to explicit domains.

Hence, the contribution of this work is a concept focusing on how statechart-
based system designs (in our case StaTEMATE descriptions) can be prepared and
reduced in a semantically consistent way such that a quantitative analysis can
be performed afterwards. A rough overview of our approach, that consists of a
discrete and a stochastic part, is depicted in Figure 1.

In the discrete part, we are starting with a Staremate design and correspond-
ing safety-relevant data (safety requirements, system failure modes, and con-
sequential safety-critical states) an intermediate representation is derived that
incorporates failure injection into the original design. Since from a requirement
point of view the resulting model contains a lot of redundancies, a failure-driven
cone-of-influence (COI) reduction is performed. This turns out to be an essential
step to generate manageable BDD representations for the resulting labelled tran-
sition system (LTS). The final step towards an explicit model is the application
of our novel symbolic branching bisimulation algorithm. Although bisimulation
minimization techniques are known to be ineffective for standard model check-
ing problems such as checking of invariant properties [4], in our context, we see
it as the central step in compressing LTS models generated from StaTEMATE to
the kernel relevant for quantitative analysis: The branching equivalence quotient
contains precisely the required information.

The stochastic part is not the main topic of this paper, but will be described briefly
in Section 3. In principal, an interactive Markov chain (IMC) is generated from
the branching bisimulation quotient. The stochastic distributions of the failures
are then integrated using a compositional approach, resulting in a continous
time Markov decision process (CTMPD). For this CTDMP a quantitative analysis
can be performed using stochastic model checking techniques. Please note that
the stochastic part is future work and is not described in detail in this paper but
will be published in upcoming publications.

Symbolic
- Symbolic LTS Branching (| (Small)
Minimization Quotient LTS

Statemate
description
Safety
requirements

Failure-modes

Failure
injection
reduction

]
Cone-of-influence

Stochastic Continous-Time - Interacti
. Markov Decision ﬂ Composition eractive
model checking Process P Markov Chain

Stochastic Domain

Fig. 1. Proposed tool flow for quantitative analysis of complex safety-critical systems.

The paper is structured as follows. Related work is discussed in Section 2. In
Section 3 we describe the complete concept for a high-level quantitative analysis
and the partial contribution of this paper to this concept. In Section 4 the com-
pilation of StatEmATE descriptions together with failure ingredients into an LTS
is described. Then, Section 5 covers our symbolic branching bisimulation. Our
approach is extensively evaluated in Section 6. Finally, the paper concludes with
Section 7. Details about the examples used for the evaluation of our approach
are described in the appendix.

2 Related Work

With the advent of statechart-based languages like Statemarte [3] it became
possible to model large complex systems, preserving structural and functional
views of the intended design under clear semantics. For non-stochastic domains
there already exist verification frameworks, e.g. [5]. On the modeling side they
have been extended to include failure modes attached to the model, and also on
the analysis side parameterized verification algorithms have been developed to
identify failure causes and consequences to allow, e.g., an automatic derivation
of fault trees [6-9]. However, integrating stochastic events in a semantically
sound manner is still a challenge. Several approaches exist, see [10] for an
overview. Nevertheless, a link to affective stochastic verification tools has not
been established so far.

One of our core steps is the application of branching bisimulation which was
introduced in [11]. The basic algorithm was developed by Groote and Van-
draager in [12]. Although there exists a lot of work regarding symbolic strong
bisimulation, e.g., [13,14], mostly focusing on process algebras, no literature
can be found on BDD-based implementations for branching bisimulation. The
work of Bouali et al. [13] mentions very shortly an extension of their approach

to branching bisimulation, but no details or even experiments are presented. A
novel approach using a signature-based fixpoint algorithm was presented by
Blom and Orzan in [15] for distributed computation of a quotient given an ex-
plicit state space representation. We analytically compared the two approaches
of Groote/Vandraager and Blom/Orzan and found that the latter can be used as a
basis for a symbolic, i.e., BDD-based, implementation. First results have shown
that the symbolic approach is able to overcome limitations of explicit algorithms
[16]. We extend these results and demonstrate that a symbolic approach adapted
to the specific problem structure can be applied very successfully.

Research for quantitative system analysis has seen tremendous progress in the
last decade resulting in publicly available tools, e.g., Ermcc [17], Prism [18],
BceMIN, [19], and Caspa [20]. But all of them are affectively bound to explicit
state space representations. Even Prism that incorporates clever symbolic data
structures is finally limited to explicit domains, since the underlying numerical
analysis must store explicit state informations [21]. Hence, the advantages of
symbolic data structures are foiled. Accepting the fact, that quantitative anal-
ysis tools are bound to explicit state space representations, leads to the un-
derstanding that symbolic branching bisimulation is a mandatory step towards
quantitative analysis of large systems.

3 Context

We are aiming at enabling quantitative failure analysis of real, industrial-size
verification models. The cornerstones of the overall approach we pursue are as
follows: (1) High-level models are generated from STATEMATE system descrip-
tions. (2) After property preserving aggregations the resulting models are (3)
enriched with stochastic timed quantities representing external delays — in par-
ticular, but not exclusively, component time-to-failure distributions. They are
(4) analyzed via stochastic model checking with tools such as Ermcc [22] or
Prism [18]. In its full generality this approach generalizes both ordinary model
checking-based verification and quantitative system analysis with fault trees
and similar techniques practiced in industry in one modelling framework. First
experiments with this approach have shown principal feasibility [23,19], but
have also identified the main bottleneck in this 4-step modeling and analysis
trajectory: Prior to stochastic model analysis, aggressive aggregation steps are
required, which compress the model under consideration to the bare minimum
of details needed for the stochastic analysis (see step (2) above). The reason is
that state-of-the-art stochastic model checking relies on approximate solution
algorithms for systems of linear equations or inequations [24-26]. These algo-
rithms, even if implemented in a symbolic or semi-symbolic setting [21] are
restricted to model sizes in the range of 10° to 10° states.

To provide such aggressive aggregations we are applying the concept of branch-
ing bisimilarity. Although it has been reported that (strong) bisimulation mini-
mization is ineffective for standard model checking problems such as checking
of invariant properties [4], we see it as a central step in compressing LTS models

generated from STATEMATE, since the branching equivalence quotient contains
precisely the information required in our approach. This is due to the fact that
branching bisimulation preserves CTL without Next-state operator [27]. As ev-
ident from the experiments in Section 6, building the branching bisimulation
quotient with our novel algorithm allows us to accomplish the above step (2):
we manage to compress the model to the required range, thereby preserving all
interesting model properties. In particular nested timed reachability properties
like “The probability of reaching a state within 2 minutes from where it is always
possible to survive a catastrophic failure for at least 20 minutes is greater than
p” are preserved. These properties, known as survivability, are of prime interest
for safety-critical systems.

The overarching model for our tool chain is the model of interactive Markov
chains (IMC), which contains ordinary LTS and ordinary Markov chains (in
continuous time) as fragments. Therefore, building the quotient of an LTS with
respect to branching equivalence is assured to preserve properties of an appro-
priate CTL-like logic on IMC, that is, a conservative integration of CSL-X [25] on
Markov chains, and PCTL-X on Markov decision processes [24]. In particular,
nested timed reachability properties like “The probability of reaching a state
within 2 minutes from where it is always possible to survive a catastrophic
failure for at least 20 minutes is greater than p” are preserved.

Finally, the IMC and the failure distributions are combined in a compositional
way (see [23]) and results in a continous-time Markov decision process for which
stochastic model checking can be applied, e.g., to check survivability properties.
More details on how to model check such properties can be found in [19].

4 Model Construction

In this section we describe the compilation of StaremaTE designs together with
a specification of failure occurences into a labelled transition system (LTS).
Additionally, we describe reduction mechanisms to get manageable BDD rep-
resentations of the corresponding LTS.

4.1 Compilation

The upper left part of Figure 1 shows the principal translation and analysis
steps necessary to successfully perform the reduction. The main ingredients of
the problem specification are, first, a STATEMATE model specifying the nominal
behaviour of the system, second, a number of failures, that are injected, leading
to a model encompassing also the disfunctional behaviour and, third, a speci-
fication of safety critical states. The rationale for keeping the failures separate
from the model is already described in [9]. From an analysis point of view it
is important to keep order and branching of failures untouched in all of the
following transformation steps. This is due to the need of extracting failure
sequences for backtranslation in a post-analysis step, since the real system un-
derlies some inherent timing behavior. In the first step of the compilation the

StaTEMATE model is translated into a simple intermediate language by replac-
ing graphical items of the specification language by state variables, replacing
structured data types by simple ones, and discretizing continuous variables (see
[28] for details). The generated intermediate model is intended to represent the
nominal behaviour. It can be viewed as a LTS M = (S, A, T) where S is a finite
set of states, A a finite set of actions including the unobservable action 7 and
T C SxAXxSisasetof transitions. Please note that the t-action will play a crucial
role in our approach, since it is used for abstracting the nominal behavior of the
system.

4.2 Failure injection

In a second step we are injecting failure behavior in our model by an instantiation
of elements of a failure library. The behaviour associated with these elements
is parameterized so that, e.g., delay failures have a parameter indicating the
(maximal) delay introduced with the particular instance of the failure. The
concrete values of these parameters are specified during instantiation. Please
note that we don’t actually specify the behaviour of the injected failures here,
since it is sufficient to know that the system extended with a set of failures
F “includes” the original system in the following sense: A labeled transition
system M’ = (5,A’,T") is called an F-extension of M = (S, A, T) iff A’ = AUF,
T"2T,and Vs € SYf e F 3" € S: (s, f,s") € T". It should be noted that failures
can occur at any time according to this definition, the rationale being that the
occurence of failures has not been taken into account during model construction
and therefore we may not exclude some occurences of failures a priori.

4.3 Safety-critical states

After introducing the failure behavior, we are now able to identify safety-critical
states, i.e., states where catastrophic failures occur according to the safety re-
quirements. This can be used as a problem-specific initial partition of the state
space into non-critical and critical states, and will be used as a starting point for
our branching bisimulation algorithm described in Section 5.

4.4 Cone-of-influence reduction and introduction of 7-actions

The specification of safety-critical states can also be used for strong reductions
on the size of the model by performing a cone-of-influence reduction (COI)
w.r.t. these states [29]. Whereas on the symbolic representation of the model
the reduction is achieved by eliminating variables, on the transition system the
reduction amounts to collapsing a huge number of paths. Being a standard
technique in model checking, this step may look somewhat unusual in the
context of the quotient construction outlined in Section 5. However, since we
are only interested in the contribution of failures to (the reachability of) safety-
critical states, this step is consistent. Our experiments show that COI reduction

opens the gates for handling large designs and additionally is leading to small
models. A further reduction on the symbolic representation is obtained by
replacing all non-failure actions, i.e., labels not in F, by the unique 7 action.
The resulting transition system together with the initial partition is then passed
to the symbolic branching bisimulation algorithm being described in the next
section.

4.5 BDD generation of LTS

After the reductions steps the reduced model is translated into a model with
binary values only. The result is a BLIF-MV file suitable for the VIS model
checker [30]. It is used to flatten the hierachy of the design and to transform
the net-list-like input format into a relational presentation of the transition
relation. The generation of the monolithic transition relation, that must be pro-
vided to the symbolic branching bisimulation algorithm, is improved by using
a partitioned transition relation [31] for optimization techniques like variable
quantification, since many of these BDDs depend only on some of the model
variables. All this steps are performed using VIS. At the end we have a symbolic
BDD-representation of our LTS.

5 Symbolic Branching Bisimulation

In this section we describe the implementation of our branching bisimulation al-
gorithm that works uniformly with BDDs. We assume that the reader is familiar
with standard BDDs and the corresponding algorithms. For a comprehensive
treatment see e.g. [32].

5.1 Basic algorithm

To shorten writing we introduce some notations. For a labeled transition system
M = (5,A,T) and a partition P of S we write: s 5t for (s,a,t) € T, % for the
reflexive transitive closure of —, % for a transition that is inert w.r.t. P, and %
for the reflexive transitive closure of % Inert means that the source and target

state of a transition are contained in the same block. By P(s) we denote the block
of P that contains the state s, i.e. P(s) = {t € S|dB € P : s € BAt € B}. Abranching
bisimulation according to [33] is defined as follows.

Definition 1. Given a LTS M = (S, A, T). Then, a relation R C S X S is a branching
bisimulation if R is symmetric and for all s1, s, t1 € S the following holds: If (s1,t1) € R

a
and s; = s, then

either a = 1tand (sp,t1) € R

or A, bheS:ih St D hAsE)ERA (S,) ER

Algorithm 1 Computation of the coarsest branching bisimulation

1: procedure BRANCHINGBISIMULATION
2 Py < 0, P « initial partition
3 while P,; # P do

4 Pold « P

5: for all blocks B of P,;; do
6: P « P\ {B} Usigref(B)
7 end for

8 end while

9 return P

10: end procedure

In [15], Blom and Orzan presented a novel approach for the distributed com-
putation of branching bisimulation. Their algorithm is based on analyzing the
signatures of states w.r.t. to the current partition. The signature of a state is like
a fingerprint identifying possible actions that can be executed in this state. To
preserve branching bisimilarity, the unobservable action T must be taken into
account by ignoring sequences of t-actions that never leave the corresponding
partition block of the state. Then, a refinement of a partition can be computed
by dividing blocks by identifying states that have the same signature. Formally,
this is captured in the following definition.

Definition 2. Let P = {By, ..., B, 1} be a partition of the state space S. The signature
sigp(s) of a state s regarding the partition P is defined as

sigp(s) = {(a,B;)|3s",s” €S :s T? s 58" eB; A (@a#1tVs¢B)}

The refinement sigref(P) of a partition P regarding the signatures of the states is defined
as

sigref(P) = {Is' € S| sigp(s) = sigp(s)} |5 € SJ.

The fixpoint algorithm of [15] is sketched in Algorithm 1. But in contrast to the
original algorithm of Blom and Orzan, we had to modify the algorithm such
that we can start with an initial partition, as already mentioned in Section 4, for
separating critical and non-critical states. This is not a restriction, but a useful
extension of the algorithm, since we are now able to initially partition the state
space according to the analysis problem. Additionally, we have integrated a
simple, but efficient optimization technique that was not applied in [15]. The
idea is to handle not all blocks together, but to take one block at a time. For
this block the signature refinement is computed and the corresponding result is
updated in situ in the current partition. This block forwarding technique results
in impressive speedups within our experiments due to the reduced number of
iterations of the fixpoint algorithm (see section 6.1 for details).

Now we will turn to symbolic representations of LTSs and how we can compute
the branching bisimulation quotient on the BDD-level.

Algorithm 2 Computation of the Signatures

1: procedure SIGNATURES(states o, transitions 7, partition P)
2 T 2 inert(s,) = (a(s) A o(t) AT (s, a,t)) .Cofactor(a = 1)

3 reltrans(s,a, t) < a(s) AT (s,a,£) A =T inert (S, t)

4: targets(s, a, k) < 3t : (reltrans(s,a, t) A P(t, k))

5: C+(s,t) « computeClosure(T ¢inert)

6: S(s,a,k) « 3t : (C.(s,t) A targets(t,a, k))

7. return S
8: end procedure

5.2 BDD representations

We have to represent the state space S, the transition relation T, the partition P,
and the signatures sig as BDDs. Regarding the BDD for the partition we assign
a unique number to each block and use a binary encoding for the states’, the
actions (variables a) and the block numbers (variables k). Then, the state space
is encoded by a BDD ¢ such that o(s) = 1 iff s € S. Analogically, the transitions

relation is represented as a BDD 7 with 7 (s, a,t) = 1 iffs 5 t. For the partition
we have a BDD P with P(s, k) = 1iff s € By, and for the signatures we get a BDD
S with S(s, a, k) = 1iff (a, By) € sig(s).

Signature Computation. The algorithm for the symbolic computation of the sig-
natures for a set of states regarding a partition P is shown in Algorithm 2. In
lines 2 and 3 the transition relation is split into inert 7-transitions (7 inert) and
the remaining ones (reltrans). Thus, reltrans contains all transitions that satisfy
the condition a # 7 or connect two different blocks of the current partition. Next,
the target state of the transition is substituted by its block number (line 4). All
those states must be taken into account that have an outgoing relevant transition
by arbitrarily many inert 7-transitions. For this, in line 5, the reflexive transitive
closure of inert 7-transitions must be computed (e.g., using [34]). Finally, the
states of the closure are added to the signatures.

5.3 Refinement

Given the BDD for the signatures of all states, we will now compute a new
partition where all states with the same signature are merged into one block. To
do so, we are placing the s;-variables at the beginning of the variable order of
the BDDs. Then, level(s;) < level(a;) and level(s;) < level(k;) hold for all 7, j and
I. This enables us to exploit the following observation. Let s be the encoding
of a state and v the BDD node that is reached when following the path from
the BDD root according to s. Then, the sub-BDD at v is a representation of the
signature of s. The point is, that for all states having the same signature as s
the corresponding paths lead also to this BDD-node v. Therefore, to get the

5 Variables s, t, and x are used as current state, next state, and auxiliary variables.

Algorithm 3 Computation of the Refined Partition

1: procedure RerINE(signatures S)

2 if S € ComputedTable then return ComputedTable[S]
3 end if

4: x « topVar(S)

5: if x = s; then

6: low « Refine(Sx)

7 high « Refine(Sy)

8: result « ITE(x, high, low)

9: else

10: result « newBlockNumber()
11: end if

12: ComputedTable[S] « result;
13: return result

14: end procedure

new block that contains s and all other states having the same signature as s,
we simply have to replace the sub-BDD at v by the BDD for the encoding of
the new block number k. Algorithm 3 sketches the description above. It makes
use of a function newBlockNumber that returns the BDD-encoding of a number
that has not been already used within this iteration. The corresponding internal
counter is reset each time we call Refine. When the node is not labeled with a
state variable s;, the sub-BDD at this node represents a signature that we have to
substitute with a new block number. Otherwise, when the node is labeled with
a state variable we call the algorithm recursively for the two sons of that node.
Furthermore, the algorithm relies on a dynamic programming approach using
a so-called ComputedTable to prevent redundant computations.

5.4 Quotient LTS extraction

In the end, we only have to extract the quotient LTS from the final partition.
For this, let ° be a partition — represented as described above as a BDD — with
sigref(P) = P. To extract the quotient systems regarding this partition, we have
to collapse the states of each block into one new state whose encoding is the
same as the block number:

Onew(s) := [k — s](3s : P(s, k))
The new transition relation can be computed as follows:

R(s,a,t) :=[k - t]@t: T (s,a,t) AP, k)
T new(s,a,t) := [k — s](Ts : R(s,a, t) A P(s, k))

The notation [k — t] means that the k-variables must be renamed to the corre-
sponding t-variables.

10

6 Experimental Results

In this section we present and discuss our experimental results that we have
performed first for process algebraic system descriptions as a pre-evaluation,
and secondly for safety-critical StaTEmATE designs.

6.1 Evaluation of Symbolic Branching Bisimulation

To check the efficiency of our symbolic branching bisimulation we performed
preliminary experiments on a process algebraic description for a Kanban sys-
tem [35] that models a production environment having buffers for a parame-
terizable number of workpieces at each machine. To generate symbolic BDD-
representations we have applied CASPA [20]. We performed two series of ex-
periments with two different configurations of the Kanban system. In the first
configuration we have hidden all internal process actions, such that only the
synchronization actions were visible. This kind of configuration could be of
interest when inter-process communication only is analyzed. In the second con-
figuration we have hidden all actions but the actions that are related to the first
of the four processes. The motivation for this configuration is that one only
wants to analyze the first process and likes to ignore the others. More details
about the Kanban example can be found in Appendix A.

Since we are not aware of any existing symbolic branching bisimulation tool, we
compared our symbolic branching bisimulation tool SiGrer against BccMin [19]
from the Capp toolbox [36]. BccMIn provides the explicit Groote-Vaandrager
algorithm. Since BccMIN requires as input an explicit description of the transi-
tion system, we had to generate a file containing all transitions explicitly (in the
.bcg format).

Tables 1 and 2 show the results for each configuration.® In both tables, column 1
denotes the number of workpieces along which the Kanban description can be
parameterized. The second column gives the original number of states encoded
in the LTS generated from Casra. As it is shown in column 3, the state space
contains also unreachable states. 7 Although the number of states is already
impressive, the corresponding number of transitions is even always one order
of magnitude bigger. The size of the bisimulation quotient is given in the last
two columns. It becomes clear that these models exhibit a large amount of
compression potential regarding branching bisimilarity. In the middle of Table
1 the performance values of BcGMIN and SIGREF are given in terms of memory
consumption and CPU runtime. For instances having more than 20 million
states, BccMIn fails although the bisimulation quotient itself is very small.
Clearly, the reason is that BccMin cannot handle the original LTS explicitly.

® The experiments were performed on an AMD Dual Opteron Processor with 2.6GHz
and a main memory limit of 3 GB under Debian Linux.

7 Unreachable states are a typical artifact immanent to symbolic encodings, but incon-
venient in explicit domains.

11

"uapp1y axe ssadoxd 311y S 0} Paje[aI SUOTOR S} NG [dISYM WdISAS uequed] 9Y) 10§ S}NSAY ‘g d[qeL

0099¢e 0svvs||— nowLw (|sgg WeG Y9y |dIN 181 |01FEC8Z |[o01 - 069 |o10T - G6°C|SOCTI8 |01 - CC¥||8
09¢1Z1 0088¢||— jnoweuwr i sqT WO U6 |dIN ZIT |00€CSLY ||o0T - ¥8°C |01 - 99°C [0V0L¥E |01 - 89°C||Z
89664 CLIVL||— jnowLwr 1s/q WC UYL |dIN VL |CETT99C ||o01 - F0'T |01 - CL'T |F90¥ETL |g01 - ¥9°C||9
0ceee L9 ||SY0 WET|dIN 007C||S6Y W6 dIN 99 [C0SC6cC ||L680EE |01 - 9€'T |CLVSY (01 -89°1||9
00611 0¥9C ||Scy e |[dIN PLVL||sET W] dN ¢ |cereree ||0CC98 (01 -99°2 |986C1 LO1-09°T||¥
o0ove 008 |[|S9¥'01 |dIN¢€6 ||SYST AN VS |PS8L68T ||07691 90T - ¢L'Y |0T6C 90T - C0'T||€
089 00C (|ses’0 |dIN8 S0v°0 dN ST [P7980¢€ 9¢1¢ 96vveC |09% 808¢9 4
89 [43 SZ10 |[dIN€ S¢0°0 dN6 [81¥61 L11 916 (04 94¢ L
suontsuen|sajeysoumny [Krowsu [[awn [£zowawi|yead qag|[arqeyoeas]fe a[qeyoeai|fre d
juenonb ‘usiq NIJA90g ITADIG suonIsuen so1e3S
“USpPpIY a1e suonde [eusajur ssadoid areym wWelsAs uequey] ay 10§ synsay ‘I d[qeL
8ClLave L1C89||— nowsu ||S00 Weg YLT|dIN ¥¥C [8G8T8CIT |01 - IS'T |o10T - 06C|g01 - €€'T |01 - CCF||8
a8¢ceLl 9avac||— nouwew ||s9¢ Wey Uy |dIN 7T (8€74€0S ||¢01 - 09°F |01 - 19°C |01 - 9T'F |01 - 89°C||Z
¥8482 0T0ZT||— nowLut ||syg WOy AN 9Z |CIeV0LC |[s0T - ST'T [601-89°T |01 -CL'T |01 - ¥9°C||9
g6L1¢€ 99¢/ ||S8Y WZ|dIN G9€C|[SGT W6 AN 29 |09%E8VC ||,01-F¥'C |01 - €C'T 0T - ¥S°C |,01-89°T||S
ce601 G8/7T ||S9F WIT|dIN LST1||S8E W] AN €9 |808€TEC |[o01-86°C |01 ¥V L |SLVPSY |01 -09°1(|¥
896¢ ¢/8 ||SeL'8 |dINT6 |[SOT'TT AN 6S |0€9CICC (|00¥9FF |40 - 99°'F |00¥89 90T - 20'T||€
(45 90C ||SLV0 |AIN 8 $89°0 AN €C [2LESey 0¢18¢ yeviee |009% 808€9 4
144 jid4 S61'0 [dIN€ s¢0°0 dN6 [Tee9T 919 ¥06 091 94¢ 1
suontsuen|sajeys[[oum [Lrowow [Joun [£rouwawi|yead gag|[orqeyoea]ire a[qeyoeailfe d
jusnonb “umsiq NIA9Og IADIG suonsuen sojeIs

12

without block forwarding||with block forwarding
p||# iterations time [s]||# iterations| time [s]||factor
1 5 0.02 4 0.02|| 1.00
2 8 0.57 6 0.58|| 1.00
3 11 17.14 7 11.20|| 1.53
4 14 181.33 8 98.02|| 1.85
5 17 1243.29 8 555.04|| 2.24
6 20 6811.16 8 2423.90| 2.81
7 23 34925.16 10| 17375.70|| 2.01
8 26 137186.60 10| 43140.44| 3.18

Table 3. Comparison of SiGrer with and without block forwarding for the first Kanban
configuration where all but process internal actions are hidden.

But it is interesting to see that our symbolic tool SiGrer handles instances of up
to 4 billion states and nearly 30 billion transitions. In particular the memory
consumption of SIGREF is very robust: for the largest instance we have a BDD
peak node of about 11 million, and for all others it is less than 8 million.

Tables 3 and 4 give details about the performance of our block forwarding
optimization as described in Section 5.1. In columns 2 and 4 the number of
iterations of the fixpoint algorithm for branching bisimulation are given having
block forwarding disabled and enabled, respectively. Columns 3 and 5 give
the corresponding overall CPU runtimes. The speedup factor is given in the
last column. For the second Kanban configuration (Table 4) disabling block
forwarding is always better. But for the real time consuming instances, i.e.,
(p = 5), enabling block forwarding is only 20-30% worse, especially for p = 8 we
only lose 12%. The picture is different for the first Kanban configuration (Table
3). There, block forwarding always yields a tremendous speedup. For the larger
instances (p > 5) the speedup factor ranges from 2.01 to 3.18. Especially for
p = 8, SiGrer having block forwarding enabled is more than three times faster.
Putting the results of Tables 3 and 4 together, it is clear that block forwarding
should be enabled.

6.2 Evaluation for safety-critical STATEMATE designs

Due to the promising results from the experiments of Section 6.1, we continued
to further validate our approach for StatemaTe designs that focus on typical
safety-critical domains, e.g., train systems and avionics.

Benchmarks. We have developed novel models stemming from the European
Train Control System (ETCS) specification: ETCS-1,ETCS-2,ETCS-3. These bench-
marks model a scenario regarding the communication between trains and the
Radio Block Centers (RBCs) (see [37] for details about the ETCS specification
which is part of the ERTMS project). The analysis tackles the problem of col-
liding trains on the same track. The example is scalable regarding the number

13

without block forwarding||with block forwarding
p||# iterations time [s]||# iterations| time [s]||factor
1 4 0.01 4 0.02|| 0.50
2 4 0.31 4 040 0.78
3 4 4.18 4 4.54(0.92
4 5 52.15 5 73.45 0.71
5 6 507.31 6 589.89|| 0.86
6 7 3843.31 7| 5337.93| 0.72
7 8 26742.47 8| 33015.39|] 0.81
8 9 148872.57 9| 169173.37|| 0.88

Table 4. Comparison of SiGrer with and without block forwarding for the second Kanban
configuration where all actions but the actions related to the first process are hidden.

of trains whereby we used 1, 2, and 3 trains. Especially ETCS-3 samples a sce-
nario of realistic size. From the ARP 4761 case study [38] we have taken two
benchmarks (BS-S,BS-P) that model a braking system from an airplane. They
are about the correct functioning between the pilot’s braking pedal and the hy-
draulic pressure given to the wheels of the airplane. The benchmarks CTRL and
CTRL-A are derived from a redundancy controller that is taken from another
industrial avionics project. All, but the CTRL, benchmarks are made publicly
available via our website [39] by providing the StatEmate working areas, the
intermediate BLIF-MYV files, and XML descriptions of the BDDs for the original
LTS and its bisimulation quotient. More details about the ETCS and the braking
system example can be found in Appendix B and C.

Evaluation. In Tables 5 and 6 we have compared the generated LTSs regarding
the failure-driven cone-of-influence reduction as described in Section 4.8 Col-
umn 1 denotes the benchmark. Column 2 (3) refer to all (reachable) states, and
column 4 (5) refer to all (reachable) transitions’. Because 7-actions play a crucial
role for branching bisimulation, they are listed in columns 6 and 7, respectively.
The tables indicate that typically the number of failure (i.e. non-7) transitions
strongly exceeds the number of 7-transitions. This is due to the failure injection
mechanism that introduces for each nominal (i.e. T) action a number of failure
actions proportional to the number of failures. The results clearly show that COI
reduction reduces the generated state spaces immense, and for the two largest
instances, ETCS-3 and CTRL-A, we were not even able to generate the LTSs
without COI within 48 hours CPU running time.

Finally, Table 7 contains the results for the whole proposed tool flow, including
COI reduction, LTS generation, and symbolic branching bisimulation. At first,
wehave applied our tool SM2Lrts that generates a BDD-based LTS representation
out of a StatEMATE description together with the failure modes according to
Section 4. Sm2Lrs is built upon the VIS verification framework [30]. Please note

8 The experiments of Table 5, 6, and 7 were performed on a Sun-Fire-V490 running
Solaris 5.10 with a main memory limit set to 4GB.
% A transition is reachable if it emanates from a reachable state.

14

states transitions T-transitions
all [reachable] all [reachable] all [reachable

ETCS-1 [[9]] 8.39-10° 1056 2.68 - 10°| 337920] 2.68 - 10° 33792
ETCS-2 |[17]| 2.2-10"| 428112(4.05-10'°| 7.89-10°|2.25 - 10| 4.38 - 108
ETCS-3 ||25 — — — — — —
BS-S 13| 4.19-10°| 488032| 1.88-10°| 2.19 - 10%| 1.34 - 108| 1.56 - 107
BS-P 17//1.72 - 10'9| 1.85-10%| 9.9-10'|1.06 - 10"| 5.5-10'| 5.92 - 10°
CTRL [[11][9.01-10%| 139623|2.16 -10'| 3.35-10°(/9.01 - 10| 279244
CTRL-A|[22 — — — — — —
Table 5. LTS generation without cone-of-influence reduction.

Model ||#a

states transitions T-transitions
all [reachable] all [reachable] all [reachable

ETCS-1 || 9| 4.19-10° 1056 1.34-10°| 337920(1.34 - 10% 33792
ETCS-2 ||17|| 5.5-10"| 428112(1.01-10'| 7.89 - 10°|5.63 - 10'#|4.38 - 10%
ETCS-3 ||25/7.21 - 10'¢| 1.59 - 108(6.14 - 10?2|1.35 - 10'4|2.36 - 10?!| 5.2 - 10"
BS-S 8 512 320 9216 5760 1024 640
BS-P 17/|1.72- 10| 1.85-10%|6.18 - 10" | 6.66 - 10°|3.44 - 10'°| 3.7-108
CTRL ([11|[2.75-10"| 139622[2.64-10%| 1.34-107| 2.2-10%| 1.12- 10°
CTRL-A|22|2.75 - 101 | 1.51-10°(5.06 - 10'3| 2.78 - 108| 2.2-10'%| 1.21 - 107
Table 6. LTS generation with cone-of-influence reduction.

Model ||#a

that our proposed COI reduction is also performed by Sm2Lts. Secondly, we
applied Sicrer for further minimization. Therefore, the two three-fold columns
in Table 7 give details about the performance of SM2Lrs and SIGREF, respectively.
For both tools we recorded the peak number of BDD nodes, upper bounds for
memory consumption, and CPU running times.!? Again, the last two columns
show the size of the corresponding bisimulation quotient.

The overall results for the size of the branching bisimulation quotient show that
we are able to minimize the systems up to a factor of 2 - 102 for ETCS-3. Most
important is, however, that the resulting state spaces for all examples lie in the
range that can be handled by explicit tools.

Sm2LTs has a very good performance and is finishing in all cases within some
minutes. The memory requirements of SM2Lts generally seem to be harmless,
although for CTRL-A we had to spend 2GB. But the results show that the
computational complexity lies in computing the branching bisimulation.
However, SiGReF terminates for all but CTRL-A with a reasonable memory con-
sumption. The time required by SiGrer ranges from seconds to several hours.
Unfortunately, we fail on the CTRL-A example, but this also shows that our
examples are definitely non-trivial. But even the long runtimes for the large
ETCS-3 example are acceptable, if we recall the tremendous state space reduc-
tion. Especially, ETCS-2, ETCS-3, BS-P, and CTRL are far out of scope for explicit
bisimulation tools.

10 These numbers refer to the translation from BLIF-MV to LTS using VIS.

15

| Sm2Lrs SIGREF || bisim. quotient

[BDD peak[memory[time|[BDD peak] memory] time||states[transitions
ETCS-1 15330] <64 MB[0.8s 181916] <64 MB 0.5s 50 739
ETCS-2 183960| <64 MB| 13.2s|| 2.22-107|<512 MB 4m 37s|| 1311 48830
ETCS-3 566188|<128 MB| 22.2s|| 1.15-10%| <2 GB|14h 7m 39s||35841| 3.13-10°

Model

BS-S 3066| <64 MB 0.2s 22484| <64 MB 0.1s 6 29
BS-P 134904| <64 MB 8.4s|| 7.64-107| <2GB 47m 29s|| 1176 42812
CTRL 1.33-10°|<128 MB|6m 11s|| 2.73-10 <1 GB|1h 21m 57s|| 9626 653291
CTRL-A|| 1.27-107| <2 GB|5m 40s — | memout — — —

Table 7. Results for LTS generation from STATEMATE using cone-of-influence reduction
and subsequent branching minimization.

As a conclusion, the results are very promising and clearly show the feasibility
of our approach.

7 Conclusions

In this work we have presented a method to “shrink-fit” extremely large safety-
critical systems to a size that makes them feasible for quantitative analysis.
Our approach is based on an efficient compilation of Statremare designs and
corresponding failures into a BDD-based LTS representation which is further
processed using symbolic branching bisimulation. We have performed various
experiments showing that we are able to reduce systems of several billion states
to small models, thereby preserving relevant system characteristics which are
mandatory for a subsequent quantitative analysis.

Future work will further concentrate on implementing the remaining stochastic
parts to complete the big picture.

Acknowledgements

This research was to a great extent only made possible by inspiring discussions
with our colleagues, especially Erika Abraham. Additionally we would like to
thank Hubert Garavel for providing us insight into his most interesting work.
Furthermore, we are grateful to Markus Siegle and Matthias Kuntz for the sup-
ply of their CASPA tool. Last but not least, we’d like to thank Matthias Pretzer
for making available the braking system example, and Samuel Wischmeyer for
documenting the benchmarks.

References

1. Kunz, W.: State-of-the-art in Equivalence Checking (2003) Invited tutorial, Seminar
on Formal Verification Methods (Roeros, Norway).

2. Smith, S.: 2005: The Year of Verification Reuse (Jan 27 2005) online at:
http://www.techonline.com/community/ed _resource/feature_article/37575.

3. Harel, D., Politi, M.: Modelling Reactive Systems with Statecharts: The STATEMATE
Approach. McGraw-Hill (1998)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In Pierre, L., Kropf, T., eds.:

Proc. of CHARME. Vol. 1703 of LNCS. (1999) 338-341

. Bienmiiller, T., Damm, W., Wittke, H.: The STATEMATE Verification Environment -

Making It Real. In: Proc. of CAV. Vol. 1855 of LNCS. (2000) 561-567

. Bozzano, M., Villafiorita, A., Akerlund, O., Bieber, P, Bougnol, C., Bode, E.,

Bretschneider, M., Cavallo, A., Castel, C., Cifaldi, M., Cimatti, A., Griffault, A.,
Kehren, C., Lawrence, B., Liidtke, A., Metge, S., Papadopoulos, C., Passarello, R.,
Peikenkamp, T., Persson, P, Seguin, C., Trotta, L., Valacca, L., Zacco, G.: ESACS: An
integrated methodology for design and safety analysis of complex systems. ESREL
(2003)

R Akerlund, O., Engblom, J., Werner, B., Bieber, P, Castel, C., L.Sagaspe, Seguin, C.,

Bode, E., Liidke, A., Peikenkamp, T., Bolzano, M., Bretschneider, M., Cruz, M.ED,,
Frisk, M., Metge, S., Papadopoulos, C., Trivedi, H., Cavallo, A., Cifaldi, M., Gauthier,
J., Griffault, A., Lisagor, O., Person, P.: ISAAC, a framework for integrated safety
analyses of functional, geometrical and human aspects. ERTS (2006)

. Vesely, WE., Goldberg, F,, Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. NUREG-

0492. U.S. Nuclear Regulatory Commission, Washington DC (1981)

. Peikenkamp, T., Bode, E., Briickner, 1., Spenke, H., Bretschneider, M., Holberg, H.:

Model-based Safety Analysis of a Flap Control System. In: Proc. of INCOSE, Toulouse
(2004)

Jansen, D.N., Hermanns, H.: QoS modelling and analysis with UML-statecharts:
the StoCharts approach. SIGMETRICS Performance Evaluation Review 32(4) (2005)
28-33

Browne, M., Clarke, E., Grumberg, O.: Characterizing finite Kripke structures in
propositional temporal logic. Theoretical Computer Science 59 (1988) 115-131
Groote,].F.,, Vaandrager, EW.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. In Paterson, M.S., ed.: Automata, Languages and Pro-
gramming. Vol. 443 of LNCS. (1990) 626-638

Bouali, A., de Simone, R.: Symbolic bisimulation minimisation. In: Proc. of CAV. Vol.
663 of LNCS. (1992) 96-108

Enders, R., Filkorn, T., Taubner, D.: Generating BDDs for Symbolic Model Checking
in CCS. Distributed Computing 6(3) (1993) 155-164

Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces. In:
Proc. of Int’'l Work. on Parallel and Distributed Model Checking. (2003)

Wimmer, R., Herbstritt, M., Becker, B.: Minimization of Large State Spaces using
Symbolic Branching Bisimulation. submitted to IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS) (2006)

Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: A markov chain model
checker. In: Proc. of TACAS. Vol. 1785 of LNCS. (2000) 347-362

Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. J. STTT 6(2) (2004) 128-142

Garavel, H., Hermanns, H.: On Combining Functional Verification and Performance
Evaluation Using CADP. In: Prof. of FME. Vol. 2391 of LNCS. (2002)

Kuntz, M., Siegle, M., Werner, E.: Symbolic performance and dependability evalua-
tion with the tool CASPA. In: Proc. of FORTE. Vol. 3236 of LNCS. (2004) 293-307
Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham (2002)

Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: A Tool for Model-Checking
Markov Chains. J. STTT 4(2) (2003) 153-172

Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation for
a plain-old telephone system. Science of Comp. Programming 36 (2000) 97-127

17

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In Thiagarajan, P.S., ed.: Proc. of FSTTCS. Vol. 1026 of LNCS. (1995) 499-513
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Trans. Software Eng. 29(6) (2003) 524-541
Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of
time-bounded reachability probabilities in uniform continuous-time markov deci-
sion processes. Theor. Comput. Sci. 345(1) (2005) 2-26

Nicola, R.D., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2)
(1995) 458-487

Bienmitiller, T., Brockmeyer, U., Damm, W., D6hmen, G., E8mann, C., Holberg, H].,
Hungar, H., Josko, B., Schlor, R., Wittich, G., Wittke, H., Clements, G., Rowlands, J.,
Sefton, E.: Formal Verification of an Avionics Application using Abstraction and
Symbolic Model Checking. In Redmill, F., Anderson, T., eds.: Proc. of Safety-critical
Systems Symposium, Safety-Critical Systems Club (1999) 150-173

Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)

The VIS Group: VIS: A system for verification and synthesis. In Alur, R., Henzinger,
T., eds.: Proc. of CAV. Vol. 1102 of LNCS. (1996)

Ranjan, R., Aziz, A., Brayton, R., Plessier, B., Pixley, C.: Efficient BDD algorithms for
FSM synthesis and verification. In: Proc. of IWLS. (1995)

Drechsler, R., Becker, B.: Binary Decision Diagrams — Theory and Implementation.
Kluwer Academic Publishers (1998)

van Glabbeek, R.J., Weijland, W.P.: Branching Time and Abstraction in Bisimulation
Semantics. J. ACM 43(3) (1996) 555-600

Matsunaga, Y., McGeer, P.C., Brayton, RK.: On Computing the Transitive Closure
of a State Transition Relation. In: Proc. of DAC. (1993) 260-265

Ciardo, G., Tilgner, M.: On the use of Kronecker operators for the solution of gener-
alized stochastic Petri nets. Technical Report 96-35, Institute for Computer Applica-
tions in Science and Engineering (1996)

Garavel, H., Lang, F.,, Mateescu, R.: An overview of CADP 2001. European Assoc. for
Software Science and Technology (EASST) Newsletter 4 (2002) 1324

ERTMS: Project Website (Jan 20 2006) http://ertms.uic.asso.fr/etcs.html.
ARP4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment. Aerospace Recommended Practice, Society
of Automotive Engineers, Detroit, USA (1996)

AVACS::S3: Project website (Jan 27 2006) http: //www.avacs.org/s3.

18

A Kanban

For generating symbolic LTS representations, we have applied the stochas-
tic process algebra tool CASPA (see [20]) from which we extracted symbolic,
i.e. BDD, representations for a Kanban system [35]. The process algebraic de-
scription of the Kanban system consists of four parallel processes that are syn-
chronized among each other. The system itself can be parameterized by a max-
imum number of workpieces that each process can handle.

We performed two series of experiments with two different configurations of
the Kanban system. In the first configuration we have hidden all internal pro-
cess actions, such that only the synchronization actions were visible. This kind
of configuration could be of interest when inter-process communication only
is analyzed. In the second configuration we have hidden all actions but the
actions that are related to the first of the four processes. The motivation for this
configuration is that one only wants to analyze the first process and likes to
ignore the others.

int ini = 6;

kanban := (hide tredol, tokl, tbackl, tredo2, tok2, tback2,
tok3, tback3, tredo3, tredo4, tok4, tback4 in
(k1(ini,0,0,0) |[tsyncl_23]|
(k2(ini,0,0,0) |[tsyncl_23,tsync23_4]]|
k3(ini,0,0,0))) |[tsync23_4]]|
k4(ini,0,0,0)
)

kil(a [ini],x [ini],y [ini],z [ini]) := [a>®] -> (inl,1) ; kl(a-1,x+1,y,z)
[x>0] -> (tredol,1) ; kl(a,x-1,y+1,z)
[x>0] -> (tokl,1) ; kl(a,x-1,y,z+1)
[y>0] -> (tbackl,1) ; kl(a,x+1,y-1,z)
[z>0] -> (tsyncl_23,1) ; kl(a+l,x,y,z-1)

k2(w [ini],x [ini],y [ini],z [ini]) := [w>0] -> (tsyncl_23,1) ; k2(w-1,x+1,y,z)
[x>0] -> (tredo2,1) ; k2(w,x-1,y+1,z)
[x>0] -> (tok2,1) ; k2(w,x-1,y,z+1)
[y>0] -> (tback2,1) ; k2(w,x+1,y-1,z)
[z>0] -> (tsync23_4,1) ; k2(w+l,x,y,z-1)

k3(w [ini],x [ini],y [ini],z [ini]) := [w>0] -> (tsyncl_23,1) ; k3(w-1,x+1,y,2z)
[x>0] -> (tredo3,1) ; k3(w,x-1,y+1,z)
[x>0] -> (tok3,1) ; k3(w,x-1,y,z+1)
[y>0] -> (tback3,1) ; k3(w,x+1,y-1,z)
[z>0] -> (tsync23_4,1) ; k3(w+l,x,y,z-1)

k4(w [ini],x [ini],y [ini],z [ini]) := [w>0] -> (tsync23_4,1) ; k4(w-1,x+1,y,2z)
[x>0] -> (tredo4,1) ; k4(w,x-1,y+1,z)
[x>0] -> (tok4,1) ; k4(w,x-1,y,z+1)
[y>0] -> (tback4,1) ; k4(w,x+1,y-1,z)
[z>0] -> (tout4,1) ; k4(w+l,x,y,z-1)

Fig. 2. Caspa input for the first configuration of the Kanban system.

The input files for both configurations are given in Figures 2 and 3. Please
note that the variable ini denotes the number of workpieces along which the

19

int ini = 6;

kanban := (hide tredo2, tok2, tback2, tok3, tback3, tredo3,
tredo4, tok4, tback4, tsync23_4 in
(k1(ini,0,0,0) |[tsyncl_23]]|
(k2(ini,0,0,0) |[tsyncl_23,tsync23_4]]|
k3(ini,0,0,0))) |[tsync23_4]]|
k4(ini,0,0,0)
)

kl(a [ini],x [ini],y [ini],z [ini]) : [a>0] -> (inl,1) ; kl(a-1,x+1,y,2z)

[x>0] -> (tredol,1) ; kl(a,x-1,y+1,z)
[x>0] -> (tokl,1) ; kl(a,x-1,y,z+1)
[y>0] -> (tbackl,1) ; kl(a,x+1,y-1,z)
[z>0] -> (tsyncl_23,1) ; kl(a+l,x,y,z-1)

k2(w [ini],x [ini],y [ini],z [ini]) : [w>0] -> (tsyncl_23,1) ; k2(w-1,x+1,y,2)
[x>0] -> (tredo2,1) ; k2(w,x-1,y+1,z)
[x>0] -> (tok2,1) ; k2(w,x-1,y,z+1)
[y>0] -> (tback2,1) ; k2(w,x+1,y-1,z)
[z>0] -> (tsync23_4,1) ; k2(w+l,x,y,z-1)

k3(w [ini],x [ini],y [ini],z [ini]) := [w>0] -> (tsyncl_23,1) ; k3(w-1,x+1,y,z)
[x>0] -> (tredo3,1) ; k3(w,x-1,y+1,z)
[x>0] -> (tok3,1) ; k3(w,x-1,y,z+1)
[y>0] -> (tback3,1) ; k3(w,x+1,y-1,z)
[z>0] -> (tsync23_4,1) ; k3(w+l,x,y,z-1)

k4(w [ini],x [ini],y [ini],z [ini]) :

[w>0] -> (tsync23_4,1) ; kd4(w-1,x+1,y,2)
[x>0] -> (tredo4,1) ; k4(w,x-1,y+1,z)
[x>0] -> (tok4,1) ; kd4(w,x-1,y,z+1)
[y>0] -> (tback4,1) ; k4(w,x+1,y-1,2z)
[z>0] -> (tout4,1) ; k4(w+l,x,y,z-1)

Fig. 3. Caspa input for the second configuration of the Kanban system.

descriptions are parameterized. The main difference between both input files is
the actions that are hidden (using the hide-operator).

B ETCS

B.1 Overview

This case study is based on the European Train Control System (ETCS) (see
[37]). The model especially focuses on the issues arising from failures in the
communication between trains and the RBC.

One of the main concerns during the construction of this model was scalability.
The current implementation can handle arbitrary many trains. The instances of
the model that have been analyzed within this work use one, two and three
trains.

Architecture. Some simplification were necessary in order to arrive at a model
that is suitable for our current tool chain. We only consider one track controlled
by one Radio Block Center (RBC) and do not model the change of tracks of the
trains as this would imply changes in the architecture.

20

RAILWAY

MOVE_TO_NEXT
MOVE_TO_NEXT

FAILURE
MAIN_OBSERVER

Fig. 4. Architecture.

An overview of the system architecture is given in Figure 4 where n trains
are moving on the track. Each train communicates with the RBC: the RBC is
divided into n local block, each block is responsible for the communication with
one dedicated train.

The RBC operates as follows, it receives the current position of each moving
train. To authorize a train to move on, it sends an authorization message. The
idea is that the RBC only sends a moving authorization after it got the position
from the previous train. Since a train is only allowed to send its new position if
it is moving, each train can only move if the previous trains did already move
before.

With the assumptions that a train can either move with full speed or doesn’t
move at all and that the track the train is moving on is constant, the safety
requirement becomes much simpler and no calculation of the exact train posi-
tion is necessary. The train is safe as long as it only moves after receiving the
authorization (as a MOVE-message) from the RBC and the RBC only sends a
new authorization after it got a POSITION-message from the previous train.

This requirement is monitored by an observer that checks the right sequence of
control-messages. Each RBC-block has its own observer that reports a failure to
a main observer. These observers also control that the trains don’t stop if the
track is free.

Several failure have been taken into account that can lead to faulty and unsafe
behavior. For example the communication between the RBC and the trains can
be lost.

21

Chart: MAIN_CHART Version: New (nodified) Date: 1-FEB-2006 19:13:27

@ N_cssERVER

ReE_pLACE

Fig. 5. Main chart.

B.2 Model Description.

Main Chart. The MAIN_CHART comprises the trains, a MAIN_OBSERVER, and an ini-
tializer, responsible for giving the first train on the track the authority to move
on (see Figure 5). The initializer simply fires the FREE_PLACE event, if the con-
dition WAIT_FREE_PLACE_FM from the environment is set. The MAIN_OBSERVER
waits for the FAILURE event from a train. The only thing it has to do is to catch
all failures from the trains and switch to its FATLURE state.

Structure of Trains. There is one activity chart for each train that is split into three
parallel statecharts (see Figure 6). The first represents the RBC-communication
for this train, the second the train itself, and the third the observer. Each activity
chart gets an input MOVE_FROM_PRED!! from the activity chart of the train in front
of it, and sends an output MOVE_TO_NEXT to the activity chart belonging to the
train behind it. Furthermore every activity charts gets eight different conditions
as input, representing the environmental behavior, which can not directly be
influenced by the controller.

1 On the highest level these events are represented in variables named ORDER n_TO_m,
with n,m € {1, 2,3} belonging to the number of the trains.

22

Chart: BLOCK.N Version: New (nodified) Date: 1-FEB-2006 19:15:07

@K N GHRT

Fig. 6. Interface of a train.

FREE_PLACE This condition should be set, if there is a free place at the start of
the track section.

TRANS_SUCCEEDS Will be set, if the transmission from the train to the RBC
is successful.

TRANS_FAILS Will be set, if the transmission from the train to the RBC is not
successful.

ERROR_STARTS Will be set, if an internal error inside the RBC occurs. The
normal way to handle such an error is, to restart the RBC.

ERROR_ENDS Will be set, if an internal error inside the RBC is repaired (for
example, if the RBC was restarted).

CONN_LOSS_STARTS Will be set, if the connection between the RBC and the
train is lost.

CONN_LOSS_ENDS Will be set, if the connection between the RBC and the
train is restored. It is assumed, that the RBC is in its idle state, when the
connection is reestablished.

BRAKE Will be set, if the train did not receive a new moving authorization, for
some time.

REPORT Will be set, when all necessary information for a new position report
to the RBC is collected.

23

Connection_N

@

E.wait_error_starts

Error burst

Connected

/e_to_next

\ pred

position / move

Ewait_trans fails

move_from,

SpusIo18 e

Ewait_trans succeeds/ move

Transmitting

Ewait_conn_loss starts Ewait_conn_loss ends
Connection_loss

Fig.7. Connection Train—-RBC.

RBC Communication. Most of the environmental behavior influences the com-
munication behavior between the train and the RBC (see Figure 7).

Normally the RBC part, responsible for the train, is idle (state IDLE). If it receives
a position information from the train in front (event MOVE_FROM_PRED), it tries
to transmit a moving authorization. Depending to the environmental behavior,
this either fails, or succeeds (conditions TRANS_FAILS or TRANS_SUCCEEDS). The
moving authorization will be submitted as an event (MOVE) to the parallel state
which represents the train. If a train sends its position report to the RBC, an
event (MOVE_TO_NEXT) is send to the next.

There are two types of errors, that can cause the communication to fail. If the
condition ERROR_STARTS is set, no communication between the train and the
RBC is possible, due to an internal error of the RBC. The same applies when
the condition CONN_LOSS_STARTS is set, indicating a connection loss. The loss
of connection has a higher priority, because it does not matter, whether the
RBC works correctly or not, if there is no connection. To return into normal
(connected) behavior, the conditions ERROR_ENDS or CONN_LOSS_ENDS have to be
set.

Train. The train is divided in two parallel parts (see Figure 8) The first controls
the moving of the train. After getting a MOVE event from the RBC communication
part, the train is in the MOVING state until the BRAKE condition is set. After that
the train waits in the BRAKING state until a new moving authorization is given.
The second part controls the position reports. If the parallel chart is in state
MOVING, a new position is reported (via the POSITION event). After that, the train
has to wait in the state REPORT_SENT for a new REPORT event, which indicates,
that all necessary information for a new report are collected. Then it changes to
the REPORT_READY state, from which it can send a new position report (provided
that it is in the MOVING state).

24

Tran N

reportrexty | g () report sent

[in(connected)]/position|

E.wait_report

o
move moving =@ braking
Ewait_brake
Fig. 8. Train.
FORMULA_N

move/ failure

wait_for_move:_from_pred

move from_pred

failure_state

move_from_pred/ failure

wait_for_move

move_to_next/ failure

failure_state

wait_for_position

position move._to_next

position/fialure
wait_for_move_to_next

Fig.9. Observer.

Observer. The observer has two parallel states, one observing the correct sending
of a moving authorization, and the other observing the correct sending of a
position report (see Figure 9).

The moving authorization is observed by making sure, that the MOVE_FROM_PRED
event is followed by the MOVE event. This is done by two exclusive states
(WAIT_FROM_PRED and WAIT_FOR_MOVE). If one of the events is set without the
other the chart switches to a failures state, and fires a FAILURE event to the
MAIN OBSERVER. The position reportis observed in a similar way. Here the events
POSITION and MOVE_TO_NEXT have to occur alternating. If not the chart switches
in a failure state again, and the FAILURE event is fired to the MAIN OBSERVER.

Scalability. Scalability in this case means chaining blocks in StaremaTe. When-
ever a new block is added to the main activity chart, one just has to draw the 4
information flows and enter the corresponding variables on every information
flow (three events and 1 “Channel_form_environment”). As the main observer is
not generic, the variable from one block to this observer must be called FATLURE.

25

..

,,,,,,,,,,,,,,, i -o-p| ST OFE SELECTOR PALVE MG

GREEH_PRESSURE EMERGENCY_PRESSURE_TH

@BSCU_AC H BLUE_PRESSURE_SEL

_— ! AS _NMPTER_VALVE_AC

l SN ——

.......

EREEH_PRESSURE_OUT

Fig.10. The main activity chart of the braking system.

C Braking System

C.1 Model Description

The braking system is taken from the case study used in the ARP 4761 [38].
The job of the system is to provide hydraulic pressure to the wheels of the
aircraft, whenever the pilot pushes the braking pedals. The auto-braking mode,
where the pilot specifies a deceleration rate and the braking system computes
the necessary braking commands itself, is not considered.

The system consists of three redundant hydraulic pressure lines, various valves
and a computer called BSCU (Braking System Command Unit), which computes
braking and anti-skid commands based on the pilot input. The structure of
the system is shown in Figure 10. The inputs to the system are supplied by
three external activities. POWER supplies electrical power needed by the BSCU
via two redundant lines PWR_1 and PWR_2. Hydraulic pressure (HYDRAULIC) is
supplied from three independent lines, the green or normal line (GREEN_PRES-
SURE_IN), the blue or alternate line (BLUE_PRESSURE_IN) and the emergency line
(EMERGENCY_PRESSURE_IN). Note that this is a small difference to the original
system given in the ARP, as the emergency pressure is supplied from inside
the system there. The remaining inputs are given by the PILOT. These are the
braking command specified via the position of the braking pedals (PEDAL_POS),

26

INVALID 1 nvALID 2

COMAND_I_AC T COMIAND_2 A€

......

BSCU_AG

Fig.11. The implementation of the braking system control unit.

the manual mode selection (MODE_SELECTION, see below) and the deceleration
rate for the auto-braking (AB_DECEL_RATE, currently unused). The output of the
system is the hydraulic pressure applied to the wheels. Pressure can be supplied
via two redundant lines, GREEN_PRESSURE_OUT and BLUE_PRESSURE_OUT. These
lines are driven by the three different operational modes, corresponding to the
three input pressure lines.

The normal mode is driven by the green pressure line and is completely con-
trolled by the BSCU. When the BSCU or the green pressure line fails, the alternate
mode engages. Pressure is supplied via the blue hydraulic line, basic braking
commands are now directly controlled by the pilot. The BSCU will add anti
skid commands if it is working. When the blue pressure fails, the emergency
pressure kicks in which also drives the blue output pressure. In emergency
mode, anti skid is disabled, regardless of the BSCU state. Mode switches are
controlled by the SELECTOR_VALVE_AC. It switches to the next available pressure
line, when the currently active on fails. Switching is monotonic in this version
of the model — the system starts in normal mode and can only switch “down”
to the next available mode, not back. When the BSCU stops operating, it sends
a shutoff signal to the SHUT_OFF_SELECTOR_VALVE_AC valve, which inhibits the
green pressure to reach the selector valve, thus deactivating the normal mode.
The implementation of the BSCU is shown in Figure 11. It consists of two re-
dundant computation units (COMMAND_1_AC and COMMAND_2_AC), two monitoring

27

Fig.12. The quotient for the BSCU shutoff.

units (MONITOR_1_AC and MONITOR_2_AC), the logic to chose between these two
lines (SELECT_CMD_AC) and the shutoff monitor (SHUTOFF_AC). In the current im-
plementation, each command unit simply copies the braking command given
by the pedal position. The monitoring units compute a reference command in
the same way and compare it to the output of the command units. As soon as
those commands differ, the corresponding invalid signal is set (INVALID_1 or
INVALID_2). The switching unit selects the command computed by the first com-
mand unit, unless the INVALID_1 signal is set. As soon as both invalid signals
are set, the shutoff unit sets the shutoff signal.

C.2 Safety Analysis

There are two safety requirements which are considered in the analysis of the
braking system. The first requirement under consideration is the shutoff of the
BSCU. The following failure modes are considered for this analysis:

— failure of the command computation (CMD_{1, 2})
— failure of the anti skid command computation (AS_CMD_{1,2})
— failure of the monitor command computation (MON_{1,2}_CMD)

The analysis generated the quotient shown in Figure 12.

The second safety requirement under consideration is the complete loss of
braking commands. The failure modes under consideration are the same as
above and additionally:

— failure of the invalid signals (INVALID_{1,2}),

— failure of the command selection switch (SELECT_CMD_2)

— failure of electrical power (PWR_{1,2})

— failure of hydraulic pressure ({GREEN, BLUE , EMERGENCY}_PRESSURE_IN)
— manual mode selection (MODE_SELECTION)

28

