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Abstract

This paper investigates quantitative dependability metrics for distributed algorithms operating
in the presence of sporadic or frequently occurring faults. In particular, we investigate necessary
revisions of traditional fairness assumptions in order to arrive at useful metrics, without adding
hidden assumptions that may obfuscate their validity. We formulate distributed algorithms
as Markov decision processes to incorporate both probabilistic faults and non-determinism
arising from the distributed setting. We especially discuss the notions of bounded fairness
and near-round-robin schedulers, which appear particularly suited for distributed algorithms
running on nearly symmetric infrastructure, as it is common for sensor network applications.
We further develop methods to incorporate this fairness notion in the quantitative model
checking of distributed algorithms. Finally, we apply our methodology to several case studies
to provide a first experimental insight into its applicability.

1 Introduction

In a distributed algorithm several separated processes with only local knowledge must cooperate
to achieve a common goal. Such algorithms have been extensively studied over more than 40
years [23]. Abstract properties of distributed algorithms are traditionally established by proving
correctness guarantees under certain assumptions.

Such analyses may be called qualitative as they establish a particular quality of the algorithm
under study. It is interesting to note that in this type of analysis we usually see strong assumptions
about the dependability of the system. Either it is (implicitly) assumed that no communication
fault occurs [23], or it is assumed that only a limited number of faults occur [17], or it is assumed
that at some point faults stop occurring.

Example 1. As a running example we use a distributed self-stabilizing minimal spanning tree (MST)
algorithm, which is a simplification of the one in [16]. Given a set of processes V = {1, . . . , N}
which are connected in a weighted graph (V,E) with one special process called the root, the task of
the algorithm is to compute, for each process, its distance to the root along edges of the graph. For
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an edge (i, j) ∈ E we write di,j ∈ N for its weight, which represents the fixed distance of process
i to process j. Each node knows only the distance to its direct neighbours. We write ci for the
current root distance estimates of process i. The estimates ci are initially set to an arbitrary value.
Each process i now perpetually repeats the following updates:

ci :=

{
0, if i is the root,

min{di,j + cj | (i, j) ∈ E}, otherwise.

Notably, this algorithm relies on a dependable mechanism for process i to inspect the current
values cj. Assuming absence of any fault, it provably converges to the setting where each variable
ci indeed holds the distance of process i to the root [16]. Throughout this paper we will investigate
what properties we can show for this algorithm in the presence of transient probabilistic faults.

With the rise of the internet and of wireless networks, solutions capable of operating in
unpredictable and unreliable environments have found practical relevance. For the field of distributed
algorithms this means that we can no longer make strong assumptions about the absence of faults.
Especially sensor networks must operate in an environment where the frequent occurrence of faults
is the rule, not the exception.

Recently there has been an effort to quantitatively analyze distributed algorithms [27, 14, 22, 21].
Instead of proving that an algorithm works under a set of assumptions, quantitative analysis aims
at studying how well an algorithm works, under some assumptions.

This shift in focus implies that established assumptions, models and algorithms that have been
used for qualitative analysis are not necessarily adequate in the quantitative setting. First of all
we must alter the assumptions on dependability. Instead of assuming that there only occur a
limited number of faults, or that faults occur only in a certain time-period, we now assume that
transient faults can occur at any time, but with a specific probability. This allows us to calculate
the probability that the algorithm works correctly [22, 21] if fault probabilities are given.

This paper focuses on a further set of assumptions that must be reconsidered in order to
facilitate insightful quantitative analysis. These assumptions concern the order in which the
different processes operate in a distributed algorithm. For a qualitative analysis, it is common
to pose the most general assumption under which the algorithm is assumed to work correctly.
Dijkstra, for instance, states that “nothing may be assumed about the relative speeds of the N
computers” [23] in his seminal work on distributed mutual exclusion.

However under such an assumption quantitative analysis quickly becomes useless: the worst-case
success probability (that all processes can enter their critical section within some finite time) is
provably zero under such a weak assumption. Also standard fairness assumptions do not change
this phenomenon, as we will discuss.

More realistic assumptions have also been studied in the context of qualitative analysis, where
the amount of time between two steps of a process is bounded [9, 19, 29]. This paper investigates
the concept of bounded fairness in the context of quantitative analysis of probabilistic distributed
algorithms and presents the following contributions:

1. We formally define the notion of bounded fairness for probabilistic models with non-
determinism.

2. We show that if we wish to realistically address the relative speeds of processes in a distributed
algorithm under the assumption of transient probabilistic faults, we must consider non-
deterministic models.

3. We provide two possible approaches to this modeling problem, which are tailored to models
running on symmetric infrastructure and prove that they indeed capture the notion of
bounded fairness for probabilistic and non-deterministic models.

4. We show how to analyze dependability aspects of a distributed algorithm when considering
non-deterministic models.



5. We further show the effectiveness of our methodology by applying it to several case studies.

The models we are dealing with are non-deterministic and probabilistic at the same time,
and known as Markov decision processes [43]. As our modeling and analysis vehicle, we use the
probabilistic model checker PRISM [36], and its modeling language.

The work presented here draws some inspiration from a recent comparative scheduler study [10].
It can be considered in sharp contrast to the simulation-based analysis of distributed systems as
it prevails in the systems community. In that approach, dependability metrics are often skewed
by hidden assumptions that are added by the simulator, the libraries, the runtime environment,
the random number generator, or the postprocessing of simulation traces. In the wireless sensor
community, there is a growing awareness [4, 31, 35] for this problem, and this paper constitutes a
step towards a solution.

2 Preliminaries

In this section we briefly discuss the general theory of Markov decision processes and guarded
command languages, specifically the one used by the PRISM tool [36].

2.1 Markov decision processes

We denote the collection of all probability distributions on (Borel) subsets of a set S as P(S).

Definition 1. A Markov decision process (MDP) is a tuple (S,A,R) where: S is the state space,
A is a set of actions and R : S × A × P(S) is the transition relation such that for every pair
(s, a) ∈ S × A we have at most one transition (s, a, π) ∈ R. If we find exactly one transition
(s, a, π) per pair (s, a), we say that the MDP is enabled.

The state space and the set of actions are discrete. For the remainder of this section we fix a
MDP M = (S,A,R).

We say that an action a ∈ A is enabled in a state s ∈ S if there exists a triple (s, a, π) in R.
We denote the set of enabled actions in a state s ∈ S as As. For an enabled MDP we have that
As = A for all states s ∈ S. We write R̄(s, a) for the random variable which takes values in S and
is distributed according to π. A path of M is a, possibly infinite, sequence of states and actions
σ = s1, a1, s2, a2, . . ., where each action ai is enabled in the previous state si. A finite path σ
ends in state last(σ). The length of a path is equal to the number of actions in the path. This
means that a path consisting of a single state has length 0. We denote the set of all finite paths as
(S ×A)∗ × S and the set of all infinite paths as (S ×A)ω. Given a path σ = s1, a1, s2, a2, . . . the
action trace σ[A] of σ consists of the sequence of actions in σ, i.e. σ[A] = a1, a2, . . ..

A scheduler f is a function from finite paths to distributions over the actions f : ((S×A)∗×S)→
P(A) such that for any finite path σ = s1, a1, . . . , s we have for f(σ) = π that, if the distribution π
assigns a probability greater than zero to a, then a is enabled in s. We write f̄(σ) for the random
variable which takes values in A and is distributed according to π. A scheduler f induces a Markov
chain (MC) (Xk

f,M )k∈Z+
with state space (S ×A)∗ × S where for finite paths σ = s1, a1, . . . , s and

σ′ = s1, a1, . . . , s, a, s
′ (i.e., σ is a largest prefix of σ′) we have:

P (Xk+1
f,M = σ′|Xk

f,M = σ) = P (f̄(σ) = a) · P (R̄(s, a) = s′)

All other transition probabilities are zero, since they are not selected by the scheduler under
consideration. If we now fix a starting distribution over S, we can compute the probability of MDP
M being in a state s ∈ S at a time-point k ∈ Z+ given a scheduler f by summing over all paths of
length k that end in s.

A scheduler is called deterministic if it always chooses a point distribution over the set of
actions, i.e., a distribution where one action has probability 1 and the others have probability
0. We refer to a set of schedulers as a scheduler class. The set of all schedulers for a MDP M is
denoted CM .



In the analysis of MDPs, it is often considered interesting to study the maximum or minimum
probability of being in a state s ∈ S in the Markov chains Xf,M induced by all schedulers
f in a scheduler class. We refer to these probabilities as extremal probabilities. Extremal
probabilities correspond to best-case and worst-case behaviors. Thus, bounds on minimal and
maximal probabilities imply guarantees for any possible behavior of the system. For instance, we
can use these bounds to prove safety properties of the system. If we wish to show that a system is
in a “safe” state at a certain time-point with at least probability p, we need only show that the
minimum probability to be in this “safe” state is larger than p.

Definition 2. Given a MDP M = (S,A,R), a set of initial states Sinit ⊂ S, a scheduler class C,
a set of goal-states G ⊂ S and a time-point k ∈ Z≥0 we define the infimum transient probability
function R− as follows:

R−(M,Sinit , C,G, k)= inf
f∈C,s∈Sinit

P (X
(k)
f,M ∈ G | X

(0)
f,M = s)

The supremum transient probability function R+ is obtained by replacing inf by sup in the above.
The infimum long-run average probability function S− is the Cesàro limit of the infimum

transient probability:

S−(M,Sinit , C,G) = lim
t→∞

1

t

t−1∑
k=0

R−(M,Sinit , C,G, k).

Again the supremum long-run average probability function S+ is defined analogously.

For finite models, the Cesàro limits exist and match the standard steady-state limits, i.e.,
limk→∞R−(M,Sinit , C,G, k) and limk→∞R+(M,Sinit , C,G, k), if these limits exist [43]. The
extremal transient probability for a time-point k ranging over all schedulers is always attained by
a deterministic scheduler with step-bound k.

2.2 Extremal probabilities of scheduler classes

We now consider the problem of computing extremal probabilities for a subset C of all schedulers.
The algorithms mentioned in Subsection 2.1 find extremal probabilities over all schedulers and can,
in general, not be used to compute extremal probabilities over a strict subset C of all schedulers,
since the scheduler that realizes the extremal probability may not belong to C. We show in this
subsection that for certain classes of schedulers, relevant to our analysis goal, we can construct
a new MDP M ′ such that the extremal probabilities in M over the schedulers in C agree with
the extremal probabilities over all schedulers in M ′. This then allows to apply the aforementioned
algorithms on M ′, resulting in the extremal probabilities for scheduler class C of M .

Definition 3. Given a MDP M = (S,A,R) and a function F from finite paths to sets of actions,
F : ((S × A)∗ × S) → 2A such that for a path σ ending in state s we have that F (σ) contains
only actions enabled in s, F (σ) ⊂ As. Class CF is the set of all schedulers f of M which satisfy
the following: for all paths σ of length k which are reached with non-zero probability by f , this
scheduler only selects actions contained in F (σ) with non-zero probability. Formally:

P (X
(k)
f,M = σ) > 0 ∧ P (f̄(σ) = a) > 0⇒ a ∈ F (σ).

We say that the function F characterizes the scheduler class CF .

We now show that for any MDP M and scheduler class CF there exists another MDP M ′ such
that the extremal probabilities over CF for M can be derived from the extremal probabilities over
all schedulers for M ′.



Theorem 1. Given a MDP M = (S,A,R), a set of initial states Sinit ⊂ S and a scheduler class
CF characterized by a function F , there exists a MDP M ′ = (S′, A′, R′) and functions g : S′ → S
and h : S → S′ such that, for any set G ⊂ S and time-point k, we have:

R−(M,Sinit , CF , G, k) = R−(M ′, h(Sinit), CM ′ , g(G), k)

S−(M,Sinit , CF , G) = S−(M ′, h(Sinit), CM ′ , g(G))

where h(Sinit) = {h(s) | s ∈ Sinit} and g(G) = {x | x ∈ S′ ∧ g(x) ∈ G}. Furthermore, the
supremum probabilities for M and M ′ are related in the same way as the infimum probabilities.

The proof of Theorem 1 can be found in Appendix A.

2.3 Guarded commands

We use the PRISM guarded command language (GCL) to model distributed algorithms. A program
consists of concurrently running modules and a predicate init, which denotes the initial states.
Each of the modules contains a number of variables and guarded commands. Variable declarations
consist of a name and a range. Guarded commands are of the form [a] g→ p1 : X′=E1 + . . . + pk :
X′=Ek. Here a is an action name, g is a guard, which is a predicate over program variables, and
X′ = E1, ..., X

′ = Ek are assignments to the variables of the superordinate module, weighted with
probabilities p1, ..., pk where

∑k
i=1 pi = 1.

The semantics of a program is an induced MDP M = (S,A,R). A state s of M is an evaluation
of the program variables. The actions A are the action names occurring in the guarded commands
of the source program. The set of initial states are the states fulfilling init.

Relation R is derived from the guarded commands: assume s fulfills the guard of the command
given above. Then there is a transition (s, a, π) in R. The distribution π is such that for each
probabilistic choice i ∈ [1, k] we have P (R̄(s, a) = si) =

∑
j∈[1,k]∧si=sj pj where sm is the state

obtained by applying the assignment X′=Em to s. Variables to which no value is assigned remain
unchanged. By default, only one guarded command enabled in some module of the program is
executed at once. This is different however, if an action name a occurs in commands of several
modules. The execution of any of those commands requires that in each module the guard of at
least one command labeled with a is satisfied. These commands are then executed synchronously
in all participating modules.

3 Modeling assumptions

In the following subsections we discuss what assumptions we make on the models of distributed
algorithms regarding communication and faults. We will also show how such models can be specified
in a guarded command language in general and in particular for our running example. With these
assumptions we try to find a balance between a model that is still feasible to analyze and a model
that reflects realistic distributed algorithms.

3.1 Communication model

In a distributed algorithm there are multiple processes, each with only partial (local) knowledge.
Information is exchanged through communication infrastructure and this is what enables the
processes to still solve global problems. There are two communication model paradigms predominant
in the literature, namely the message passing model and the shared memory model. We give an
overview of different ways of implementing and modeling communication in Section 6. For reasons
of simplicity we employ a variation of the shared memory approach.

We say every process in a distributed algorithm performs local algorithmic steps and has a
local state space. This is in contrast to the global steps of the combined model and the global
state space. We say that processes communicate through links and we say that processes that are
linked are neighbors. We now make the following assumptions in the context of communication
and distributed algorithms:



1. Local steps of a process only change the local state.

2. Local steps are deterministic. Although we could easily support non-determistic algorithms,
we choose to consider only deterministic local algorithms to focus on the non-determinism
arising from the distributed setting.

3. A process can always perform a local step, even if this has no effect. We include this
assumption to simplify fairness discussions as we do not have to consider whether a process
is enabled or not.

4. Local steps are interleaved. That is, we do not consider the possibility of two local steps
in two different processes to happen at exactly the same time. This greatly simplifies our
models and our fairness notions. This assumption is also justified by the fact that we mainly
consider distributed settings where different processes operate with different, inaccurate, local
clocks.

5. Local steps only depend upon the local state of a process and the state of neighboring
processes. In this way we model communication between processes. This simple form of
communication simplifies the modeling task and reflects communication through message
buffers. It may be useful to restrict the knowledge a process has about its neighbors, for
instance we may restrict it to a special communication register. To formalize such a restriction
the notion of partial observability [41] can be used, but this is not considered here.

We now discuss how the MDP model of a distributed algorithm as described above can be
modeled in the GCL. We associate to each process one module and one unique action. Each
command in a module is labeled with the associated action. In the underlying MDP the actions
now specify which local process is responsible for each global transition.

Inherited from PRISM, variables are already partitioned into a set of local variables for each
module. Each module can only update its local variables, which ensures the model satisfies
assumption 1 above. By ensuring that the guards in a module are pairwise disjoint (i.e., the
conjunction of any pair of guards is always equivalent to false) we ensure that it is impossible
that two commands in the same module are enabled at the same time. This in turn ensures that
the local algorithms are deterministic (assumption 2). By ensuring that the disjunction of all
guards is equivalent to true, we achieve that at all times at least one guard is enabled, which
means assumption 3 holds. Since we use different actions to label the local steps of different
processes we have no synchronization, which means local steps of different processes will interleave
(assumption 4). Finally we must make sure that the guards and right hand sides of actions in
a module contain only local variables or variables of modules of neighboring processes to ensure
assumption 5 holds.

Example 2. In Table 1 we show how to model our running example of the self-stabilizing minimal
spanning tree algorithm. The graph under consideration consists of four nodes and all connections
have length one. The modules for nodes three and four are derived from the module of node two by
renaming variables and action names. Since PRISM does not support infinite variable ranges, here
and in the following, we abstract register values larger than the maximal path length by a value of
the maximal path length plus one, which is 4 here.

3.2 Fault model

Given the nature of distributed algorithms, where many simple components cooperate to achieve a
common goal, we have to deal with the possibility of faults occurring. Instead of complicating the
design of the distributed components to protect against faults, distributed algorithms themselves
are designed to tolerate such faults. We give a brief account of different fault models seen in the
literature in Section 6. Again we list our assumptions on faults and show how to incorporate such
faults in a GCL model.

We make the following assumptions.



mdp

module node1 // node 1 is the root node

n1 : [0..4];

[a1] (true) -> n1’ = 0;

endmodule

module node2 // connected to nodes 1 and 4

n2 : [0..4];

[a2] (true) -> n2’= min(n1+1,n4+1,4);

endmodule

// node 3 is connected to nodes 2 and 4

module node3=node2[n2=n3,n1=n2,n4=n4,a2=a3]

endmodule

// node 4 is connected to nodes 3 and 2

module node4=node2[n2=n4,n1=n2,n4=n2,a2=a4]

endmodule

Table 1: MST algorithm on a four node graph.

1. Faults are local. This means every fault occurs in one of the processes and only affects
this process. The alternative notion, that a fault may change multiple processes is difficult
(though not impossible) to model as we would need to use synchronization to affect the
different changes in different modules. The notion of local faults arises naturally from the
fact that we consider distributed algorithms where local processes run on separate hardware.
Still, we could employ global faults to account for the possibility of multiple local faults
occurring within one step of the algorithm.

2. Effects of faults are caused by or linked to activity. This means that the impact of a fault in
a process only appears when this process executes a local algorithm step.

3. Faults are probabilistic. We assume that for each local step taken by a process there is
some prespecified probability that a fault occurs. This assumption enables us to establish
properties of the algorithm even though faults continue to occur. For pragmatic reasons, the
effect of a fault is also assumed to be probabilistic. For instance, a fault may change the value
of a state variable to a value chosen randomly with a uniform distribution over all possibilities.
Another option is to allow Byzantine faults, where the effect of a fault is not specified (i.e.,
it is non-deterministic). In that context, the effect of a fault can be studied in worst-case
or best-case scenarios. We choose to consider fully probabilistic faults, as Byzantine faults
greatly increase the amount of non-determinstic branching, which is as yet detrimental to
the effectiveness and performance of our analysis techniques.

We model faults in the GCL model of a distributed algorithm by refining it using probabilism.
Transitions now have several possible updates, each with its own probability. For brevity, we
illustrate how to extend our running example with communication garbling errors.

Example 3. Table 2 shows how to include communication garbling errors in our running example.
When communication is garbled, the active node reads a random value for the shortest distance
variable of one of its neighbors instead of the actual value. The probability of communication
garbling is defined as a constant. Note that it is not possible for a non-root node i to set its distance
variable ni to zero after a message gets garbled. This is because the least value the nodes can receive
as the shortest distance of any neighbor is zero. This would then cause the node to set its own
distance variable to one.



const garble = 0.1;

const no_garble = 1 - garble;

...

module node2 // connected to nodes 1 and 4

n2 : [0..4];

[a2] (true) ->

nogarble : (n2’= min(n1+1,n4+1,4)) +

garble / 4 : (n2’=1) + garble / 4 : (n2’=2) +

garble / 4 : (n2’=3) + garble / 4 : (n2’=4);

endmodule

...

Table 2: MST algorithm with communication garbling.

4 Scheduling of independent processes

Given that in a distributed system no single process has global control, it is not clear in which
order the different processes execute steps of their local algorithms. Even if considering symmetric
hardware with identical clock speed settings for all partners, the order of execution cannot be
assumed fixed, due to the unavoidable phenomenon of clock drift.

Thus, the order of execution must be considered to be non-deterministic. We now consider
what this means for the worst-case stabilization time of a self-stabilizing algorithm, in absence of
any assumption on the order of execution.

Example 4. Assume that, at the start of the minimal spanning tree algorithm, none of the processes
has the correct distance value stored locally. A possible order of execution is one where a single
process continuously executes local steps. It is obvious that for this order we will never reach a
desirable state in which all nodes know their distance to the root even in the absence of transient
faults. This is because other processes are blocked indefinitely.

This well-known phenomenon is usually addressed by some fairness assumptions. We extend
now the notion of bounded fairness, which restricts the time that is allowed between two local
steps in a process, to MCs induced from the MDP model of a distributed algorithm.

4.1 Period of a scheduler

We wish to reason about the relative speeds of the processes in a distributed algorithm. We
quantify the speed of a process v by counting how many other processes execute steps between
two subsequent steps of process v. In the MDP models of distributed algorithms each process v
is associated with a unique action av. Now given a scheduler for such an MDP, we look at the
paths induced by this scheduler and the distances between consecutive av-transitions. We call this
distance the period of the path at a particular time-point.

Example 5. Consider the MDP (S,A,R) of a distributed algorithm with 4 nodes such that
A = {a, b, c, d}. Now we look at an example of a path of the MDP:

s1, b, s2, c, s3, a, s4, b, s5, d, s6, c, s7, a, . . . .

In particular we are interested in the action trace of the path and the number of steps until the
current action appears again, i.e. the period.

action: b c a b d c a . . .
period: 3 4 4 . . .

The period tells us at what intervals the nodes in the distributed algorithm are capable of
executing local steps. Since we consider stochastic models we define the period of an MDP given a



particular scheduler as a stochastic process which tells us the probability of observing a particular
period at a particular time-point.

Definition 4. Given an MDP M = (S,A,R), with a scheduler f that induces a MC Xf,M , the

period of the induced MC at time-point k is a stochastic process
(

Λ
(k)
f,M

)
k∈Z≥0

which takes values

in Z>0 ∪ {∞} and has distribution:

P (Λ
(k)
f,M = i) =

∑
a∈A

P (f̄(X
(k)
f,M ) = a

∧ f̄(X
(k+1)
f,M ) 6= a ∧ . . . ∧ f̄(X

(k+i−1)
f,M ) 6= a

∧ f̄(X
(k+i)
f,M ) = a), i ∈ Z>0,

P (Λ
(k)
f,M =∞) = 1−

∑
i∈Z>0

P (Λ
(k)
f,M = i).

Note that f̄(X
(k)
f,M ) is the decision of scheduler f at time-point k and P (f̄(X

(k)
f,M ) = a) is then the

probability that scheduler f selects action a at time-point k. We write Λ(k) when the MDP and the
scheduler are clear from the context.

If we now consider all possible schedulers for an MDP M then, for the worst-case expected

period length we have for any k ∈ Z≥0 that supf∈CM
E(Λ

(k)
f,M ) =∞. This worst-case scheduler is

any scheduler that schedules an action a at time k with probability one, but schedules that same
action with probability zero for all subsequent steps.

The period of an induced Markov chain does not tell us anything about the first occurrence
of a particular action. To be able to enforce that the first occurence of an action is not delayed
indefinitely we define it as a random variable.

Definition 5. Given an MDP M = (S,A,R), with a scheduler f that induces a MC Xf,M and an

action a ∈ A the first occurence of a, ∆
(a)
f,M is a random variable which takes values in Z>0 ∪ {∞}

and has distribution:

P (∆
(a)
f,M = i) =

P (f̄(X
(0)
f,M ) 6= a ∧ . . . ∧ f̄(X

(i−2)
f,M ) 6= a

∧ f̄(X
(i−1)
f,M ) = a), i ∈ Z>0,

P (∆
(a)
f,M =∞) = 1−

∑
i∈Z>0

P (∆
(a)
f,M = i).

The notion of periodicity allows us to reason about bounded fairness in the context of probabilis-
tic models in a similar way as has been done for purely non-deterministic models [9]. We can say
an induced MC is bounded fair if its period (and first occurences) lies within certain bounds with
probability one. In Subsection 4.3 we will extend bounded fairness to models with non-determinism
and probabilistic transitions. We will define bounded fairness for MDPs by finding the class of
schedulers that induces exactly the set of MCs whose period is bounded with probability one.
Before we do so, we review some pragmatic solutions to the problem of blocking described in
Example 4.

4.2 Pragmatic solutions

A different, more pragmatic, approach to fairness problems is to consider specific instances, especially
by fixing a particular scheduler and then analyzing the induced model [10, 21]. Two different kinds
of schedulers are used widely: round-robin schedulers, which fix a particular execution order for
the processes and force the distributed algorithm to adhere to this order, and the randomized
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Figure 1: Cumulative distribution of the period Λ(k) for a round-robin and the stationary uniform
scheduler.

scheduler, which assigns equal probabilities to each enabled action for every path. These types of
schedulers also occur in the form of hidden assumptions in simulation environments for distributed
algorithms [4, 34, 15].

Definition 6. For an enabled MDP M = (S,A,R) of a distributed algorithm with N processes,
the stationary uniform, or randomized, scheduler f for M picks each action a ∈ A with equal
probability, for all paths σ: P (fR(σ) = a) = 1/N.

Scheduler f for M is a round-robin scheduler if a bijection g : A → [0, N − 1] exists which
defines an order on the actions of M such that for any finite path σ of length k and any action
a ∈ A we have:

P (f(σ) = a) =

{
1, if k mod N = g(a)

0, otherwise.

For a round-robin scheduler we find Λ(k) = N for all time-points k. While this is well suited
for symmetric hardware systems without drifting clocks, we consider this a too strict assumption
for a distributed algorithm. Since perfect clocks are unrealistic one would need a reliable clock
synchronization service on which the algorithm runs. Though this is feasible, it is expensive,
and limits the application domain of distributed algorithms unnecessarily even for safety-critical
applications.

For a stationary uniform scheduler we find that Λ(k) is geometrically distributed with parameter
1/N for all time-points k. We feel that there is no good reason to assume that the period of a
distributed algorithm is geometrically distributed. For example the variance of a geometrically
distributed random variable with parameter 1/N is N2−N , which is highly unrealistic in practical
applications. Figure 1 compares the distribution of the period Λ(k) for round-robin and stationary
uniform schedulers. We can see from this figure that the round-robin schedulers are completely
deterministic with respect to period length, while the stationary uniform scheduler allows compo-
nents to act multiple times in a row or not at all for a long period of time, with some probability.
The advantage of using a stationary uniform scheduler is that it is memoryless and therefore easy
to analyze or simulate.

4.3 Scheduler classes

We now introduce two new types of scheduler classes which are aimed at realistically capturing the
possible schedules for distributed algorithms running on nearly symmetric infrastructures. The
first scheduler class extends the notion of bounded fairness with lower and upper bounds to MDPs.
The second scheduler class uses the notion of rounds to restrict computations. This scheduler class
leads to an over-approximation of bounded fairness, but can be analyzed more efficiently.



4.3.1 Bounded fairness revisited

We extend the notion of bounded fairness by restricting the schedulers such that the period length
of the induced MC is bounded both from above and from below. Given a path of length k,

σ = s1a1s2a2 . . . skaksk+1 we write A
(i)
σ for the set of all actions that occur in the last i steps of

the path if i ≤ k. In case i > k, A
(i)
σ is undefined:

A(i)
σ =

{
{aj | k − i < j ≤ k}, if i ≤ k
undefined , if i > k.

Definition 7. Given an enabled MDP M with |A| = N and bounds L,U ∈ Z with 1 ≤ L ≤ N
and N ≤ U . We define the class C[L,U ] of [L,U ] bounded fair schedulers characterized by the
function F : ((S ×A)∗ × S)→ 2A, which describes which actions are allowed for any finite path
σ ∈ ((S ×A)k × S) of length k ∈ Z≥0.

F (σ) =


A \A(U−1)

σ , if k ≥ U ∧ |A \A(U−1)
σ | = 1

A \A(k)
σ , if k < L or

k < U ∧ |A \A(k)
σ | = U − k

A \A(L−1)
σ , otherwise.

The intuitive meaning of function F defined in Definition 7 is as follows. For paths longer than
U − 1 we have that, if a particular action did not occur in the last U − 1 steps, then we must pick
this action to ensure the period does not exceed U (first case). If there is no such action, we must
pick an action that has not appeared in the last L− 1 steps to ensure the period is at least L (last
case).

For paths shorter than L we must pick an action that has not occurred yet (second case, first
condition); this avoids that the first period is less than L. Finally we have for paths of length k < U
that, if the number of actions that have not yet occurred equals U − k, then we must schedule one
of these missing actions (second case, second condition). This last requirement ensures that the
situation will never occur that multiple actions have not occurred in the last U − 1 steps. We now
give an example of how the function F works to ensure bounded fairness.

Example 6. Consider the enabled MDP M = (S,A,R) of a distributed algorithm with 4 processes,
and action set A = {a, b, c, d}. Below we list the action traces of several example paths and the
corresponding sets of actions allowed by the function F , which characterizes [2, 5] bounded fairness
as defined in Definition 7.

σ[A] F (σ) σ[A] F (σ)
ε {a, b, c, d} abac {d}
a {b, c, d} abacd {a, b}
ab {a, c, d} abacda {b}
aba {c, d} abacdab {c, d}

We can see that for this particular path we have that the first three period lengths are 2, 5, and
3.

The following theorem shows the relationship between [L,U ] bounded fairness and the periodicity
of the MDP.

Theorem 2. Given an enabled MDP M = (S,A,R) with |A| = N and given bounds L,U ∈ Z
with 1 ≤ L ≤ N and N ≤ U , a scheduler f is [L,U ] bounded fair if and only if for all time-points
k ∈ Z≥0 the period of the induced MC at time-point k lies between L and U :

P
(

Λ
(k)
f,M ∈ [L,U ]

)
= 1,



And for any action a the first occurrence of a is less than or equal to U :

P
(

∆
(a)
f,M ≤ U

)
= 1.

The proof of Theorem 2 can be found in Appendix B.
In Subsection 4.4.1 we show how we can use the function F from Definition 7 to compute

extremal probabilities for the class of [L,U ] bounded fair schedulers.

4.3.2 Round-based schedulers

In the previous subsection we have seen how we can restrict the observed period lengths for an
MDP by using [L,U ] bounded fairness. In this subsection we take a different approach. Instead of
choosing a distribution over the actions for each path we divide paths into rounds, in which each
action is taken exactly once, and choose a distribution over the possible orders for such a round.
For the sake of brevity we give only an informal discussion of round-based schedulers, although
they can be defined in a similar way as the general definition of schedulers.

Recall that a round-robin scheduler is determined by a bijection from the actions to the integers
between 1 and N , where N is the number of actions. This function describes the order in which the
actions should occur (see Definition 6). Randomized round-robin (RRR) schedulers are schedulers
that give, for each round, a distribution over the round-robin orders depending on the path followed
so far. The scheduler then selects actions deterministically in the order it has chosen for that
round.

Consider two subsequent round-robin orders r and r′ for an MDP with N actions. For some
action a we may have r(1) = a and r′(N) = a. Then the distance between the two executions of
action a is exactly 2N − 1. For the case r(N) = a and r′(1) = a we find that the distance is only 1.
It is then clear that any RRR-scheduler is [1, 2N − 1] bounded fair (Note that the reverse is not
true). We now introduce a class of schedulers which we conjecture is [N − k,N + k] bounded fair.

A k-restrictedly randomized round-robin (k-RRRR) scheduler is a RRR scheduler that may
only pick certain RR orders in each round, based on the RR order used in the previous round.
Consider a path σ where the last round of N actions were taken according to the RR order r. Now
a k-RRRR scheduler may only schedule a RR order r′ with probability greater than zero if the
following holds. For any action a ∈ A we have that the distance between the position of a in r and
the position of a in r′ is at most k.

Example 7. Consider an enabled MDP M = (S,A,R) with A = {a, b, c, f} and consider a path σ
of length divisible by 4 (i.e., a path consisting of a number or rounds) where the last N actions
occurred according to the RR order bacd. Now we have that a 1-RRRR scheduler may only schedule
the following RR orders with probability greater than zero: bacd, abcd, bcad, badc, and abdc. The
RR order acbd is, for instance, not allowed since action b goes from position 1 to position 3 and
the difference in position then exceeds 1.

Now consider two subsequent round-robin orders r and r′ for an MDP with N actions, such
that the distance between the position of an action a in r is i and the position of a in r′ is between
i − k and i + k for some 0 ≤ k < N . It is clear that the distance between the two executions
of a lies between N − k and N + k. In general, we conjecture that any k-RRRR-scheduler is a
member of the class of [N − k,N + k] bounded fair schedulers. This then allows us to use the
extremal probabilities over the class k-RRRR schedulers as conservative estimates of the extremal
probabilities for the [N − k,N + k] bounded fair schedulers.

In Subsection 4.4.2 we show how to use GCL encodings to compute extremal probabilities for
the class of k-RRRR schedulers.

4.4 Computing extremal probabilities for scheduler classes

In this section we show how to compute extremal transient reachability probabilities and extremal
steady-state probabilities classes of [L,U ] bounded fair schedulers and k-RRRR schedulers. In most



cases we cannot apply the known algorithms directly to our MDP model because the standard
algorithms calculate the extremal probabilities for all schedulers. However, we use the result of
Theorem 1 to construct a new MDP that we can use to calculate the desired metrics. This new
MDP is constructed by adding a module to the original PRISM model that restricts actions that
are available depending on the path followed so far.

4.4.1 Enforcing [L,U ] bounded fair schedulers

We fix an enabled MDP M = (S,A,R) with A = {a1, . . . , aN} such that |A| = N . We now take a
closer look at the definition of the function F in Definition 7, which prescribes which actions are
allowed for the class of [L,U ] bounded fair schedulers. We now consider what information about
the current path σ is actually necessary to decide which actions are allowed. We can see that for

each action ai ∈ A we must sometimes know whether ai is in one of the sets A \A(U−1)
σ , A \A(k)

σ ,

and A \ A(L−1)
σ , where k < R. To establish this it is enough to know how many steps ago in σ

each action ai occurred. We denote this distance d(σ, ai) which is defined recursively, where s ∈ S
and aj ∈ A:

d(σ, ai) =


undefined , if σ = s

d(σ′, ai) + 1, if σ = σ′ajs ∧ ai 6= aj

1, if σ = σ′ajs ∧ ai = aj

We now have that ai ∈ A \A(k)
σ if and only if d(σ, ai) ≤ k. Since we consider only [L,U ] bounded

fair schedulers all paths σ for which we have d(σ, ai) > U occur with probability zero. Finally we
must also take care of the corner cases where the length of path σ is less than L or less than U .

To implement this scheduler class, we add an additional PRISM module scheduler to the
original model of M which records the values of d(σ, ai) and path-length k. Care must be taken
since PRISM only allows bounded integers. The scheduler module keeps track of the values of d
for each action and the current path and the value of k. It then uses these variables to restrict the
actions that are allowed given the current path. This restriction is done through synchronization.
The commands in the module for each local process v has one action name associated with it,
which represents the action av ∈ A in the MDP. The scheduler module now has one command per
process module labeled with the same action name. The guard of this command is true exactly
when the action av is in F (σ). In this way the scheduler module makes sure that only bounded
fair schedules are followed.

Example 8. Table 3 shows the scheduler module for the class of [3, 5] bounded fair schedulers
for an enabled MDP with four actions. The bounds are denoted by the constants L and U . The
variables ci represent the values d(σ, ai) for 1 ≤ i ≤ N . The formulas xi, yi, and zi are used to

represent whether ai ∈ A \A(R−1)
σ , ai ∈ A \A(j)

σ , and ai ∈ A \A(L−1)
σ respectively for current path

σ of length j. The formulas countx and county represent |A \A(R−1)
σ | and |A \A(k)

σ | respectively.
The formulas are shown in Table 4.

4.4.2 Enforcing k-RRRR schedulers

As for the class of k-RRRR schedulers, we also add a scheduler module to the PRISM specification
of MDP M which restricts the possible options for the schedulers.

The scheduler module keeps track of the current round-robin order r. This order determines
which actions are chosen in the current round. The module further keeps track of the current
position in the round j, i.e. j = l mod N where l is the length of the current path. The scheduler
module enforces at all times that the correct action is taken according to the current round-robin
order. This means an action ai is only enabled if action ai has position j in the order r, i.e.
r(ai) = j.

For the case that j = N − 1 a k-RRRR scheduler may change the round-robin order, but only
such that for all actions the distance between the positions of the action in the current and the



const int L=3;
const int U=5;

module scheduler
k : [0..U] init 0;
c1 : [0..U-1] init 0;
c2 : [0..U-1] init 0;
c3 : [0..U-1] init 0;
c4 : [0..U-1] init 0;

[a1] (((k=U) & (count_x=1) & x0) |
((k<L) & y0) |
((k<U) & (count_y=U-k) & y0) |
((

((k=U) & !(count_x=1)) |
((k<U) & !(count_y=U-k))

) & z0)) & (c2<U-1) & (c3<U-1) & (c4<U-1) ->
(c1’=0) & (c1’=c2+1) & (c2’=c3+1)

& (c3’=c4+1) & (k’ = (k<U ? k+1 : k));
[a2] ...
[a3] ...
[a4] ...

endmodule

Table 3: The scheduler module which restricts the allowed schedulers to the [3, 5] bounded fair
schedulers where the MDP has actions A = {a1, a2, a3, a4}.

formula x0 = (c0 >= U-1);
formula x1 = (c1 >= U-1);
...
formula y0 = (c0 >= k);
...
formula z0 = (c0 >= L-1);
...
formula count_x = ((x0 ? 1 : 0) + (x1 ? 1 : 0)

+ (x2 ? 1 : 0) + (x3 ? 1 : 0));
formula count_y = ((y0 ? 1 : 0) + (y1 ? 1 : 0)

+ (y2 ? 1 : 0) + (y3 ? 1 : 0));

Table 4: The formulas used by the PRISM module in Table 3.

next round is less than or equal to k. So, when j = N − 1 several commands for each action will
be enabled, each selecting a different allowable round-robin order for the next round.

Example 9. Table 5 shows an example of a scheduler module for the class of k-RRRR schedulers
for an MDP with N actions where k = 1 and N = 4. The module distinguishes between the case
where j < N − 1 and the order is not changed and the case where j = N − 1 where a new ordered
is picked.

The formulas pi, with 1 ≤ i ≤ N denote whether a particular action is allowed given the
values of j and r. The formulas qi with 1 ≤ i ≤ N ! denote whether it is allowed to select the i-th
round-robin order based on the current round-robin order r. Note that the round-robin orders are
lexicographically ordered (for this example we have that the first order is a1a2a3a4 and the last
order is a4a3a2a1). Table 6 shows some of the formulas pi and qi.

We have developed a simple C program which automatically generates the GCL code for the
scheduler module for the class of k-RRRR schedulers, given the number of actions |A| and k.

5 Case studies

In this section we illustrate the use of bounded fairness for distributed algorithms with probabilistic
faults by applying our approach to three case studies. For each algorithm we compute bounds for the
probability that the system is in a safe configuration, i.e., its maximum and minimum availability.
We consider transient availabilities (the probability to be in a safe state at a certain time-point)
and long-run average availabilities (the expected percentage of time to be in a safe configuration if



module scheduler
r : [1..M];
j : [0..N-1] init 0;

[a1] (j<N-1) & p1 -> (j’=j+1);
[a2] (j<N-1) & p2 -> (j’=j+1);
...

[a1] (j=N-1) & p1 & q1 -> (j’=0) & (r’=1);
[a1] (j=N-1) & p1 & q2 -> (j’=0) & (r’=2);
...
[a2] (j=N-1) & p2 & q1 -> (j’=0) & (r’=1);
...
[a3] (j=N-1) & p3 & q1 -> (j’=0) & (r’=1);
...
[a4] (j=N-1) & p4 & q1 -> (j’=0) & (r’=1);
...

endmodule

Table 5: The scheduler module which restricts the allowed schedulers to the 1-RRRR schedulers
where the MDP has actions A = {a1, a2, a3, a4}.

formula p1 =
((j=0) & ((r=1)| (r=2)| (r=3)|

(r=4)| (r=5)| (r=6))) |
((j=1) & ((r=7)| (r=8)| (r=13)|

(r=14)| (r=19)| (r=20))) |
((j=2) & ((r=9)| (r=11)| (r=15)|

(r=17)| (r=21)| (r=23))) |
((j=3) & ((r=10)| (r=12)| (r=16)|

(r=18)| (r=22)| (r=24)));
...

formula q1 = ((r=1)| (r=2)| (r=3)| (r=7)| (r=8));
formula q2 = ((r=1)| (r=2)| (r=5)| (r=7)| (r=8));
...
formula q24 = ((r=17)| (r=18)| (r=22)| (r=23)| (r=24));

Table 6: The formulas used by the PRISM module in Table 5.

the system runs forever). Since we are interested in studying the effect of non-determinism arising
from the interleaving of processes we have fixed, for each case study, a single starting state. We
have used the PRISM model-checker [30] to compute transient availabilities and a semi-symbolic
algorithm to compute long-run average availabilities [48]. All PRISM models are available upon
request.

5.1 Minimal spanning tree algorithm

We consider the distributed minimal spanning tree algorithm (MST) developed throughout the
paper. We use a fault model where communication may be garbled (with probability 0.1) or may
fail to take place (with probability 0.2). When a node fails to communicate with another (i.e., it is
not able to read the value of the distance variable of one of its neighbours), then it simply does not
change its state. We consider here a network of four nodes. In the starting state we have that all
nodes have their distance parameter set to the maximum value.

In Figure 2 we give best- and worst-case transient availabilities, i.e., the figure shows the
probability to be in a state in which all processes have correctly computed their distance to the
root node at a certain time-point. We consider two different [L,U ] bounded fair (BF) scheduler
classes, the class of all round-robin (RR) schedulers and the stationary uniform (SU) scheduler, for
which we find the unique transient availability directly, instead of a maximum and minimum.

In the figure we can see the effect of increased scheduler freedom. For each scheduler class,
transient availability is initially low, but increases as the nodes exchange information. While
the class of RR schedulers is rather restricted, since the nodes always execute in the same order,
bounded fairness allows some nodes to act faster than others. In the worst case, nodes that have not
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Figure 2: Transient availabilities for the MST algorithm. Minimum and maximum availabilities
are shown for two classes of bounded fair (BF) schedulers and the class of round-robin (RR)
schedulers. The transient availability for the stationary uniform (SU) scheduler is also shown.
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Figure 3: Transient availabilities for the MST algorithm. Minimum and maximum availabilities
are shown for two classes of k-RRRR schedulers.

yet computed the correct distance from the root are scheduled last, while nodes that have already
correctly established their distance from the root are scheduled as soon as possible. We see that
this has scheduling freedom has a noticeable effect on the bounds for the transient availabilities.

The transient availabilities of the stationary uniform scheduler show us that this is not a good
choice of scheduler. Its transient availability alternatively lies well below or well above the minimal
bounds of all the other scheduler classes. Most importantly, the effect that the algorithm needs
several “rounds” to establish stability can be clearly seen for the class of RR schedulers and the
classes of BF schedulers by “jumps” in the transient availability curves. For the SU scheduler this
important effect cannot be seen as its curve is smooth.

Figure 3 shows the transient availabilities for both the class of 1-RRRR and 2-RRRR schedulers.
As expected, the bounds given by the 1-RRRR class stay within the bounds of the [3, 5] bounded
fair class and similar for the 2-RRRR and [2, 6] bounded fair classes. We see that the RRRR
schedulers display a round-based behavior. For the first action within a round, these classes give
the most freedom of choice, which is reflected in the more extreme bounds for this time-point. For
the last action within a round, the round-based schedulers have no freedom of choice; they must
choose the one action that has not yet occurred within the round. As a result we see that there is
very little difference in maximal and minimum transient availability for the associated time-points.

The long-run average availabilities for the different scheduler classes can be seen in Table 7. The
results clearly show that with increased scheduling freedom, the bounds for the long-run average
availability become less tight.
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Figure 4: Transient availabilities for the gossiping algorithm. Minimum and maximum availabilities
are shown for two classes of bounded fair (BF) schedulers and the class of round-robin (RR)
schedulers. The transient availability for the stationary uniform (SU) scheduler is also shown.
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Figure 5: Transient availabilities for the gossiping algorithm. Minimum and maximum availabilities
are shown for two classes of k-RRRR schedulers.

5.2 Gossiping information spread algorithm

Our second case study considers a gossiping information spread algorithm inspired by [18]. We
again have a set of distributed processes organized in a graph. The processes work together to
distribute information throughout the network. One process initially posesses information, while
the other processes randomly read from their neighbors to try to obtain this information. A process
not having the information can aquire it by reading from a neighbor which has. We consider a
network with five nodes.

We consider communcation faults and local faults. A communication between two nodes fails
with probability 0.2 and as a result the state of the active process does not change. In the case of a
local fault (which occurs with probability 0.05 whenever a process executes a local step) a process
loses the information it has. The process that initially has the information can never lose it.

Figure 4 depicts the probability that the information is known by all processes at a certain
time-point, i.e., the transient availability. The behavior of availabilities is similar to that for the
MST case study. Again we see that when we consider bounded fair schedulers, as opposed to
round-robin schedulers, the minimum availability of the system is significantly decreased, meaning
that the system is vulnerable to clock-drift. As for the first case study, we observe that the
stationary uniform scheduler does not accurately reflect the system behavior.

Figure 3 shows the transient availabilities for both the class of 1-RRRR and 2-RRRR schedulers.
Similar observations as in the case of the MST algorithm can be made. The long-run average
availabilities for the gossiping case study can also be found in Table 7.
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Figure 6: Transient availabilities for the leader election algorithm. Minimum and maximum
availabilities are shown for two classes of bounded fair (BF) schedulers and the class of round-robin
(RR) schedulers. The transient availability for the stationary uniform (SU) scheduler is also shown.

5.3 Tree-network leader election algorithm

Finally, we consider a leader election algorithm for tree-structured networks adapted from [20].
The algorithm establishes a directed tree in an anonymous network, by having each node select
a “parent” node. This tree then has a unique root node (which selects itself as its parent), which
is subsequently elected as leader. The selection of a unique node in such anonymous networks,
however, depends on the choices made by the underlying scheduler. We embellish the algorithm
with local faults that reset the “parent” of a node to a value chosen with a uniform distribution.
Such a local fault occurs with a probability of 0.1 whenever a node executes a local step. We
consider a network with five nodes. In the initial state each node has its “parent” variable set to
itself.

Figure 6 depicts the probability that one node has been elected as leader. The availabilities
are again similar to the previous case studies, although the impact of considering bounded fair
schedulers is much greater here. This is most likely caused by the fact that this algorithm is only
weakly self-stabilizing [20]. This means that there are schedulers for which the algorithm is not
guaranteed to reach a safe configuration. In our setting, where we have transient faults and where
we consider bounded fairness we can clearly see that there are bounded fair schedulers which
greatly decrease the availability of the algorithm. We also see that the bounds of the transient
availability drop in time for the RR scheduler class. This is due to the fact that with increasing
time we have a higher probability of observing faults.

Figure 3 shows the transient availabilities for both the class of 1-RRRR and 2-RRRR schedulers.
Similar observations as for the other cases can be made. However, we see here that the k-RRRR
scheduler classes give much tighter bounds than the bounded fair scheduler classes. From our
chosen starting configuration, the algorithm is always able to select a leader within one round,
assuming no faults occur. This explains the much higher minimum transient availability for the
k-RRRR scheduler classes for early time-points.

The long-run average availabilities for the leader election case study are listed in Table 7. As
for the transient availabilites we see the large impact of bounded fairness on the long-run average
availability bounds.

6 Related Work

6.1 Quantitative Analysis of Distributed Algorithms

Randomized distributed algorithms have been subjected to rigorous quantitative analysis ever
since they were first reported in the literature. Qualitative properties of randomized distributed
algorithms, such as eventual termination of an algorithm, are often less interesting than the
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Figure 7: Transient availabilities for the leader-election algorithm. Minimum and maximum
availabilities are shown for two classes of k-RRRR schedulers.

quantitative properties such as probability of reaching a good state in k steps or expected number
of steps required to reach a good state. Gafni and Mitzenmacher [27] analyzed the effect of
waiting time on the probability of a processor accessing its critical section for timing-based mutual
exclusion algorithms in case the waiting times are governed by some random distribution. The
expected number of rounds for a single token to circulate was calculated for a randomized token
ring algorithm in [28]. It was also shown that the algorithm is self-stabilizing with probability one.
A gossip-based shuffling algorithm is analyzed in [10] with respect to the number of nodes that
receives data in each round. The subset of data to be sent and the subset of nodes to communicate
within a round is selected randomly. Bakhshi and Fehnker also studied the impact of modeling
assumptions by comparing results of PRISM with those derived by simulation and the analysis of
ordinary differential equations in MATLAB. We refer reader to [42] for an elaborate survey on the
analysis of distributed algorithms with probabilistic behavior.

There has recently been interest in the quantitative analysis of fault-tolerant distributed algo-
rithms. Unlike randomized distributed algorithms discussed in the previous paragraph, stochastic
behavior emanates from the (randomized) appearance of faults. Sorensen et al. [44] proposed
methods to evaluate fault tolerance measures, such as reliability and expected time to a catastrophic
fault, of systems specified as set of CSP processes. An algorithmic method is also described to
derive an automaton from CSP-based specifications and subsequently transform the automaton to
a Markov process. The method, however, addresses only systems with permanent failures, that
is, a failure that cannot be corrected. A method to derive reliability and limiting availability
of self-stabilizing algorithms with intermittent transient faults is presented in [22]. The method
derives the equivalent DTMC by analyzing the self-stabilizing algorithm. This method has been
further refined in [21] by automating the analysis with the help of PRISM. In addition to that, the
authors also provide heuristics to re-engineer a self-stabilizing system if its fault tolerance measures
below a certain threshold.

6.2 Communication Models

Correctness proofs of distributed protocols are drawn assuming either of two prevalent communica-
tion models: the message passing model and the shared memory model [39]. In the message passing
model, two processes communicate with each other using a channel (also referred to as link) with
the help of “send” and “receive” primitives. The shared memory model assumes that processes
use shared memory variables that are exclusively meant for communication to exchange information.
Among many variants of the shared memory model, the one that is used predominantly assumes
that each process has two sets of communication registers: read registers and write registers [24].
Write registers are owned by a process and are used to inform neighbors about its local state.
Read registers, on the other hand, are used to gather information about local states of neighboring



Case study Schedulers Min Max

MST

[2,6] BF 0.553683 0.904349
[3,5] BF 0.666325 0.820220
2-RRRR 0.665750 0.832464
1-RRRR 0.693737 0.799902

RR 0.743096 0.754497
SU 0.744122 0.744122

Gossip

[3,7] BF 0.663161 0.876990
[4,6] BF 0.716577 0.820207
2-RRRR 0.707631 0.833159
1-RRRR 0.730030 0.807131

RR 0.767610 0.769526
SU 0.767789 0.767789

Leader

[3,7] BF 0.127691 0.891229
[4,6] BF 0.336496 0.848096
2-RRRR 0.298215 0.848437
1-RRRR 0.447771 0.829705

RR 0.763570 0.780348
SU 0.760131 0.760131

Table 7: Extremal long-run average availabilities for the three case studies for various bounded
fair (BF), round-robin (RR), and stationary uniform (SU) classes of schedulers. Note that for the
stationary uniform scheduler we find an exact value, since it is a single scheduler rather than a
scheduler class.

processes.
The communication model used by population protocols [5] is slightly different from the classical

models described above. Population protocols are meant to run on uniform and anonymous
distributed systems with a large number of mobile processes that have limited resources and no
control over their movement. The underlying communication model simply assumes that processes
communicate simultaneously using an interaction primitive. This abstraction leaves the choice of
implementing communication primitive via shared memory or message passing open.

6.3 Failure Models

Fault-tolerant distributed algorithms are typically designed using a fault model that assumes
that at most t out of n components can fail at system runtime [39, 17]. Furthermore, the model
assumes that processes and links fail independently of each other. A process can fail either by
simply crashing or by acting in an arbitrary manner (Byzantine failure) [38]. Another underlying
assumption is that the likelihood of a component failure is independent of the system runtime.
A variant of the classical fault model is the “Heard-Of Model,” which nullifies the distinction
between a “benign” process failure and a link failure and subsumes all non-arbitrary failures under
transmission failures [12].

The failure model remains essentially the same even for distributed protocols which provide
probabilistic dependability—such as gossip protocols [18]—instead of tight fault-masking guaranties.
The underlying fault model of gossip protocols assumes that the ratio of failed to non-failed processes
cannot be greater than certain threshold q(0 < q < 1) [25]. It is also assumed that message loss
failures are independent of each other [3].

The models presented above are geared towards easing the task of drawing correctness proofs
of the properties of distributed protocols. However, these models do not always capture realistic
scenarios well enough [33, 3]. This claim has also been strengthened by the empirical studies which
have shown that process failures are not necessarily independent of each other [47].

In order to provide abstractions closer to reality, modified fault models have been presented



which assume different failure semantics for the various system components. The hybrid fault model
assumes that at most b processes can exhibit a crash failure and at most m processes out of n
processes behave arbitrarily [40]. There are also failure models that capture undirected dependencies
[32] and directed dependencies [46] between the failures of system components.

The restriction on the number of component failures is somewhat relaxed when proving that
a protocol is self-stabilizing. A self-stabilizing protocol converges under an arbitrary number of
transient faults [24]. Transient faults are temporary and only modify the state of the processes.
This assumption holds for self-stabilizing versions of population protocols as well [6, 11].

6.4 Fairness Notions

The concept of fairness has been studied extensively as it facilitates discarding certain unrealistic
execution paths while verifying liveness properties of distributed algorithms. To that end, various
notions of fairness have been proposed in literature. In a broad sense, fairness ensures that an
action or a process is activated sufficiently often if it has been enabled often enough [26]. Weak
fairness ensures that a continuously enabled transition is taken infinitely often. An infinitely often
enabled transition is activated infinitely often under strong fairness. It has been observed that in
many instances fairness alone is not sufficient to guarantee that a transition is eventually activated
because it is not enabled long enough due to “race conditions” [7]. The notion of hyperfairness is
proposed to exclude such pathological traces where a transition is not enabled due to intermittent
unavailability of the required resources. Hyperfairness is deployed with an underlying notion of
fairness. It guarantees that a transition is enabled sufficiently enough so that it can be activated
by the underlying fairness notion. This notion of hyperfairness is generalized in [37]. Lamport’s
notion of hyperfairness ensures that a transition is activated infinitely often if it is infinitely often
possible. The relative strengths of various notions of fairness have also been studied [45]. The
notion of probabilistic fairness has been defined for a class of distributed algorithms [5, 13]. A
probabilistic scheduler resolves non-determinism by choosing a next transition according to certain
probability distribution. It has been shown that a probabilistic scheduler is fair with probability 1 if
each transition has non-zero probability of being selected and the probability distribution remains
unchanged during the system runtime [13].

All the above notions of fairness only require certain actions to take place at some time-point
under various conditions, but generally do not enforce these actions to occur in a particular
time-frame. Bounded fairness, on the other hand, guarantees that a continuously enabled transition
is activated within a bounded number of steps and is stronger than the notion of weak fairness
[2, 29, 19]. The notion of bounded fairness has been used to prove various qualitative properties of
distributed algorithms such as consensus in asynchronous systems [9, 1, 8].

7 Conclusion

This paper has discussed the notion of bounded fairness for probabilistic models of distributed
algorithms. Bounded fairness naturally captures clock drift in near-symmetric distributed systems.
We have shown how to apply these new fairness notions to models of distributed algorithms and
discussed properties of our scheduling classes. We have developed the theory of bounded fairness
for Markov decision processes as well as the practice of applying this scheduler class to models in a
guarded command language.

In several case studies we have shown that customary ways of fixing an execution order, such
as round-robin scheduling and random scheduling, may lead to too optimistic or too pessimistic
estimations of quantitative properties of distributed algorithms. On the other hand, we see that
using bounded fairness increases the size of our models and makes analysis of algorithms operating
on large networks difficult. For this reason, it is useful to search for efficient approximations of
quantitative properties for the class of bounded fair schedulers. Another interesting consequence of
bounded fairness for MDPs is that it now allows us to study the quantitative effect of clock drift
on specific distributed algorithms. One avenue to investigate is whether the resilience of different



distributed algorithms to clock drift can be quantified. Another extension of this work can be the
analysis of the distributed algorithms which exhibit certain qualitative properties only under a
specific subset of schedulers and the study of bounded fair schedulers which maximize or minimize
the dependability metrics related to such qualititative properties.
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A Proof of Theorem 1

Given a MDP M = (S,A,R), a function F from paths of M to sets of actions, and the scheduler
class CF characterized by F we construct the MDP M ′ = (S′, A,R′) such that the extremal
probabilities of M over CF match the extremal probabilities of M ′ over all schedulers.

Let the state space of M ′ be the set of finite paths of M : S′ = (S ×A)∗ × S. A path ρ of M ′

is then in a sense a path of paths, i.e. ρ ∈ (((S ×A)∗ × S)×A)∗ × ((S ×A)∗ × S). We say that
a path ρ = σ1a1σ2a2 . . . σn is coherent if it starts with a path σ1 of M of length 0 (i.e. a single
state) and for each subsequent path σi of M in ρ we have that its predecessor σi−1 in ρ is also its
immediate prefix and the last action of σi is the action between σi−1 and σi in ρ. As an example a
path ρ of M ′ with ρ = s1, a1, s1a1s2, a2, s1a1s2a2s3 (here the constituents of ρ are separated by
commas) is coherent. It is clear that if a path of M ′ is coherent it is competely determined by its
last state. For a state σ ∈ S′ we write γ(σ) for the coherent path such that last(γ(σ)) = σ.

The transition relation R′ follows the transition relation of R, lifted to paths, but it excludes
those transitions which violate the restrictions of the function F .

R′ = {(σ, a, π′) | σ ∈ ((S ×A)∗ × S) ∧ (last(σ), a, π) ∈ R ∧ a ∈ F (σ)},

Where π′ is defined to match π, lifted to coherent paths, such that for all states s ∈ S we have:

P (R̄′(σ, a) = σas) = P (R̄(last(σ), a) = s).

Note that for each state σ′ = σas in S′ there is exactly one state which has a transition to σ′,
namely the state σ. States of M ′ which represent paths of length 0 of M have no such incoming
transitions.

We now prove two lemmas which relate schedulers of M ′ to schedulers of M in CF by considering
the transition probabilities of their induced Markov chains.

Lemma 1. Given a scheduler f for M such that f ∈ CF . Let the function f ′ from paths of M ′ to
distributions over the actions A be such that for any path σ of M and any action a ∈ A we have:

P
(
f̄ ′(γ(σ)) = a) = P (f̄(σ) = a

)
.

For non-coherent paths ρ the function f ′ may choose any distribution over the set of actions enabled
in the last state of ρ. Now we have that any such f ′ is a scheduler of M ′ and for any path σ of M ,
action a ∈ A, state s ∈ S, and time-point k ∈ Z≥0 we have that:

P
(
X

(k+1)
f ′,M ′ = γ(σas) | X(k)

f ′,M ′ = γ(σ)
)

= P
(
X

(k+1)
f,M = σas | X(k)

f,M = σ
)

Proof. We first show that f ′ is a scheduler of M ′. It is then required for any path ρ of M ′ that f ′

assigns a probability greater than zero only to those actions which are enabled in the last state
of ρ. For non-coherent paths this holds by definition. For a coherent path ρ we have that there
exists some path σ of M such that ρ = γ(σ). From the definition of R′ we know that the actions
enabled for σ in M ′ are exactly the actions in F (σ). For an action not in F (σ) we have that:
P (f̄ ′(γ(σ)) = a) = P (f̄(σ) = a) = 0, by the fact that f is in CF . This shows that f ′ is a scheduler
of M ′.

For the transition probabilities of the MC induced by the scheduler f ′ we find the following.
For any path σ of M , any action a in F (σ), state s ∈ S, and time-point k ∈ Z≥0 we have, by
applying the definitions of f ′ and R′, that:

P (X
(k+1)
f ′,M ′ = γ(σas) | X(k)

f ′,M ′ = γ(σ)) = P (f̄ ′(γ(σ)) = a) · P (R̄′(σ, a) = σas)

= P (f̄(σ) = a) · P (R̄(last(σ), a) = s)

= P (X
(k+1)
f,M = σas | X(k)

f,M = σ)

For an action a /∈ F (σ) we have that P (R̄′(σ, a) = σas) and P (f̄(σ) = a) are both zero and thus
the transition probabilities for both Xf ′,M ′ and Xf,M are zero.



Lemma 2. Given a scheduler f ′ for M ′. Let the function f from paths of M to distributions over
A be such that for any path σ of M and any action a ∈ A we have:

P (f̄(σ) = a) = P (f̄ ′(γ(σ)) = a).

Now we have that any such f is a scheduler of M and a member of CF . Furthermore, for any path
σ of M , action a ∈ A, state s ∈ S, and time-point k ∈ Z≥0 we have that:

P (X
(k+1)
f,M = σas | X(k)

f,M = σ) = P (X
(k+1)
f ′,M ′ = γ(σas) | X(k)

f ′,M ′ = γ(σ))

Proof. It is trivial that f is a scheduler of M since it assigns a distribution over actions to every
path of M . As for Lemma 1 we have that scheduler f ′ can only assign non-zero probabilities to
actions enabled for a path γ(σ) which is exactly the set F (σ). It follows that f is a member of CF .
The proof that the transition probabilities for Xf,M match those for Xf ′,M ′ is identical to the one
for Lemma 1.

Now we prove two lemmas which relate the transient probabilities induced from M with the
transient probabilities induced from M ′.

Lemma 3. Given a scheduler f for M such that f ∈ CF , a starting state s ∈ S and a set of goal
paths G ⊂ (S ×A)∗ × S. Let the scheduler f ′ be the scheduler derived from f as in Lemma 1. We
now have for any time-point k ∈ Z≥0 the following:

P (X
(k)
f,M ∈ G | X

(0)
f,M = s) = P (X

(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s)).

Note that the state s is used here as a path of length 0 and we use the notation γ(G) = {γ(σ) | σ ∈ G}.

Proof. We prove Lemma 3 by induction on the time-point k. As the base case we have k = 0 for

which we find: P (X
(0)
f,M ∈ G | X

(0)
f,M = s) equals one if s ∈ G and zero otherwise. For the induced

Markov chain Xf ′,M ′ we find: P (X
(0)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s)) equals one if γ(s) ∈ γ(G) and
zero otherwise. Since s is a path of length zero we have γ(s) = s and s ∈ γ(G) if and only if s ∈ G.

Thus we have that P (X
(0)
f,M ∈ G | X

(0)
f,M = s) equals P (X

(0)
f ′,M ′ ∈ g(G) | X(0)

f ′,M ′ = h(s)) for all
states s ∈ S and all sets of paths G.

Given a fixed arbitrary time-point k > 0 we use the following induction assumption, that for all
states s ∈ S and all sets of paths H ⊂ (S ×A)∗ × S we have:

P (X
(k−1)
f,M ∈ H | X(0)

f,M = s) = P (X
(k−1)
f ′,M ′ ∈ γ(H) | X(0)

f ′,M ′ = γ(s)).

Our goal is now to prove that, given that the induction assumption holds, the following can be
proven for all states s and all sets of paths G:

P (X
(k)
f,M ∈ G | X

(0)
f,M = s) = P (X

(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s)).

For the probabilities at time-point k we have:

P (X
(k)
f,M ∈ G | X

(0)
f,M = s)

=
∑

σ′∈(S×A)k−1×S

P (X
(k)
f,M ∈ G | X

(k−1)
f,M = σ′) · P (X

(k−1)
f,M = σ′ | X(0)

f,M = s)

And:

P (X
(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s))

=
∑

ρ′∈(S′×A)k−1×S′
P (X

(k)
f ′,M ′ ∈ γ(G) | X(k−1)

f ′,M ′ = ρ′) · P (X
(k−1)
f ′,M ′ = ρ′ | X(0)

f ′,M ′ = γ(s))



All the paths in γ(G) are coherent and therefor the probability P (X
(k)
f ′,M ′ ∈ γ(G) | X(k−1)

f ′,M ′ = ρ′)
is zero for non-coherent paths ρ′. We then have that we can restrict the summation to just the
coherent paths:

P (X
(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s))

=
∑

σ′∈(S×A)k−1×S

P (X
(k)
f ′,M ′ ∈ γ(G) | X(k−1)

f ′,M ′ = γ(σ′)) · P (X
(k−1)
f ′,M ′ = γ(σ′) | X(0)

f ′,M ′ = γ(s))

Since f is in CF we can apply Lemma 1 and the induction assumption to find:

P (X
(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s))

=
∑

σ′∈(S×A)k−1×S

P (X
(k)
f ′,M ′ ∈ γ(G) | X(k−1)

f ′,M ′ = γ(σ′)) · P (X
(k−1)
f ′,M ′ = γ(σ′) | X(0)

f ′,M ′ = γ(s))

=
∑

σ′∈(S×A)k−1×S

P (X
(k)
f,M ∈ G | X

(k−1)
f,M = σ′) · P (X

(k−1)
f,M = σ′ | X(0)

f,M = s)

= P (X
(k)
f,M ∈ G | X

(0)
f,M = s)

Note that we use the fact that any path σ′′ in G where P (X
(k)
f,M = σ′′ | X(k−1)

f,M = σ′) is non-zero
must be a one step extension of σ′, i.e. of the form σ′′ = σ′as. This enables us to apply Lemma 1.
This proves the induction step and thus Lemma 3.

Lemma 4. Given a scheduler f ′ for M ′, a starting state s ∈ S and a set of goal paths G ⊂
(S ×A)∗ × S. Let the scheduler f be the scheduler derived from f ′ as in Lemma 2. We now have
for any time-point k ∈ Z≥0 the following:

P (X
(k)
f ′,M ′ ∈ γ(G) | X(0)

f ′,M ′ = γ(s)) = P (X
(k)
f,M ∈ G | X

(0)
f,M = s).

We again use the state s as path of length zero and use the notation γ(G) = {γ(σ) | σ ∈ G}.

The proof for Lemma 4 is identical to the proof for Lemma 3 except that Lemma 2 is used
instead of Lemma 1 to prove the induction step.

Lemmas 3 and 4 tell us that for every scheduler in CF for M we find an identical, with respect
to transient probabilities, scheduler for M ′ and vice versa. Here, states in the induced MC for M
are paths in M , while states in the induced MC of M ′ are “paths of paths” of M , but since we
restrict to coherent “paths of paths”, which are uniquely defined by their last entry, there is a
one-to-one correspondence between the two induced MCs. It then immediately follows that the set
of all transient probabilities for M and M ′ are equal and then their infimum and supremum must
be equal as well. By a similar reasoning we have that the infimum and supremum long-run average
probabilities must be the same which then proves Theorem 1.

B Proof of Theorem 2

Given an enabled MDP M = (S,A,R) with |A| = N and given bounds L,U ∈ Z with 1 ≤ L ≤ N
and N ≤ U , we prove that a scheduler f is [L,U ] bounded fair if and only if for all time-points
k ∈ Z≥0 the period of the induced Markov chain at time-point k lies between L and U :

P
(

Λ
(k)
f,M ∈ [L,U ]

)
= 1,

And for any action a the first occurrence of a is less than or equal to U :

P
(

∆
(a)
f,M ≤ U

)
= 1.

Before we prove Theorem 2 we first introduce the following lemma.



Lemma 5. Given an enabled MDP M = (S,A,R) with |A| = N and given bounds L,U ∈ Z with
1 ≤ L ≤ N and N ≤ U . For any [L,U ] bounded fair scheduler f we have that for any finite path
σ ∈ (S ×A)∗×S of length k the following holds. If the length of σ is larger or equal to U − 1, then
the number of actions that did not occur in the last U − 1 steps is less than or equal to one. If the
length of σ is smaller than U − 1 then the number of actions that did not occur in σ is less than or
equal to U − k. This means that the probability of reaching a path which violates these restrictions
is zero:

k ≥ U − 1 ∧ |A \A(U−1)
σ | > 1⇒ P (X

(k)
f,M = σ) = 0

k < U − 1 ∧ |A \A(k)
σ | > U − k ⇒ P (X

(k)
f,M = σ) = 0

Proof. We prove Lemma 5 by induction on the path length k. For the base case k = 0 we have

that A
(0)
σ = ∅ and then |A \A(k)

σ | = N ≤ U which means the lemma holds for the case k = 0.
Now we fix an arbitrary path length k > 0 and use as our induction assumption that for k − 1

we have that the lemma holds. We now prove that the lemma holds for an arbitrary path σ′ of
length k. Since k is greater than zero, we have that σ′ = σas, where σ is a path of M of lenght
k − 1, a is some action in A and s is a state in S. We now consider two possibilities for the value
of k:

• Case k < U . Here we have that k−1 < U −1 and then we have by the induction assumption

that for the path σ of length k−1 the following holds: |A\A(k−1)
σ | > U−k+1⇒ P (X

(k−1)
f,M =

σ) = 0). Now the set of actions in the last k steps of σ′ is equal to the set of actions in

the last k − 1 steps of σ including a: A
(k)
σ′ = A

(k−1)
σ ∪ {a}. We now consider whether a was

already in the set A
(k−1)
σ or not.

– For the case a /∈ A(k−1)
σ we have that |A \A(k)

σ′ | = |A \A
(k−1)
σ | − 1. Now if we assume

that |A \A(k)
σ′ | > U − k then we have that |A \A(k−1)

σ | > U − k + 1, which gives us, by

the induction assumption, that: P (X
(k−1)
f,M = σ) = 0). Since σ′ can only be reached via

σ we have P (X
(k)
f,M = σ′) = 0) which proves the lemma for this case.

– For the case a ∈ A(k−1)
σ we have that |A \A(k)

σ′ | = |A \A
(k−1)
σ |. We now consider three

possibilities for the size of the set A \A(k−1)
σ :

∗ For |A \A(k−1)
σ | > U − k + 1 we have that the probability to reach path σ is zero

and then the probability to reach path σ′ is also zero.

∗ For |A \ A(k−1)
σ | < U − k + 1 we have that |A \ A(k)

σ′ | ≤ U − k. We now consider
the size of k and show that in all cases the left-hand sides of the implications are
falsified:

· For k < U−1 we must consider the second implication and find that |A\A(k)
σ′ | ≤

U − k immediately falsifies it.

· For k = U−1 we must consider the first implication and we have that U−k = 1.

Now we have that |A \A(k)
σ′ | = |A \A

(U−1)
σ′ | ≤ 1 falsifying the left-hand side of

the first implication.

∗ For the case |A \ A(k−1)
σ | = U − k + 1 we have that F (σ′) = A \ A(k−1)

σ but then

action a, which we now consider to be in A
(k−1)
σ , is selected by scheduler f with

probability zero. We then have P (X
(k)
f,M = σas) = P (f̄(σ) = a) · P (R̄(σ, a) =

s) · P (X
(k−1)
f,M = σ) = 0 since P (f̄(σ) = a) = 0.

This shows that the induction step holds for paths shorter than U .

• Consider now the case k ≥ U then we have that k − 1 ≥ U − 1 and by the induction

assumption we have that the following holds: |A \A(U−1)
σ | > 1⇒ P (X

(k−1)
f,M = σ) = 0). The

set of actions in the last U − 1 steps of σ′ = σas is equal to the set of actions in the last



U − 2 steps of σ with the addition of action a: A
(U−1)
σ′ = A

(U−2)
σ ∪ {a}. For the set A

(U−2)
σ

we have that |A(U−1)
σ | − 1 ≤ |A(U−2)

σ | ≤ |A(U−1)
σ |. We now consider three possibilities for the

size of the set A \A(U−2)
σ and its inclusion of the action a:

– For the case that |A \A(U−2)
σ | > 2 we have that |A \A(U−1)

σ | > 1 and then P (X
(k−1)
f,M =

σ) = 0 by the induction assumption and then we also have that P (X
(k)
f,M = σas) = 0

proving that the lemma holds.

– For the case |A \A(U−2)
σ | < 2 or the case |A \A(U−2)

σ | = 2 and a /∈ A(U−2)
σ we have that

|A \A(U−1)
σ′ | < 2 and thus the lemma holds.

– Finally we consider the case where |A \A(U−2)
σ | = 2 and a ∈ A(U−2)

σ . It is trivial that

we also have a ∈ A(U−1)
σ . For the set |A \A(U−1)

σ | we again have two possibilities.

∗ In case |A \A(U−1)
σ | = 2, the probability to reach path σ, and thus σ′, is again zero.

∗ For the case |A \A(U−1)
σ | = 1 we have that F (σ) = A \A(U−1)

σ but then a /∈ F (σ)

and we again find that P (X
(k)
f,M = σas) is zero, because scheduler f selects a after

path σ with probability zero.

This proves that the induction step holds and thus Lemma 5 holds.

We are now ready to prove Theorem 2.

Proof. We prove the two implications separately.

Bounded fair schedulers induce bounded periods We first show that if a scheduler is [L,U ]
bounded fair then its period always lies between L and U with probability one. To do this we
prove that for any k the probability that the period of the induced MC Xf,M is smaller than L or
greater than U is zero and that the probability that the first occurence of an action is greater than
U is zero.

• For the probability of the period being smaller than L we have that:

P (Λ
(k)
f,M < L) =

∑
a∈A

P (f̄(X
(k)
f,M ) = a ∧ (f̄(X

(k+1)
f,M ) = a ∨ . . . ∨ f̄(X

(k+L−1)
f,M ) = a))

≤
L−1∑
i=1

∑
a∈A

P (f̄(X
(k)
f,M ) = a ∧ f̄(X

(k+i)
f,M ) = a)

Consider a path σ ∈ (S ×A)k × S of length k, an arbitrary fixed action a ∈ A and the path
σ′ = σaσ′′ where σ′′ ∈ (S×A)i−1×S has length i− 1 with 1 ≤ i < L. Note that path σ′ has
length k + i, that a is in Aiσ′ and that all paths of length greater than zero can be described
in this way.

We now look at the possibilities for the allowed actions for path σ′, F (σ′), by going over the
three cases in Definition 7. We then show that in all cases a /∈ F (σ′).

1. If k + i ≥ U ∧ |A \A(U−1)
σ′ | = 1 then we have F (σ′) = A \A(U−1)

σ′ . Since i < L ≤ U we

have that a ∈ A(U−1)
σ′ and then a /∈ F (σ′).

2. If k+ i < L or k+ i < U ∧ |A \A(k+i)
σ′ | = U − (k+ i) then F (σ′) = A \A(k+i)

σ′ . Obviously

we have that a ∈ A(k+i)
σ′ and then a /∈ F (σ′).

3. If cases 1 and 2 don’t apply we have A \A(L−1)
σ′ . Since i < L we have a ∈ A(L−1)

σ′ and
again a /∈ F (σ′).



We have now proven that a /∈ F (σ′). For scheduler f this proves that P (f̄(σ′) = a) = 0. We
now have:

P (X
(k)
f,M = σ ∧X(k+i)

f,M = σaσ′′ ∧ f̄(X
(k)
f,M ) = a ∧ f̄(X

(k+i)
f,M ) = a)

= P (X
(k)
f,M = σ ∧X(k+i)

f,M = σaσ′′ ∧ f̄(σ) = a ∧ f̄(σaσ′′) = a) = 0

For the probability of repeating an action within L steps we now find:

L−1∑
i=1

∑
a∈A

P (f(X
(k)
f,M ) = a ∧ f̄(X

(k+i)
f,M ) = a)

=

L−1∑
i=1

∑
a∈A

∑
σ∈Paths

(k)
M

∑
σ′′∈Paths

(i−1)
M

P (X
(k)
f,M = σ

∧X(k+i)
f,M = σaσ′′ ∧ f̄(σ) = a ∧ f̄(σaσ′′) = a) = 0

This proves that P (Λ
(k)
f,M < L) = 0.

• For the probability that the period at time-point k is greater than U we have:

P (Λ
(k)
f,M > U) =

∑
a∈A

P (f̄(X
(k)
f,M ) = a ∧ f̄(X

(k+1)
f,M ) 6= a ∧ . . . ∧ f̄(X

(k+U)
f,M ) 6= a)

Consider a path σ ∈ (S ×A)k × S of length k, an arbitrary fixed action a ∈ A and the path
σ′ = σaσ′′ where σ′′ ∈ (S ×A)U−1 × S has length U − 1 and a /∈ σ′′[A]. Note that path σ′

has length k + U , and a /∈ A(U−1)
σ′ .

Since a /∈ A(U−1)
σ′ we have that |A \ A(U−1)

σ′ | ≥ 1. For the case that |A \ A(U−1)
σ′ | = 1 we

must have that A \A(U−1)
σ′ = {a} and then F (σ′) = {a} by the first case of Definition 7. It

follows that in this case the scheduler f must select a with probability one. For the case

|A \A(U−1)
σ′ | > 1 we have, by Lemma 5, that P (X

(k+U)
f,M = σ′) = 0.

We have shown that either P (X
(k+U)
f,M = σ′) = 0 or P (f̄(σ′) 6= a) = 0. For the probability

that the period is greater than U we now find.

P (Λ
(k)
f,M > U) =

∑
a∈A

P (f(X
(k)
f,M ) = a ∧ f̄(X

(k+1)
f,M ) 6= a ∧ . . . ∧ f̄(X

(k+U)
f,M ) 6= a)

=
∑
a∈A

∑
σ∈Paths

(k)
M

∑
σ′′∈Paths

(U−1)
M

P (X
(k)
f,M = σ

∧X(k+U)
f,M = σaσ′′ ∧ f̄(σ) = a ∧ a /∈ A(U−1)

σ′′ ∧ f̄(σaσ′′) 6= a) = 0

This proves that P (Λ
(k)
f,M > U) = 0 and then that for all schedulers that are [L,U ] bounded

fair we have that their period always lies between L and U .

• We now prove that for any scheduler that is [L,U ] bounded fair and any action a ∈ A we have
that the first occurrence of a is greater than U with probability zero. For this probability we
have that:

P (∆
(a)
f,M > U) = P

(
f̄(X

(0)
f,M ) 6= a ∧ . . . ∧ f̄(X

(U−1)
f,M ) 6= a

)
.

Consider a path σ of length U − 1 such that the action a has not occurred yet in σ:

a ∈ A \ A(U−1)
σ . We will now show that either σ has probability zero to be reached by

X or action a is selected by f with probability one. Since A
(U−1)
σ does not contain a we

have that |A \ A(U−1)
σ | ≥ 1. From Lemma 5 we now have that either |A \ A(U−1)

σ | = 1 or

P (X
(U−1)
f,M = σ) = 0. In the former case we find that F (σ) = A \ A(U−1)

σ = {a} and then



P (f̄(σ) = a) = 1. For the probability that the first occurrence of a is greater than U we now
find:

P (∆
(a)
f,M > U) =

P (f̄(X
(0)
f,M ) 6= a ∧ . . . ∧ f̄(X

(U−1)
f,M ) 6= a) =∑

σ∈Paths
(U−1)
M

P (X
(U−1)
f,M = σ ∧ a /∈ A(U−1)

σ ∧ f̄(σ) 6= a) = 0,

since from a /∈ A(U−1)
σ we have derived that either P (X

(U−1)
f,M = σ) or P (f̄(σ) 6= a) is zero.

Bounded periods must be induced by bounded fair schedulers. We now prove that any
scheduler for which the period lies between L and U with probability one and the first occurrence
of any action is smaller or equal to U with probability one is [L,U ] bounded fair by contradiction.

Assume f is a scheduler of M such that for any time-point k ∈ Z≥0 we have P (Λ
(k)
f,M ∈ [L,U ]) = 1,

for any action a ∈ A we have that P (∆
(a)
f,M ≤ U) = 1, and for which we have that f is not [L,U ]

bounded fair. The latter means that there exists some path σ ∈ (S × A)∗ × S of length k and
an action a ∈ A such that a /∈ F (σ) and P (f̄(σ) = a) > 0, i.e., f chooses an action which is not
allowed according to the characteristic function F with probability greater than zero. We now
show that this always leads to a contradiction.

We go over the different possibilities for a /∈ F (σ) given an arbitrary path σ of length k, with

P (X
(k)
f,M = σ) > 0 and an arbitrary action a.

• First consider the case that k ≥ U and |A \ A(U−1)
σ | = 1 and a ∈ A(U−1)

σ . Obviously, since

F (σ) = A \A(U−1)
σ we have a /∈ F (σ). Now |A \A(U−1)

σ | = 1 means that there is exactly one
action b ∈ A which did not occur in the last U − 1 steps. There are now two possibilities:
Either b occurred at an earlier time-point i < k − U in the path σ or it did not yet occur.

– In the first case we have that P (Λ
(i)
f,M > U) > 0 which is a contradiction with the fact

that the period should be less than or equal to U .

– For the second possibility we have that the first occurrence of b is at least U + 1 with
probability one, which is a contradiction with the fact that the first occurrence should
be less than or equal to U .

• Consider now the case that k < L and a ∈ A(k)
σ . Then there exists some earlier time-point

i < k where the action a occurred and for this time-point we find P (Λ
(i)
f,M = k− i) > 0. Since

k < L this is a contradiction with the fact that the period must be greater than or equal to
L.

• Consider the case that k < U , |A \ A(k)
σ | = U − k, and a ∈ A(k)

σ . Then we have that there

exists a path σas such that |A \A(k+1)
σas | = U − k. This means that for one of the actions in

A \A(k)
σ we will have that it will not be scheduled for for another U − k steps which means

that for this action we find a period of at least U − 1. This is a contradiction with the fact
that the period must be smaller than or equal to U .

• Finally we consider the case that a ∈ A
(L−1)
σ then there exists some earlier time-point

k − L + 1 ≤ i < k where the action a occurred and for this time-point we find P (Λ
(i)
f,M =

k − i) > 0. Since k − i < L this is again a contradiction with the fact that the period must
be greater than or equal to L.


