Counterexample Generation for
Discrete-Time Markov Models:
An Introductory Survey

Erika Abrahéml, Bernd Becker?, Christian Dehnert!,

Nils Jansen!, Joost-Pieter Katoen', and Ralf Wimmer?

L RWTH Aachen University, Germany
{abraham, dehnert, nils.jansen, katoen}@cs.rwth—aachen.de
2 Albert-Ludwigs-University Freiburg, Germany
{becker, wimmer}@informatik.uni-freiburg.de

Abstract. This paper is an introductory survey of available methods
for the computation and representation of probabilistic counterexamples
for discrete-time Markov chains and probabilistic automata. In contrast
to traditional model checking, probabilistic counterexamples are sets
of finite paths with a critical probability mass. Such counterexamples
are not obtained as a by-product of model checking, but by dedicated
algorithms. We define what probabilistic counterexamples are and present
approaches how they can be generated. We discuss methods based on path
enumeration, the computation of critical subsystems, and the generation
of critical command sets, both, using explicit and symbolic techniques.

1 Introduction

The importance of counterexamples. One of the main strengths of model checking
is its ability to automatically generate a counterezample in case a model refutes a
given temporal logic formula [1]. Counterexamples are the most effective feature
to convince system engineers about the value of formal verification [2]. First and
foremost, counterexamples provide essential diagnostic information for debugging
purposes. A counterexample-guided simulation of the model at hand typically
gives good insight into the reason of refutation. The same applies when using
counterexamples as witnesses showing the reason of fulfilling a property. Coun-
terexamples are effectively used in model-based testing [3]. In this setting, models
are used as blueprint for system implementations, i.e., the conformance of an
implementation is checked against a high-level model. Here, counterexamples
obtained by verifying the blueprint model act as test cases that, after an adapta-
tion, can be issued on the system-under-test. Counterexamples are at the core of
obtaining feasible schedules in planning applications. Here, the idea is to verify
the negation of the property of interest—it is never possible to reach a given
target state (typically the state in which all jobs have finished their execution)
within k£ steps—and use the counterexample as an example schedule illustrating
that all jobs can complete within k£ steps. This principle is exploited in e.g.,

task scheduling in timed model checking [4]. A more recent application is the
synthesis of attacks from counterexamples for showing how the confidentiality of
programs can be broken [5]. These so-called refinement attacks are important,
tricky, and are notorious in practice. Automatically generated counterexamples
act as attacks showing how multi-threaded programs under a given scheduler
can leak information. Last but not least, counterexamples play an important role
also in counterexample-guided abstraction refinement (CEGAR) [6], a successful
technique in software verification. Spurious counterexamples resulting from veri-
fying abstract models are exploited to refine the (too coarse) abstraction. This
abstraction-refinement cycle is repeated until either a concrete counterexample is
found or the property can be proven.

Counterezample generation. For these reasons, counterexamples have received
considerable attention in the model checking community. Important issues have
been (and to some extent still are) how counterexamples can be generated
efficiently, preferably in an on-the-fly manner during model checking, how memory
consumption can be kept small, and how counterexamples themselves can be
kept succinct, and be represented at the model description level (rather than
in terms of the model itself). The shape of a counterexample depends on the
property specification language and the checked formula. The violation of linear-
time safety properties is indicated by finite paths that end in a “bad” state.
Therefore, for logics such as LTL, typically finite paths through the model
suffice. Although LTL model checking is based on (nested) depth-first search,
LTL model checkers such as SPIN incorporate breadth-first search algorithms to
generate shortest counterexamples, i.e., paths of minimal length. The violation
of liveness properties, instead, require infinite paths ending in a cyclic behavior
under which something “good” will never happen. These lassos are finitely
represented by concatenating the path until reaching the cycle with a single cycle
traversal. For branching-time logics such as CTL, such finite paths suffice as
counterexamples for a subclass of universally quantified formulas. To cover a
broader spectrum of formulas, though, more general shapes are necessary, such as
tree-like counterexamples [7]. As model-checking suffers from the combinatorial
growth of the number of states—the so-called state space explosion problem—
various successful techniques have been developed to combat this. Most of these
techniques, in particular symbolic model checking based on binary decision
diagrams (BDDs, for short), have been extended with symbolic counterexample
generation algorithms [8]. Prominent model checkers such as SPIN and NUSMV
include powerful facilities to generate counterexamples in various formats. Such
counterexamples are typically provided at the modeling level, like a diagram
indicating how the change of model variables yields a property violation, or
a message sequence chart illustrating the failing scenario. Substantial efforts
have been made to generate succinct counterexamples, often at the price of
an increased time complexity. A survey of practical and theoretical results on
counterexample generation in model checking can be found in [2].

Probabilistic model checking. This paper surveys the state of the art in counterex-
ample generation in the setting of probabilistic model checking [9-11]. Probabilistic
model checking is a technique to verify system models in which transitions are
equipped with random information. Popular models are discrete- and continuous-
time Markov chains (DTMCs and CTMCs, respectively), and variants thereof
which exhibit non-determinism such as probabilistic automata (PA). Efficient
model-checking algorithms for these models have been developed, implemented
in a variety of software tools, and applied to case studies from various application
areas ranging from randomized distributed algorithms, computer systems and
security protocols to biological systems and quantum computing. The crux of
probabilistic model checking is to appropriately combine techniques from numer-
ical mathematics and operations research with standard reachability analysis
and model-checking techniques. In this way, properties such as “the (maximal)
probability to reach a set of bad states is at most 0.1” can be automatically
checked up to a user-defined precision. Markovian models comprising millions of
states can be checked rather fast by dedicated tools such as PRISM [12] and
MRMC [13]. These tools are currently being extended with counterexample
generation facilities to enable the possibility to provide useful diagnostic feedback
in case a property is violated. More details on probabilistic model checking can
be found in, e.g., [9,14,15].

Counterexamples in a probabilistic setting. Let us consider a finite DTMC, i.e., a
Kripke structure whose transitions are labeled with discrete probabilities. Assume
that the property “the (maximal) probability to reach a set of bad states is at
most 0.1” is violated. That means that the accumulated probability of all paths
starting in the initial state sg and eventually reaching a bad state exceeds 10%.
This can be witnessed by a set of finite paths all starting in sy and ending in a
bad state whose total probability exceeds 0.1. Counterexamples are thus sets of
finite paths, or viewed differently, a finite tree rooted at sg whose leafs are all bad.
Evidently, one can take all such paths (i.e, the complete tree) as a counterexample,
but typically succinct diagnostic information is called for. There are basically
two approaches to accomplish this: path enumeration and critical subsystems. In
contrast to standard model checking, these algorithmic approaches are employed
after the model-checking phase in which the refutation of the property at hand
has been established. Up to now, there is no algorithm to generate probabilistic
counterexamples during model checking.

Path enumeration. For DTMCs, a counterexample can be obtained by explicitly
enumerating the paths comprising a counterexample. A typical strategy is to
start with the most probable paths and generate paths in order of descending
probability. This procedure stops once the total probability of all generated
paths exceeds the given bound, ensuring minimality in terms of number of paths.
Algorithmically, this can be efficiently done by casting this problem as a k shortest
path problem [16,17] where k is not fixed a priori but determined on the fly
during the computation. This method yields a smallest counterexample whose
probability mass is maximal—and thus most discriminative—among all minimal

counterexamples. This approach can be extended to until properties, bounded
versions thereof, w-regular properties, and is applicable to non-strict upper and
lower bounds on the admissible probability. Whereas [16, 17] exploit existing k
shortest path algorithms with pseudo-polynomial complexity (in k), [18] uses
heuristic search to obtain most probable paths. Path enumeration techniques
have also been tackled with symbolic approaches like bounded model checking [19]
extended with satisfiability modulo theories (SMT) techniques [20], and using
BDD-techniques [21]. The work [22] proposes to compute and represent counterex-
amples in a succinct way by reqular expressions. Inspired by [23], these regular
expressions are computed using a state elimination approach from automata
theory that is guided by a k shortest paths search. Another compaction of coun-
terexamples is based on the abstraction of strongly-connected components (SCCs,
for short) of a DTMC, resulting in an acyclic model in which counterexamples can
be determined with reduced effort [24]. An approach to compute counterexamples
for non-deterministic models was proposed in [25].

Critical subsystems. Alternatively to generating paths, here a fragment of the
discrete-time Markov model at hand is determined such that in the resulting
sub-model a bad state is reached with a likelihood exceeding the threshold. Such a
fragment is called a critical subsystem, which is minimal if it is minimal in terms
of number of states or transitions, and smallest if it is minimal and has a maximal
probability to reach a bad state under all minimal critical subsystems. A critical
subsystem induces a counterexample by the set of its paths. Determining smallest
critical subsystems for probabilistic automata is an NP-complete problem [26],
which can be solved using mixed integer linear programming techniques [27, 28].
Another option is to exploit k shortest path [29] and heuristic search [30] methods
to obtain (not necessarily smallest or minimal) critical subsystems. Symbolic
approaches towards finding small critical subsystems have been developed in [31,
32]. The approach [24] has been pursued further by doing SCC reduction in a
hierarchical fashion yielding hierarchical counterezamples [29].

Modeling-language-based counterexamples. Typically, huge and complex Markov
models are described using a high-level modeling language. Having a human-
readable specification language, it seems natural that a user should be pointed
to the part of the high-level model description which causes the error, instead
of getting counterexamples at the state-space level. This has recently initiated
finding smallest critical command sets, i.e., the minimal fragment of a model
description such that the induced (not necessarily minimal) Markov model
violates the property at hand, thereby maximizing the probability to reach bad
states. For PRISM, models are described in a stochastic version of Alur and
Henzinger’s reactive modules [33]. In this setting, a probabilistic automaton is
typically specified as a parallel composition of modules. The behavior of a single
module is described using a set of probabilistic guarded commands. Computing a
smallest critical command set amounts to determining a minimal set of guarded
commands that together induce a critical subsystem, with maximal probability
to reach bad states under all such minimal sets. This NP-complete problem has

been tackled using mixed integer linear programming [34]. This approach is not
restricted to PRISM’s input language, but it is also applicable to other modeling
formalisms for probabilistic automata such as process algebras [35].

Tools and applications. DIPRO [36] and Cowmics [37] are the only publicly
available tools supporting counterexample generation for Markov models.? DIPRO
applies directed path search to discrete- and continuous-time Markov models to
compute counterexamples for the violation of PCTL or CSL properties. Although
the search works on explicit model representations, the relevant model parts
are built on the fly, which makes DIPRO very efficient and highly scalable.
Comics computes hierarchically abstracted and refinable critical subsystems for
discrete-time Markov models. Strongly connected components are the basis for
the abstraction, whereas methods to compute k shortest paths are applied in
different contexts to determine critical subsystems. Probabilistic counterexamples
have been used in different applications. Path-based counterexamples have been
applied to guide the refinement of too coarse abstractions in CEGAR-approaches
for probabilistic programs [38]. Tree-based counterexamples have been used for
a similar purpose in the setting of assume-guarantee reasoning on probabilistic
automata [39]. Other applications include the identification of failures in FMEA
analysis [40] and the safety analysis of an airbag system [41]. Using the notion
of causality, [42,43] have developed techniques to guide the user to the most
responsible causes in a counterexample once a DTMC violates a probabilistic CTL
formula, whereas [44] synthesizes fault trees from probabilistic counterexamples.

Organization of this paper. This paper surveys the existing techniques for generat-
ing and representing counterexamples for discrete-time Markov models. We cover
both explicit as well as symbolic techniques, and also treat the recent development
of generating counterexamples at the level of model descriptions, rather than
for models themselves. The focus is on a tutorial-like presentation with various
illustrative examples. For a full-fledged presentation of all technical aspects as
well as formal proofs we refer to the literature. Section 2 provides the necessary
background on discrete-time Markov models as well as their reachability analysis.
Section 3 defines what counterexamples are. Section 4 is devoted to path-based
counterexamples and their applications, whereas Section 5 deals with critical
subsystems. Section 6 presents the generation of smallest critical command sets
in terms of the model description language. A brief description and comparison
of the available tools is given in Section 7. Finally, Section 8 concludes the survey.

2 Foundations

In this section we introduce discrete-time Markov models (Section 2.1) along with
probabilistic reachability properties for them (Section 2.2). For further reading
we refer to, e.g., [9,14,15,45].

3 DIPRO is available from http://www.inf.uni-konstanz.de/soft/dipro/ and
Cowmics from http://www-1i2.informatik.rwth-aachen.de/i2/comics/.

2.1 Models

When modeling real systems using formal modeling languages, due to the com-
plexity of the real world, we usually need to abstract away certain details of
the real system. For example, Kripke structures specify a set of model states
representing the states of the real-world system, and transitions between the
model states modeling the execution steps of the real system. However, the model
states do not store any specific information about the real system state that they
represent (e. g., concrete variable values in a program). To be able to specify and
analyze properties that are dependent on information not included in the model,
we can define a set of atomic propositions and label each model state with the
set of those propositions that hold in the given state.

Ezxample 1. Assume a program declaring two Boolean variables b; and by, both
with initial value false, and executing b; := true and by := true in parallel. We
use S = {sq, 51, $2, 53} as model state set with the following encoding;:

Model state| Program variable values
S0 b1 = false by = false
s1 by = true bs = false
S9 b1 = false by = true
S3 by = true by = true

We are interested in the equality of b; and by. We define an atomic proposition
set AP = {a}, where a encodes the equality of b; and b2, and a state labeling
function L : {sq, 51, 52,53} — 2%} mapping the set {a} to sy and s3 and the
empty set () to the other two states. |

In the following we fix a finite set AP of atomic propositions.

In systems that exhibit probabilistic behavior, the outcome of an executed
action is determined probabilistically. When modeling such systems, the transi-
tions must specify not only the successors but also the probabilities with which
they are chosen, formalized by probability distributions.

Definition 1 (Sub-distribution,distribution,support). A sub-distribution
over a countable set S is a function p: S — [0,1] such that) _qu(s) < 1; p
is a (probability) distribution if Y ¢ u(s) = 1. The set of all sub-distributions
over S is denoted by SDistr(S), the set of probability distributions by Distr(S).
By supp(u) = {s € S| u(s) > 0} we denote the support of a (sub-)distribution p.

Ezample 2. Consider again the program from Example 1 and assume that in
the initial state sy the statement b; := true is executed with probability 0.6
and by := true with probability 0.4. This is reflected by the distribution pg :
{s0, 51, 82,83} — [0, 1] with po(s1) = 0.6, po(s2) = 0.4, and po(so) = p(ss) = 0.
The support of the distribution is supp(po) = {s1, s2}.

After executing b; := true, the system is in state s; and by := true will
be executed with probability 1. The corresponding distribution is specified by

p1(s3) =1 and pi(se) = p1(s1) = p1(s2) = 0. Such a distribution, mapping the
whole probability 1 to a single state, is called a Dirac distribution.

For state so, the distribution uo equals pq. Finally for s3, the Dirac distribution
13 defines a self-loop on s3 with probability 1, modeling idling. |

Discrete-time Markov chains Discrete-time Markov chains are a widely
used formalism to model probabilistic behavior in a discrete-time model. State
changes are modeled by discrete transitions whose probabilities are specified by
(sub-)distributions as follows.

Definition 2 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) over atomic propositions AP is a tuple D = (S, Sinit, P, L) with S being a
countable set of states, sinit € S the initial state, P : S — SDistr(S) the transition
probability function, and L a labeling function with L : S — 2AF.

We often see the transition probability function P : S — (S — [0, 1]) rather
as being of type P : (S x S) — [0,1] and write P(s,s’) instead of P(s)(s’).

Ezample 3. The system from Example 2 can be modeled by the DTMC D =
(S, s09, P, L), where S and L are as in Example 1 and P assigns p; (defined in
Example 2) to s; for each i € {0,...,3}. This DTMC model can be graphically
depicted as follows:

Please note that in the above definition of DTMCs we generalize the standard
definition and allow sub-distributions. Usually, P(s) is required to be a probability
distribution for all s € S. We can transform a DTMC D = (S, sinit, P, L) with
sub-distributions into a DTMC a5, (D) = (5, Sinit, P, L') with distributions
using the transformation a,, with

— 8" =8U{s,} for a fresh sink state s, ¢ S,

P(s,s), for s,s" € S,
1 - N7 P 5 " 5 f E S d ! == 3
— Pl(s,s') = . Zs €s (s,5") for B} - /a_n S S1 and
) ors=¢"=s],
0 otherwise (for s = s, and s’ € 5),

— L'(s) = L(s) f(;r se€Sand L'(s1) =0.

According to the DTMC semantics below, the reachability probabilities in D and
o, (D) are equal for the states from S. The advantage of allowing sub-stochastic
distributions is that a subsystem of a DTMC, determined by a subset of its states,
is again a DTMC.

Fig. 1. Completing sub-distributions of a DTMC (cf. Example 4)

Ezample 4. Consider again the DTMC from Example 3. If we are only interested
in the behavior for executing the statement b; := true first, then the transition
from sy to s can be neglected. The DTMC model in this case has a sub-
distribution assigned to sg, as shown in Figure 1 on the left. We can transform
this DTMC with a sub-distribution into a reachability-equivalent DTMC with
distributions as shown in Figure 1 on the right. |

Assume in the following a DTMC D = (S, Sinit, P, L). We say that there is a
transition (s,s') from the source s € S to the successor s’ € Siff s’ € supp(P(s)).
We say that the states in supp(P(s)) are the successors of s.

We sometimes refer to the underlying graph Gp = (S, Ep) of D, with nodes
S and edges Ep = {(s,s') € S x S|s' € supp(P(s))}.

Ezxample 5. The underlying graph of the DTMC from Example 3 on page 7 can
be visualized as follows:

4’ e

A path of D is a finite or infinite sequence m = sgsy ... of states s; € S such
that s;11 € supp (P(sl)) for all ¢ > 0. We say that the transitions (s;, s;+1) are
contained in the path 7, written (s;, s;41) € 7. Starting with ¢ = 0, we write 73]
for the (i + 1)*® state s; on path 7. The length || of a finite path 7 = s¢...5s,
is the number n of its transitions. The last state of 7 is denoted by last(w) = s,,.

By Paths2;(s) we denote the set of all infinite paths of D starting in s €
S. Similarly, Pathsk, (s) contains all finite paths of D starting in s € S, and
Pathsy, (s, t) those starting in s € S and ending in t € S. For T C S we also
use the notation Pathsy (s, T) for User Paths? (s,t). A state t € S is reachable

from another state s € S iff Pathsy, (s, t) # 0.

Ezample 6. The DTMC model D from Example 3 on page 7 has two infinite paths
starting in sg, specified by Paths?;(s0) = {s0s15%, s0525%}. The finite paths
starting in sg are Pathsﬁn(so) = {50, 5051, 505153 , 5052, 505255 }. The finite
paths starting in sg and ending in sz are Pathsgn(so, s3) = {soslsgr, 80828;}.
|

To be able to talk about the probabilities of certain behaviors (i. e., path sets),
we follow the standard way [46] to define for each state s € S a probability space
(2P, FP PrP) on the infinite paths of the DTMC D starting in s. The sample
space QD is the set Paths>;(s). The cylmder set of a finite path m = sg... s, of
D is defined as Cyl(m) = {n’ € PathsZ;(so) |7 is a prefix of 7'}. The set FP of
events is the unique smallest o-algebra that contains the cylinder sets of all finite
paths in Pauthsgﬂ (s) and is closed under complement and countable union. The
unique probability measure Pr” (or short Pr) on F2? specifies the probabilities
of the events recursively, for cylinder sets by

Pr(Cyl(so H P(si,8i11)

for the complement IT of a set IT € FP by Pr2(IT) = 1 — Pr2(II), and for
the countable union IT = |J;-, II; of pairwise disjoint sets II; € FP ieN, by
ST = 527%, Pry (1),
For finite paths 7 we set Prg,(m) = Pr(Cyl(m)). For sets of finite paths
R C Paths? (s) we define Prg,(R) = . Pray(m) with R = {m € R | Vn' €
R. 7’ is not a proper prefix of 7}.

TER'

Ezample 7. Consider again the DTMC from Example 3 on page 7. For the
. oy o1 D D . . .
initial state sg, the probability space (§2;, , F_, Pr ,) is given by the following
components:

— The sample space is 28 = Paths®;(so) = {s0s15%, sos255}.
— The event set]-"D contalns the cylinder sets of all finite paths starting in sg
and the empty set i.e.,

Fa =10,
Cyl(so) = Paths&(so) = {s0515Y, sos25%},
Cyl(sps1) = Cy1(808183) {50514},
Cyl(spss) = Cy1(808283) {s0s254} }.

The empty set is added as the complement of Cyl(sg). The other cylinder set
complements and all countable unions over these elements are cylinder sets
themselves and therefore already included.
— The probability measure Prg is defined by
Pr2 (p) =0, Pr2 (Cyl(sg)) =1,

S0 50

Pr?O(Cyl(sosl)) = 0.6, Pri}(Cyl(sOSQ)) =0.4.

Besides using explicit model representations enumerating states and transi-
tions, a DTMC can be represented symbolically using (ordered) binary decision
diagrams (BDDs) and multi-terminal BDDs (MTBDDs). For an introduction to
(MT)BDDs we refer to, e.g., [9]. In a symbolic representation, states are encoded
using a set of Boolean variables such that each state is uniquely represented
by an assignment to the Boolean variables. State sets, like the state space, the
initial state or a set of states having a certain label of interest, are represented
by some BDDs such that the variable evaluations along the paths leading to the
leaf with label 1 encode those states that belong to the given set. Additionally,
an MTBDD P stores the transition probabilities. This MTBDD uses two copies
of the Boolean variables, one to encode the source states and one to encode the
successor states of transitions. The evaluation along a path encodes the source
and successor states, where the value of the leaf to which a path leads specifies
the transition probability. Operations on (MT)BDDs can be used to compute,
e. g., the successor set of a set of states or the probabilities to reach a certain set
of states in a given number of steps.

Ezample 8. The four system states of the DTMC D from Example 3 on page 7
can be encoded by two Boolean variables x and y:

50|51|52|53

z|0|0]1]1
y|0|1]0(1

The symbolic representation of D together with the state set T = {s3} of special
interest would involve the following (MT)BDDs:

Wy

[=]
L8
=

5.

Though for this toy example the explicit representation seems to be more
convenient, for large models the symbolic representation can be smaller by orders
of magnitude. |

Markov decision processes and probabilistic automata DTMCs behave
deterministically, i.e., the choice of the next transition to be taken is purely
probabilistic. Enriching DTMCs by nondeterminism leads to Markov decision
processes and probabilistic automata.

Definition 3 (Probabilistic automaton [47]). A probabilistic automaton
(PA) is a tuple M = (S, Sinit, Act, P, L) where S is a finite set of states, Sinit € S
is the initial state, Act is a finite set of actions, P : § — (2ActxSDistr(5) \ ()
is a probabilistic transition relation such that }5(5) is finite for all s € S, and
L: S — 22% s a labeling function.

M is a Markov decision process (MDP) if for all s € S and all « € Act
|{1 € SDistz(S) | (o,) € P(s)}| <1 holds.

Intuitively, the evolution of a probabilistic automaton is as follows. Starting
in the initial state sinit, a pair (a,) € I:’(sinit) is chosen nondeterministically.
Then, the successor state s’ € S is determined probabilistically according to the
distribution . A deadlock occurs in state sin;i; With probability 1 — 3, o u(s').
Repeating this process in s’ yields the next state and so on.

The actions Acty = {a € Act | Iu € SDistr(S). (o, p) € p(s)} are said to be
enabled at state s € S.

Note that DTMCs constitute a subclass of MDPs (apart from the fact that
the actions are not relevant for DTMC and are therefore typically omitted) and
MDPs build a subclass of PAs.

Ezxample 9. To illustrate the difference between the different model classes, con-
sider the following probabilistic models:

The involved distributions are

0.4, if s=sq, 0.2, if s=so, 0.7, if s=s3,
11(8) =10.6, if s=sg, po(s)=1<0.8, if s=s3, wus(s)=10.3, ifs=sy,
0, else, 0, else, 0, else

and the Dirac distributions d;, ¢ = 1,2, 3,4, assigning probability 1 to s; and 0
to all other states.

The model on the left is a PA. In state sg there are two enabled actions a and
b, where a appears in combination with two different distributions. Therefore,
this model is not an MDP.

In contrast, the model in the middle is an MDP, since in each state and for
each enabled action there is a single distribution available.

The model on the right is a DTMC, because a single distribution is mapped
to each state. [|

An infinite path in a PA M is an infinite sequence m = so (v, f0)s1 (a1, pi1) - - -
such that (ay, ;) € P(s;) and s;11 € supp(u;) for all i > 0. A finite path in M
is a finite prefix m = so(a, po)s1(@1, 1) - .. s, of an infinite path in M with last
state by last(r) = s,,. Let 7[i] denote the (i + 1)'" state s; on path 7. The sets
of all infinite and finite paths in M starting in s € S are denoted by Paths;*+(s)
and Paths; (s), respectively, whereas Pathsa? (s, t) is the set of all finite paths
starting in s and ending in ¢. For T C S we also use the notation Paths} (s, T)
for U,ep Paths) (s, t).

Ezample 10. The sequence sq (a, 111) s1 ((a,d1) $1)¥ is an infinite path in all three
models from Example 9 on page 11. (To be precise, the path of the DTMC does
not contain the action-distribution pairs.) |

To define a suitable probability measure on PAs, the nondeterminism has to
be resolved by a scheduler first.

Definition 4 (Scheduler, deterministic, memoryless).
— A scheduler for a PA M = (S, Sinit, Act, P, L) is a function
o : Pathsp! (sinit) — Distr(Act x SDistr(S))

such that supp(c(m)) C P(last(ﬂ')) for each 7 € Paths! (sinit). The set of
all schedulers for M is denoted by Sched .

— A scheduler o for M is memoryless iff for all m,7" € Pathsg\ﬁ(sinit) with
last(m) = last(n’) we have that o(w) = o(7’).

— A scheduler o for M is deterministic iff for all m € Pathsg\ﬁ(sinit) and
(o, 1) € Act x SDistr(S) we have that o(m)((«a, 1)) € {0, 1}.

Schedulers are also called policies or adversaries. Intuitively, a scheduler
resolves the nondeterminism in a PA by assigning probabilities to the nondeter-
ministic choices available in the last state of a finite path. It therefore reduces
the nondeterministic model to a fully probabilistic one.

Ezxample 11. Consider the PA depicted on the left-hand-side in Example 9 on
page 11. We define a scheduler oo by specifying for all 7 € PathsﬁMn(sinit) and for
all (o,) € P(last(r))

0.25, if last(m) = sp and a = q,
0.5, if last(m) = sp and a = b,
oo(m)(a,) =< 1, if last(m) € {s1,s3,84},
09, ifr=7"(a/,1)sy and o/ = a,
0.1, ifr=7"(a,1)s2 and o/ # a,
and o () (,) = 0 for all © € Pathsj! (sinic) and (a, 1) € (Act x SDistr(S)) \

P(last(m)). The above scheduler o(is not memoryless, since the schedule for
paths with last state so depends on the last action on the path. This scheduler is

also not deterministic, since it assigns also probabilities different from 0 and 1 to
action-distribution pairs.

Let scheduler oy be defined for all # € Pathsp!(sini¢) and for all (o, u) €
P(last(w)) by

0.25, if last(w) = s¢ and o = q,

0.5, if last(m) = sp and o = b,

1, if last(m) € {s1, 52,583,584} and o = q,
0, else (if last(m) = s and a = b),

o1 (m)(a, p) =

and o1(m)(a,) = 0 for all 7 € Paths; (sinit) and (o, p) € (Act x SDistr(S)) \
P(last(r)). The scheduler o7 is memoryless but not deterministic.
Finally, the following scheduler o9 is deterministic and memoryless:

1, if last(m) = sp and («, p) = (a, 1),

1, if last(m) = s2 and (a, u) = (b, dy),

1, if last(w) = s; and (o,) = (a,d;) for i € {1,3,4},
0

else.

02 (ﬂ—)(av M) =

Definition 5 (Induced DTMC). Let M = (S, sinit, Act, P, L) be a PA and
o a scheduler for M. We define the DTMC M? = (Pathsan (Sinit)s Sinits 25 L)
with
P(r,) = {a(wx(a,u)) u(s), i = (o) s
0)

otherwise ,

and L'(m) = L(last(m)) for all m,n" € Pathsgy (sinit). We call M? the DTMC
induced by M and o.

Ezample 12. The scheduler o5 from Example 11 (on page 12) for the PA depicted
on the left in Example 9 (on page 11) induces the following DTMC:

/[go(a Hl)&)—'[so(a u1)si(a, dl)slj—' e

\[30(11 u1)52)—>[so(a p1)s2(b, dl)sl)—b[so(a,;1,1).92(177 dl)sl(a7d1)51]—> ce

Since the scheduler o9 is memoryless, each pair of states m and «’ with
last(m) = last(n’) are equivalent (bisimilar) in the sense that the set of all label
sequences (traces) along paths starting in those states are equal. (Note that the
labeling is not depicted in the above picture.) Since the logics we consider can
argue about the labelings only, such state pairs satisfy the same formulas. We
say that the observable behavior of our models is given by the their trace sets.

Based on this observation, we can build an abstraction of the above induced
DTMC by introducing abstract states s € S (the states of the inducing PA)

representing all states 7 with last(7) = s of the induced DTMC. For the above
example, the scheduler is not only memoryless but also deterministic. For those
schedulers this abstraction defines a DTMC containing the states of the PA
and all distributions selected by the scheduler. For o5 the result is the DTMC
depicted on the right in Example 9 on page 11.

In the following, when talking about the DTMC induced by a PA and a
memoryless deterministic scheduler, we mean this abstraction. |

For the probability measure on paths of a PA M under a scheduler ¢ for M,
we use the standard probability measure on paths of the induced DTMC M?, as

described previously. We denote this probability measure by Prﬁ\;‘];:’ (or, briefly,
prto),

2.2 Reachability Properties

As specification for both DTMCs and PAs we consider so-called reachability
properties. We are interested in a quantitative analysis such as:

“What is the probability to reach a certain set of states T starting in state s?”

Such a set of target states T might, e.g., model bad or safety-critical states, for
which the probability to visit them should be kept below a certain upper bound.
Formally, we identify target states by labeling them with some dedicated label
target € AP such that T'= {s € S ’ target € L(s)}. Instead of depicting target
labels, in the following we illustrate target states in figures as double-framed
gray-colored nodes.

We formulate reachability properties like Py 5 (Otarget) for x € {<, <, >, >}
and A € [0,1] N Q. For simplicity, we will sometimes also write Py (0T). Such
a property holds in a state s of a DTMC D iff the probability to reach a state
from T when starting in s in D satisfies the bound x A. The DTMC satisfies the
property iff it holds in its initial state. For a PA M we require the bound to be
satisfied under all schedulers.

Ezample 13. For instance, P<g 1 (Otarget) states that the probability of reaching
a state labeled with target is less or equal than 0.1, either for a DTMC or under
all schedulers for a PA. If the probability is larger in a state, this property
evaluates to false for this state.]

In this paper we deal with reachability properties only. Deciding some other
logics like, e. g., probabilistic computation tree logic (PCTL) or w-regular proper-
ties can be reduced to the computation of reachability properties.

Furthermore, in the following we restrict ourselves to reachability properties
of the form P (Otarget). Formulas of the form P, (Qtarget) can be handled
similarly. The cases > and > can be reduced to < and <, respectively, using
negation, e. g., Psy(Otarget) is equivalent to P<;_»(O—target).

At some places we will also mention bounded reachability properties of the
form P<,(OS"T) for a natural number h. The semantics of such formulas is
similar to the unbounded case P<(QT'), however, here the probability to reach
a state in T via paths of length at most h should satisfy the bound.

Reachability for DTMCs Assume a DTMC D = (S, sinit, P, L), a label
target € AP and a target state set T = {t € S| target € L(t)}. We want to
determine whether D satisfies the property P<»(0T), written D = P<»(0T).
This is the case iff the property holds in the initial state of D, denoted by
D, sinit = P<A(0T).
Let s € S\ T. The set of paths contributing to the probability of reaching T
from s is given by
OT(s) = {r e Paths?)

inf

(s)|3i. target € L(x[i])}

where we overload ¢T to both denote a set of paths and a property, and also
write simply OT if s is clear from the context.
The above set OT'(s) equals the union of the cylinder sets of all paths from
Paths? (s, T):
OT(s) = U Cyl(n).

m€Paths® (s,T)

Note that Pathsk, (s, T') contains in general also prefixes of other contained paths
(if there are paths of length at least 1 from T to 7). When computing the
probability mass of {T'(s), such extensions are not considered. We can remove
those extensions by restricting the finite paths to visit 1" only in their last state:

<>1—‘(8) = U7T€<>Tfin(5) Cyl(ﬂ-) with
OThn(s) = {7 € Pathsf, (s,7) | V0 < i < |n|.7[i] ¢ T}.

As no path in the set 0Tg,(s) is a prefix of another one, the probability of this
set can be computed by the sum of the probabilities of its elements:

Prf(oT(s)):Pr?(U Cyl(ﬂ))

WEOTﬁn(S)
= > PrZ(Cyl(m)
mE€OTkin (s)
= Z P(s,s") - Pro(0T(s)) + ZP(S,S’).
s’eS\T s'eT

Therefore, we can compute for each state s € S the probability of reaching T
from s by solving the equation system consisting of a constraint

L ifseT,
ps =1 0, if T is not reachable from s,
Zs'es P(s,s') - ps, otherwise

for each s € S. The unique solution v : {ps | s € S} — [0, 1] of this linear equation
system assigns to ps the probability of reaching T' from s for each state s € S.
That means, D = P<(0T) iff v(ps,,,) < A

We can simplify the above equation system if we first remove all states from
the model from which T is not reachable.

Fig. 2. An example DTMC (cf. Example 14)

Definition 6 (Relevant states of DTMCs). Let

ST — (5 € 5| PathsD (5,T) £)

and call its elements relevant for T' (or for target). States s & S;Del(T) are called

irrelevant for T (or for target).

The set of relevant states can be computed in linear time by a backward reacha-
bility analysis on D [9, Algorithm 46].

If a model does not contain any irrelevant states, the above equation system
reduces to the constraints

_)L if seT,
e ZS’ES P(s,s') - psr, otherwise

for each s € S.
Ezample 14. Consider the DTMC illustrated in Figure 2 with target state set

T = {s3}. State sg is irrelevant for T' and can be removed. The probabilities to
reach s3 can be computed by solving the following equation system:

Psg = 0.5-ps, +0.25-ps, +0.25-ps, Dps; =0.5-ps, +0.5- pg,

psz = 05 : p81 + 05 'p84 p83 = 1
Dsy, = 0.7-ps; + 0.3 ps, Dss = 1+ Dy
Dsg = 0.5 - psy + 0.5 ps, Dsr = 0.25 - pg, + 0.25 - pg,

The unique solution v defines v(ps,) = /12, v(ps,) = V(Psy) = V(Pss) = V(Ps,) =
L v(pss) = v(pse) = 2/3 and v(ps,) = 1/3. u

Reachability for PAs Assume a PA M = (5, sjnit, Act, P, L), alabel target €
AP and a target state set T = {t € S | target € L(t)}. Intuitively, a reachability
property holds for M if it holds under all possible schedulers. Formally, M =
P, (OT) if for all schedulers o of M we have that M7 = P<,(0T).

It can be shown that there always exists a memoryless deterministic sched-
uler that maximizes the reachability probability for ¢7" among all schedulers.
Therefore, to check whether M7 = P<,(0T) holds for all schedulers o, it suf-
fices to consider a memoryless deterministic scheduler o* which maximizes the
reachability probability for ¢7 under all memoryless deterministic schedulers,
and check the property for the induced DTMC M. For the computation of o*
we need the notion of relevant states.

Definition 7 (Relevant states of PAs). We define

Sj&l(T) = {s € 5|30 € Schedp.s € Srelg)}

and call its elements relevant for T (or for target). States s & S’j&l(T) are called

irrelevant for T (or for target).
Again, the set of relevant states can be computed in linear time by a backward
reachability analysis on M [9, Algorithm 46].

The maximal probabilities p, = Prﬁ/’” ((}T (s)), s € S, can be characterized
by the following equation system:

1, ifseT,
ps =140, if s ¢ 505",
max{Y g u(s,s) ps | (a,p) € P(s)}, otherwise

for each s € S. This equation system can be transformed into a linear optimization
problem that yields the maximal reachability probability together with an optimal
scheduler [9, Theorem 10.105].

Ezxample 15. Consider the left-hand-side PA model from Example 9 on page 11.
The probability to reach s; from sg is maximized by the deterministic memoryless
scheduler o4 choosing (a, 111) in state sq, (b, d1) in state so, and (a, d;) in all other
states s; € {s1, $3,84}- [|

3 Counterexamples

When a DTMC D violates a reachability property P<(0T) for some T' C S
and A € [0,1] N Q, an explanation for this violation can be given by a set of
paths, each of them leading from the initial state to some target states, such
that the probability mass of the path set is larger than A. Such path sets are
called counterexamples. For a PA M, a counterexample specifies a deterministic
memoryless scheduler ¢ and a counterexample for the induced DTMC M?.

Counterexamples are valuable for different purposes, e.g., for the correction
of systems or for counterexample-guided abstraction refinement. However, coun-
terexamples may contain a very large or even infinite number of paths (note that
for a DTMC D the whole set Pathsk, (sinit, T) is the largest counterexample).
Therefore, it can increase the practical usefulness if we aim at the computation
of counterexamples satisfying certain properties. Some important aspects are:

The size of the counterexample, i.e., the number of paths in it.

— The probability mass of the counterexample.

— The computational costs, i.e., the time and memory required to obtain a
counterexample.

— Counterexamples can be given using representations at different language

levels.

e At the level of paths, besides path enumeration, a counterexample can be
represented by, e. g., computation trees or regular expressions. Path-based
representations will be discussed in Section 4.

e At the model level, a part of the model can represent a counterexample
by all paths leading inside the given model part from sju;; to T. Such
representations are the content of Section 5.

e At a higher level, a fragment of a probabilistic program, for which a
PA or a DTMC was generated as its semantics, can also represent a
counterexample. We discuss such counterexamples in Section 6.

Important in our considerations will be the size of the representation.

We first formalize counterexamples and measures regarding the first two
points, and will discuss representation issues and computational costs in the
following sections.

Definition 8 (DTMC evidence and counterexample, [17]). Assume a
DTMC D = (S, sinit, P, L) violating a reachability property P<x(0T) with T C S
and A € [0,1] N Q.

An evidence (for D and P<\(OT)) is a finite path © € Pathsk (sinit, T). A
counterexample is a set C' of evidences such that Prgnit (C) > A. A counterez-
ample C s minimal if |C| < |C'| for all counterezamples C'. It is a smallest
counterexample if it is minimal and Prgnit) > Prgmt(C’) for all minimal
counterexamples C'.

Ezxample 16. Consider the DTMC from Example 3 on page 7 and the reach-
ability property P§0,3(0{53}). The path sets IT; = {sgs183, SoS15383}, T2 =
{s08183, s0s283}, IIs = {sps183}, and II4 = {sps2s3} are all counterexamples
(with probability mass 0.6, 1, 0.6, and 0.4, respectively). Ounly IT3 and I are
minimal, where only I3 is a smallest counterexample. |

For reachability properties of the form P<(Qtarget) with a non-strict upper
bound on the admissible reachability property, a finite counterexample always
exists, if the property is violated. For strict upper bounds P, (Qtarget), however,
an infinite number of paths can be required if the actual reachability probability
equals A [17].

Ezxample 17. Consider the following DTMC:

0.5

(@

The probability to reach s; is 1, i.e., the property]P’<1(<>{sl}) is violated.
However, a counterexample must contain all the infinite number of paths sgs1,
505081, S0S0SoS1 etc. ||

Even if the counterexample is finite, the number of required paths can be very
large. Han et al. [17] determine for the case study of a probabilistic synchronous
leader election protocol that the number of evidences is double exponential in
the system parameters.

Definition 9 (PA counterexample). Assume a PA M = (S, Sinit, Act, P,L)
violating a reachability property P<»(0T) with T C S and X € [0,1] N Q.

A counterexample (for M and P<»(0T)) is a pair (0,C) such that o is a
scheduler for M and C is a counterexample for M?. A counterexample (o,C') is
minimal if |C| < |C’| for all counterexamples (o/,C"). It is a smallest counterex-
ample if it is minimal and Prﬁfm) > Prﬁ,\fm (C") for all minimal counterexamples
(o', C").

Ezxample 18. Consider the left-hand-side PA model from Example 9 on page
11 and the reachability property P<g. 9 ((}{51}) A smallest counterexample is
(02, {051, S08281}) with o3 as defined in Example 11 on page 12. |

4 Path-Based Counterexamples

After having introduced discrete-time probabilistic models and counterexamples
for reachability properties, in the following we discuss how we can compute such
counterexamples for the different model classes in different representations. We
start with methods that are based on the search for paths at the state-space
level.

4.1 Path-Based Counterexamples for DTMCs

Smallest counterexamples For DTMCs, Han, Katoen and Damman show in
[17] how the computation of a smallest counterexample can be reduced to the
computation of k shortest paths in a directed weighted graph for a suitable k € N.

We need in the following the property that the DTMC D = (S, Sinit, P, L) we
consider has a single absorbing target state. If it is the case, we define D' = D.
Otherwise, the DTMC D is first transformed by adding a new, absorbing target
state t € S and redirecting all transitions starting in former target states to lead

to the new one. This transformation yields the DTMC D’ = (5, sinit, P’, L') with
S" =S U{t} and

P(s,s'), ifseS\T and s’ €S,

P/(S, S/): 1’ lf s € T and S/ = t? LI(S): {target}, lf S = t.,
L if s =s'=t, 0, otherwise.
0, otherwise,

Note that the probability to reach ¢ from s € S in D’ equals the probability to
reach T from s in D.

As the next step, a directed weighted graph Gp = (V, E,w) with nodes V,
edges F and edge weights w : E — RZ0 is obtained from D’ as follows: V = §’,
(s,s') € Eiff P'(s,s") > 0, and w(s,s’) = —log P'(s,s") (one could take any
basis, we take the natural logarithm with basis e).

We define the weight w(m) of a path 7 in Gp as the sum of the weights of the
transitions in 7. The relation between the weight of a finite path m = sqg...s, in
Gp and the probability of the same path in D is as follows:

w(m) = Y w(sisiv) = Yoy —log P'(si,sit1)
=_ Z?;ol log P’(s,8i1+1) = — log szol P’ (84, 8i41)
= —log Prg (m).

Note that we can also compute the probabilities from the weights by Pr?ol (m) =
e~ (™) Since the negative logarithm is monotonically decreasing in the interval
(0,1], more probable paths in D’ have smaller weights in Gp, i.e., Pr?/ (m) >
Pr? (7') iff w(m) < w(n') for all states s € S and paths 7, 7’ € Pathsk, (s).

That means, the problem to find a sufficient number of most probable paths
in D can be solved by finding a sufficient number of shortest paths in Gp. The
main advantage of this problem transformation, besides the lower complexity of
the addition operation compared to multiplication, is that we can apply shortest
path search algorithms without modification.

Definition 10 (k shortest path problem, [17]). Given a directed weighted
graph G = (V,E,w), nodes s,t € V, and k € N, the k shortest path problem
(KSP) is to find k different paths 71, ..., 7 from s to t in G (if they exist) such
that for all 1 <1i < j <k, w(m) < w(n;) and for all paths ™ from s to t either
we{m,...,m} or w(m) > wimy).

Theorem 1 ([17]). A smallest counterexample C' for D contains |C| shortest
paths in Gp from Sinit to t.

Ezxample 19. Consider the DTMC D from Example 14 on page 16, depicted in
Figure 2, which already has a single absorbing target state. The corresponding
directed weighted graph Gp is shown in Figure 3 (with rounded weights).

Fig. 3. The directed weighted graph for the DTMC from Figure 2 (cf. Example 19)

We would like to compute a counterexample for P<g 4 (0{53}). Thus we
search for k shortest paths m,...,m; in Gp for an appropriate k& such that
Ele e~"(™) > (0.4. The four shortest paths in G'p, with their (rounded) weights
in Gp and probabilities in D are as follows:

Path Weight (rounded)|Probability
1 = S0S1S3 1.39 1/4
g = S0S556S3 2.08 1/8
T3 = 80825153 2.77 /16
T4 = 5051525183 2.77 1/16

Since e 1,05y €™ = Eiequoay e = Yat Vs 4 116 = 0.4375 > 04,
both path sets {my, 72, w3} and {my, 72, 74} are smallest counterexamples. [|

As the size of a smallest counterexample is not known in advance, we need
k shortest paths computation algorithms that can determine the value of k& on
the fly. Examples of such algorithms are Eppstein’s algorithm [48], the algorithm
by Jiménez and Marzal [49], and the K* algorithm [50] by Aljazzar and Leue.
While the former two methods require the whole graph to be placed in memory
in advance, the K* algorithm (see also Section 4.2) expands the state space on
the fly and generates only those parts of the graph that are needed. Additionally,
it can apply directed search, i.e., it exploits heuristic estimates of the distance of
the current node to a target node in order to speed up the search. The heuristic
has thereby to be admissible, i.e., it must never over-estimate the distance.

For bounded reachability properties PSA(OS}LT), a hop-constrained k shortest
paths problem (HKSP) can be used to determine a smallest counterexample.
In this case the additional constraint that each evidence may contain at most
h transitions must be imposed. In [17] an adaption of Jiménez and Marzal’s
algorithm to the HKSP problem is presented.

Heuristic approaches Besides the above methods to compute smallest coun-
terexamples, heuristic approaches can be used to compute not necessarily smallest
or even minimal ones. Bounded model checking (BMC') [51] is applied by Wimmer
et al. in [19,20] to generate evidences until the bound X is exceeded. The basic
idea of BMC is to formulate the existence of an evidence of length & (or < k) for
some natural number & as a satisfiability problem. In [19] purely propositional
formulas are used, which does not allow to take the actual probability of an
evidence into account; in [20] this was extended to SMT formulas over linear real
arithmetic, which allows to enforce a minimal probability of evidences. Using
strategies like binary search, evidences with high probability (but still bounded
length) can be found first.

In both cases, the starting point is a symbolic representation of the DTMC
at hand as an MTBDD P for the transition probability matrix. For generating
propositional formulas, this MTBDD is abstracted into a BDD Pspp by mapping
each leaf labeled with a positive probability to 1. Hence, the BDD Pppp stores
the edges of the underlying graph. The generation of propositional formulas
is done by applying Tseitin’s transformation [52] to this BDD, resulting in a
predicate trans such that trans(v,v’) is satisfied for an assignment of the variables
v and v’ if and only if the assignment corresponds to a transition with positive
probability in the DTMC. The same is done for the initial state, resulting in
a predicate init such that init(v) is satisfied if the assignment of v corresponds
to the initial state of the DTMC and a predicate target(v) for the set of target
states. With these predicates at hand, the BMC-formula is given as follows:

k—1
BMC(k) = init(vo) A /\ trans(v;,vi41) A target(vy,) . (1)

=0

This formula is satisfied by an assignment v iff v(v;) corresponds to a state s;
for i =1,...,k such that sgs; ... sy is an evidence for the considered reachability
property.

Starting at k = 0, evidences are collected and excluded from further search
by adding new clauses to the current formula, until either the set of collected
paths forms a counterexample or the current formula becomes unsatisfiable. In
the latter case we increase k and continue the search.

During the BMC search, loops on found paths can be identified. A found
path containing a loop can be added to the collection of evidences with arbitrary
unrollings of the loop. However, since loop unrollings lead to longer paths,
attention must be payed to exclude those paths when k reaches the length of
previously added paths with unrolled loops.

The propositional BMC approach yields a counterexample consisting of
evidences with a minimal number of transitions, but the drawback is that the
actual probabilities of the evidences are ignored. This issue can be solved by using
a SAT-modulo-theories formula instead of a purely propositional formula [20].
Thereby the transition predicate trans is modified to take the probabilities into
account: trans(v;, p;, vi+1) is satisfied by an assignment v iff v(v;) corresponds

to state s;, v(v;11) to state s;11, P(si,$i+1) > 0, and v(p;) = log P(s;, Si+1)-
By adding the constraint Zj:ol p; > logé for some constant § € (0, 1], we can
enforce that only paths with probability at least § are found.

Additionally, using an SMT formulation allows us to take rewards into account:
we can extend the DTMC by a function p : S xS — R, which specifies the reward
of a transition. Rewards can—depending on the context—either represent costs
(e.g., energy consumption, computation time, etc.) or benefits (number of packets
transmitted, money earned, etc). Similar to constraints on the probability of an
evidence, we can enforce that the accumulated reward along an evidence satisfies
a linear constraint [20, 53].

Symbolic methods For a DTMC D = (S, Sinit, P, L) together with a set of
target states T' that are represented symbolically in the form of BDDs Iand T
for the initial state and the target states, respectively, and an MTBDD P for
the transition probability matrix, Giinther, Schuster and Siegle [21] propose a
BDD-based algorithm for computing the & most probable paths of a DTMC.
They use an adaption of Dijkstra’s shortest path algorithm [54], called flooding
Dijkstra, to determine the most probable path. Then they transform the DTMC
such that the most probable path of the transformed system corresponds to
the second-most-probable path in the original DTMC. For this they create two
copies of the DTMC: The new initial state is the initial state of the first copy,
the new target states are the target states in the second copy. The transitions
of the second copy remain unchanged. In the first copy, all transitions on the
already found most probable path also remain unchanged. All other transitions
lead from the first copy to the corresponding state in the second copy. Thus, to
reach a target state from the initial state, at least one transition has to be taken
which is not contained in the most probable path. The corresponding function
has as input BDDs the symbolic representation of the DTMC as well as a BDD
SP representing the current most probable path. Returned is a new symbolic
DTMC:

(P, I, T) := Change (P,1,T,SP)
We illustrate this process using an example.

Ezample 20. Consider again the DTMC in Figure 2 on page 16. The first applica-
tion of Dijkstra’s algorithm yields the most probable path sysq1s3 with probability
1/2-1/2 = 1/4 from the initial state so to the target state s3. To obtain the second-
most-probable path, the DTMC in Figure 4 is constructed. In the modified
DTMC, the initial state is sJ, the target state is si. The most probable path from
s9 to st is sQsistsi with probability 1/4-1-1/2 = 1/s. This path corresponds to
50555653 in the original DTMC, which is the second-most probable path there.ll

To obtain the next path, the same transformation is applied again. After k
paths the underlying graph has increased exponentially in k. Each transformation
step requires to introduce two new BDD-variables and typically increases the

Copy 0

Copy 1

=

Fig. 4. Exclusion of the most probable path (the states and transitions which are not
reachable from the initial state s§ have been colored grey to improve readability)

size of the symbolic representation. Therefore this methods scales well to large
state spaces, but not for large values of k.

Compact representations Alone the mere number of evidences in a coun-
terexample can render the counterexample unusable for debugging purposes.
Therefore a number of approaches have been proposed to obtain smaller, better
understandable representations of counterexamples. Typically they exploit the
fact that many paths in a counterexample differ only in the number and order of
unrollings of loops.

Building upon ideas by Daws [55] for model checking parametric DTMCs, Han,
Katoen and Damman [17, 22] proposed the representation of counterexamples
as regular expressions: First the DTMC is turned into a deterministic finite
automaton (DFA), whose transitions are labeled with (state, probability) pairs:
Essentially, a transition from s to s’ with probability p = P(s,s’) > 0 in the

DTMC is turned into the transition s M) s’ of the DFA. State elimination is

used to turn the DFA into a regular expression. The state elimination removes
states iteratively, and for each removed state it connects its predecessors with its
successors by direct transitions. These new transitions are labeled with regular
expressions describing the inputs read on the possible path from a predecessor

/2 /2 (s3,1/2)

(——) e

(s1,1)(s2,1/2) |
(Sli 1)(53’ 1/2)
((s1,1/2)(s3,1/2))"

sy, 1 So, 1
(s1,1/2)(s2,1/2) @

(s1,1)(s3,1/2)
((s1,1/2)(s3,1/2))"

(s4,1/2)

E\/(Shl/?)

(s1,1/2)(s5,1/2)
(©) (d)

Fig. 5. Representing counterexamples as regular expressions (cf. Example 21)

via the removed state to a successor. In order to obtain a small regular expression
for a counterexample, the authors proposed to iterate the following steps:

1. Find a most probable path in the remaining automaton using Dijkstra’s
shortest path algorithm.

2. Eliminate all states (except the first and last one) on this path; the order of
elimination is determined according to a heuristics like [56], well known from
the literature on automata theory. This gives a regular expression describing
the considered most probable path.

3. Evaluate the set of regular expressions generated so far and check whether the
joint probability mass of the represented paths is already beyond the given
bound . If this is the case, terminate and return the regular expressions.
Otherwise start a new iteration of the elimination loop.

Ezample 21. Consider the DTMC in Figure 5 (a) with target state so. Its DFA
is depicted under (b). The first most probable path is sgs1 2, i.e., we eliminate
s1, resulting in the DFA (c¢). The probability value of the regular expression
generated for the found path is

val((s1,1)(s2,1/2)) = val((s1,1)) - val((s2,1/2)) =1- 12 =1/a.

If this mass is not yet sufficient to violate the bound, we search for the most
probable path in (c¢), which is sgs3s2. We eliminate sz resulting in the DFA (d).

0.25

0.5
S0

0.25

Fig. 6. The result of SCC abstraction applied to the DTMC in Figure 2 (cf. Example 22)

The probability value of the regular expression for the second found path is

Val((sl71)(8371/2) ((51,1/2)(33,1/2))* (8171/2)(8271/2)) =
val((s1,1)(s3,1/2)) - 1_val(<s1,11/2><53,1/2>) vallln)) =
1-1/2 . 4/3 . a1/ =

1.

Since there are no more paths from the initial state sg to sg, the total proba-
bility to reach sy from sq is the value 1/2 + 1/6 = 2/3 of the regular expression

(s1,1)(s2,1/2) [(s1, 1) (83, 1/2)((s1,1/2) (53, 1/2))" (51, 1/2) (52, 1/2)- u

The same can also be applied for bounded reachability properties P< A(OSPT).
The only changes are the usage of a hop-constraint shortest path algorithm and
a different method for determining the probability of the represented path, such
that only the probability of those paths represented by the regular expressions is
counted whose length is at most h.

A different compaction of counterexamples is described by Andrés, D’Argenio
and van Rossum in [24]. As many paths only differ in the number and order of
unrollings of loops in the system, the non-trivial strongly connected components*
(SCCs) of the DTMC under consideration, i.e., those SCCs which contain more
than one state, are abstracted into direct edges from the input to the output
states of the SCC. Input states are states in the SCC which have an incoming
edge from outside the SCC, and output states are outside of the SCC, but have an
incoming edge from inside the SCC. The probability of these edges is determined
using model checking as the probabilities to reach the output states from the
input states. After this abstraction, counterexamples as sets of paths can be
easily determined in the resulting acyclic model.

Ezxample 22. In the DTMC from Figure 2 on page 16, there are two non-trivial
SCCs consisting of the states (i) {ss, s¢, 7} with input state s; and output states

4 A strongly connected component (SCC) is a maximal set of states such that for all s
and s" in the SCC, s’ can be reached from s inside the SCC.

s3 and sg, and (ii) {s1, s2,$4} with input states s; and sz and output state ss.
Eliminating these SCCs results in the DTMC shown in Figure 6. The wave-like
edges represent paths through SCCs that have been abstracted. |

4.2 Path-Based Counterexamples for PA

The simplest way to generate path-based counterexamples for a PA M [25, 38]
is to first generate a memoryless deterministic scheduler o* which mazimizes
the reachability probability. Such a scheduler can be obtained as a by-product
from model checking. This scheduler ¢* induces a DTMC M, such that

Pr?f; (OT) = max,eSched uq Pr?/lat (OT) > A. In a second step, the methods for

counterexample generation described above are applied to M, resulting in a
counterexample C for M? . Then (¢*,C) is a counterexample for M.

However, as the computation of a maximizing scheduler requires to have the
whole state space of M residing in memory, the advantage of using an algorithm
like K* [50] which expands the state space on the fly when necessary, is lost.
Therefore, Aljazzar and Leue [25] proposed a method which allows to not only
compute the paths but also the scheduler on the fly as follows.

The problem when applying K* to a PA is that the generated paths are
in general not compatible to the same scheduler. Therefore all paths are kept
and clustered according to the scheduler choice made in each state. To do so an
AND/OR-tree is maintained, which is initially empty. The OR-nodes correspond
to the state nodes, in which the scheduler makes a decision. The AND-nodes
correspond to the probabilistic decisions after an action-distribution pair has
been chosen by the scheduler. Applying the K* algorithm to the PA M, the next
most probable path is determined. The new path 7 is inserted into the tree by
first determining the longest prefix which is already contained in the tree. The
remainder of the path becomes a new sub-tree, rooted at the node where the
longest prefix ends. By a bottom-up traversal, a counterexample and a (partial)
scheduler can be determined from the AND/OR-tree.

Ezxample 23. Assume the MDP in Figure 7 left, which violates the reachability
property P<q.75 ((){84}). Assume furthermore that the path search gives us the
following paths in this order:

Path Path probability
T = S0S154 0.5
Ty = S0S2854 0.4
T3 = 5052505154 0.25
T4 = 5051505154 0.2
5 = S052505254 0.2
TTe — S0S150S254 0.16
7 = 80582505250S5154 0.125
T — S0515082505154 0.1

Fig. 7. Example MDP (cf. Example 23)

The generated path tree is depicted in Figure 7 on the right-hand side. The
rectangular nodes are OR-nodes, the circles are AND-nodes. The value attached
to a leaf is the probability of the path from the root to the leaf. The value
attached to an inner AND-node is the sum of the values of its children, whereas
the value of an OR-node is the maximum of all children values. Thus the value
of the root specifies the maximal probability of found compatible paths, which
are possible under a common scheduler.

After having added the last path, the probability of the root is above 0.75;
the boldface subtree specifies a suitable scheduler to build a counterexample
with the path set {m, 7, m3}. Note that this scheduler is deterministic but not
memoryless. |

4.3 Applications of Path-Based Counterexamples

Path-based counterexamples are mostly used in two main areas: Firstly, for
extracting the actual causes why a system fails. This information can be used
for debugging an erroneous system [42-44]. Secondly, for counterexample-guided
abstraction refinement of probabilistic automata [38]. We briefly sketch the main
ideas of these works.

The extraction of reasons why a system fails is based on the notion of
causality [57]. The idea behind that is that an event A is critical for event B, if A
had not happened, then B would not have happened either. However, this simple
notion of criticality is sometimes too coarse to be applicable. Therefore Halpern
and Pearl [57] have refined it to take a side-condition into account: Essentially, if
the events in some set F did not have happened, then A would be critical for
the occurrence of B. In this case A is a cause of B.

Ezample 24 (taken from [57]). Assume Suzy and Billy are both throwing stones
at a bottle, and both throw perfectly, so each stone would shatter the bottle. But
Suzy throws a little harder such that her stone reaches the bottle first.

Clearly we would say that the cause of the shattering of the bottle is Suzy
throwing a stone. However, Suzy throwing is not critical, since if she did not
throw, the bottle would be shattered anyway (by Billy’s stone). But under the
side-condition that Billy does not throw, Suzy’s throw becomes critical.’ |

For details on this notion of causality, its formal definition, and a series of
examples we refer the reader to [57].

Chockler and Halpern [58] use a quantitative notion regarding causes, given
by the degree of responsibility dR(A) of a cause A: Essentially dR(A) = H%k
where k is the size of the smallest side-condition needed to make A critical.

Debbi and Bourahla [42,43] consider constrained reachability properties of
the form P< (1 Ups) where @1 and g are arbitrary Boolean combinations of
atomic propositions from the set AP, and U is the temporal until operator. As
potential causes for the violation of the property they consider propositions of
certain states, i.e., pairs (s,a) for s € S and a € AP: If the value of such a
proposition is switched (under some side-condition), some paths in the considered
counterexample no longer satisfy the formula ¢1 U s, and the probability mass
of the remaining paths is no longer above the bound A. They assign weights to
the causes as follows: The probability Pr(s,a) of a cause (s,a) is the sum of the
probabilities of all paths 7 in the counterexample which contain state s. The
weight w(s, a) of a cause (s, a) is given by w(s,a) = Pr(s,a)-dR(s, a). The causes
are presented to the user with decreasing weight.

A different approach, also based on the notion of causality of [57], is described
by Leitner-Fischer and Leue in [44, 59]. The authors proposed to extract fault
trees from path-based probabilistic counterexamples. For this they do not consider
just evidences of the underlying DTMC, but they rather keep track of the events
which caused the transitions along an evidence. Since the order of events along the
evidences can be crucial for the failure, they extend the notion of causality to also
take the event order into account. Hence, a cause is a sequence of events together
with restrictions on the order of the events. Additionally, the joint probability
of the evidences which correspond to such a cause is computed. A fault tree is
generated from the causes by using the undesired behavior as the root, which
has one subtree per cause. Each cause is turned into a tree by using an AND
gate over those events whose order does not matter, and an ordered-AND gate
if the order does matter. Additionally the subtree corresponding to a cause is
annotated by the probability of the corresponding evidences.

An interactive visualization technique is proposed by Aljazzar and Leue in [60]
to support the user-guided identification of causal factors in large counterexamples.
The authors apply this visualization technique to debug an embedded control
system and a workstation cluster.

5 The precise formal definition encompasses more constraints in order to avoid Billy
throwing being a cause.

Failure mode and effects analysis (FMEA) allows to analyze potential system
hazards resulting from system (component) failures. An extension of the original
FMEA method can also handle probabilistic systems. In this context, path-based
probabilistic counterexamples were used by Aljazzar et al. in [41] to facilitate
the redesign of a potentially unsafe airbag system.

A different application of path-based counterexamples is described by Hermanns,
Wachter and Zhang in [38] for counterezample-guided abstraction refinement
(CEGAR): The starting point is an abstraction of a PA, over-approximating the
behavior of a concrete PA model. If this abstraction is too coarse, it might violate
a property even if the concrete system satisfies it. In this case counterexamples
are used to refine the abstraction.

A PA is abstracted by defining a finite partitioning of its state space and
representing each block of the partition by an abstract state; all transitions
targeting a concrete state are redirected to its abstract state, and similarly all
outgoing transitions of a concrete state start in the abstract state to which it
belongs.

Starting with an initial abstraction, model checking is performed to check
whether the property at hand is satisfied. If this is the case, one can conclude that
it is also satisfied in the concrete model. However, if the property is violated by
the abstraction, the optimal scheduler, obtained from the model checking process,
is used to compute the induced DTMC. Therein a path-based counterexample
is determined. Now two cases are possible: Either the counterexample of the
abstract system corresponds to a counterexample in the concrete model, in which
case the property is also violated by the concrete model. Or the counterexample
is spurious, i.e., it exists only in the abstraction due to the over-approximating
behavior, in which case the abstraction needs to be refined. This is done by
predicate abstraction, splitting the abstract states according to a predicate P into
a subset satisfying P and one violating it. The predicate P is obtained from the
counterexample evidences via interpolation.

Experimental results show that in some cases a definite statement about the
satisfaction of the property at hand can be made on a very coarse approximation.
This speeds up the model checking process and allows to handle much larger
systems than with conventional methods.

5 Critical Subsystems

Path-based representations of counterexamples, as discussed in the previous
Section 4, have some major drawbacks: The number of paths needed might
be very large (or even infinite), leading to high memory requirements. As a
consequence, the number of search iterations in terms of path-searches is equally
high, leading to high computational costs. Finally, a counterexample consisting
of a high number of potentially long paths is hard to understand and analyze,
therefore its usefulness is restricted.

An alternative is to use critical subsystems, which are fractions of DTMC, MDP
or PA models violating a property, such that the behavior of the models restricted

to the critical subsystems already violates the property. It is often possible to
generate critical subsystems whose size is smaller by orders of magnitude in
comparison to the input system. Thereby, the critical part of the original system
leading to the violation is highlighted.

Definition 11 (Critical subsystems of DTMCs). Assume a DTMC D =
(S, Sinit, P, L), a target state set T C S and some A € [0,1] N Q such that
D £ P<a(OT).

A subsystem D’ of D, written D' € D, is a DTMC D’ = (S, Sinit, P’, L")
such that S" C S, siniy € S’, P'(s,s") > 0 implies P'(s,s") = P(s,s") for all
s,8' €8, and L'(s) = L(s) for all s € 5.

Given S" C S with sinit € S’, the subsystem Dgr = (5, Sinit, P', L) of D with
P'(s,s") = P(s,s") and L'(s) = L(s) for all s,s" € S’ is called the subsystem of
D induced by S’.

A subsystem D' of D is critical for P<)(0T) if TNS" # 0 and D'
PS)\ (O(T n S/))

Ezxample 25. For the DTMC in Figure 2 on page 16 and the reachability property
P<o.s ((}{83}), the following DTMC is a critical subsystem, since the probability

to reach s3 from sq is % L l=1503:
1-1I.1T°27 3
0.5 0.5

@ 0.5 s 0.5 @
—
N (]

The above definition of critical subsystems of DTMCs is a special case of the
following definition generalized for PAs:

Definition 12 (Critical subsystems for PAs). Assume a PA M = (S, Sinit,
Act, P, L), a target state set T C S and some A € [0,1] N Q such that M -
P (OT).

A subsystem M’ of M, written M' & M, is a PA M’ = (S, sinit, Act, P, L))
such that 8" C S, sinit € S’, L'(s) = L(s) for all s € ', and for each s € S’ there
is an injective function f: P'(s) — P(s) such that for all (o/, ') € P'(s) with
F(e/ 1)) = (o, p) if it holds that o/ = a and p/'(s") = p(s’) for all s’ € supp(p’).

A subsystem M’ of M is critical for P<x(0T) if TNS" # 0 and M’ £
PS)\ (O(T n Sl))

To have well-understandable explanations for the property violation, for PAs
we are interested in their critical subsystems induced by deterministic memoryless
schedulers. Therefore, in the context of counterexamples in the following we
consider only DTMCs (as deterministic PAs) as critical subsystems.

The set of those paths of a critical subsystem D’ which are evidences for a
reachability property form a counterexample in the classical sense as in Defini-
tion 8, i.e.,

C:= Pathsgé(sinit, T)

is a counterexample. Therefore, a critical subsystem can be seen as a symbolic
representation of a counterexample.

We define minimality of critical subsystems in terms of their state space
size: A critical subsystem is minimal if it has a minimal set of states under all
critical subsystems. Analogously to counterexamples, we can also define a smallest
critical subsystem to be a minimal critical subsystem in which the probability
to reach a target state is maximal under all minimal critical subsystems. Note
that even if a critical subsystem is smallest or minimal, this does not induce a
smallest or minimal counterexample in the sense of [17].

Critical subsystems can be generated in various ways. In this section, we
first discuss the generation of critical subsystems for DTMCs: We start by
describing how solver technologies can be used to compute smallest critical
subsystems of DTMCs. This powerful method is also applicable to arbitrary
w-regular properties [27,28,61]. Afterward we describe heuristic algorithms which
determine a (small) critical subsystem by means of graph algorithms as presented
by Aljazzar and Leue in [30] and by Jansen et al. in [29]. We also give the intuition
of an extension to symbolic graph representations [32]. The second part of this
section is devoted to the computation of smallest critical subsystems for MDPs
and PAs.

5.1 Critical Subsystems for DTMCs

Smallest Critical Subsystems In [27,28,61] an approach to compute smallest
critical subsystems is proposed. The idea is to encode the problem of finding a
smallest critical subsystem as a mized integer linear programming (MILP) prob-
lem (see, e. g., [62]). It is also possible to give an SMT-formulation over linear real
arithmetic, but the experiments in [27] clearly show that the MILP formulation
is much more efficiently solvable. We therefore restrict our presentation here to
the MILP formulation.

Definition 13 (Mixed integer linear program). Let A € Q™*" BeQm*k,
beQm, ccQ", and d € QF. A mixed integer linear program (MILP) consists
in computing min ¢’z + d'y such that Ax 4+ By < b and v € R", y € Z*.

In the following let D = (.S, Sinit, P, L) be a DTMC and P<»(0T') a reachability
property that is violated by D. We assume that D does not contain any state
that is irrelevant for reaching 7" from Sipj¢.

We want to determine a minimal set S’ C S of states such that Dg is
a critical subsystem. To do so, we introduce for each state s € S a decision
variable x5 € {0,1} C Z, which should have the value 1 iff s is contained in the
selected subsystem, i.e., if s € S’. Additionally we need for each s € S a variable
ps € [0,1] N Q which stores the probability to reach T from s within the selected
subsystem Dgs. The following MILP then yields a smallest critical subsystem of
D and PS)\(OT)t

T 1
minimize — 3 “Psinie T ;Is (2a)
S

such that

VseT: ps=xs (2b)

Vs € S\T: ps <z (2c)

VseS\T: p,< Y P(s,s)py (2d)
s esupp (P(s))

Dsine > A - (2e)

If v is a satisfying assignment of this MILP, then Dg with S = {s €
S|v(zs) = 1} is a smallest critical subsystem. Constraint (2b) states that the
probability of a target state is 1 if it is contained in the subsystem, and 0 otherwise.
Constraint (2c) ensures that the probability contribution of states not contained
in the subsystem is 0. Constraint (2d) bounds the probability contribution of
each non-target state by the sum of the probabilities to go to a successor state
times the probability contribution of the successor state. Finally, (2e) encodes
that the subsystem is critical.

The objective function (2a) ensures (i) that the subsystem is minimal by
minimizing the number of x4-variables with value 1 and (ii) that the subsystem
is smallest by minimizing —1/2 - p, ., .

Ezample 26. Consider again the DTMC D in Figure 2 on page 16 and the violated
reachability property P<o.3(0{s3}). Note that sg is irrelevant and can therefore
be ignored together with all its incident transitions. The constraints to compute
a smallest critical subsystem are as follows:

minimize —1/2 - ps, + &5, + Ts;, + Tsy + Tsy + Ts, + Ts, + Ts, + Ty,

such that
Ps3 = Tsy
Dso < Tsg Pso < 0.5ps, + 0.25p,, + 0.25p,,
DPsy S T,y DPsy S 0.5]?52 + 05]953
Dsy < Ty Dsy < 0.5ps, + 0.5ps,
Psy S T, Psa < 0.7ps, +0.3ps,
Dss < Ty Dss < l-Ops@-
Pse < Tsg DPsg < 05p53 + 0.5]?57
Dsy < Tsy Ps, < 0.25ps, + 0.25p,,
Dsy > 0.3

Solving this MILP yields the following assignment:

Variable|Ts, Dsy Ts, Ps; Tsy Pss Tsy Pss Tsy Dsy Tss Dss Tsg Psg Ty Psr
Value 152123115 1 100000000

This solution corresponds to the DTMC Dgs with S” = {sq, s1, $2, s3}, shown in
Figure 11(b) on page 38. |

The solution of this MILP is rather costly (solving MILPs in general is NP-
complete). However, the solution process can be accelerated by adding redundant

DTMC D = (S, Sinit, P, L)
probability bound A
S = {Sinit}

.)
model check >\

subsystem D

)

|

|

|

|

|

|

|

: determine
} states Se € S
|

|

|

|

|

|

|

|

|

|

Fig. 8. Incremental generation of critical subsystems

constraints which exclude non-optimal solutions from the search space [27, 61].
For example, one can require that each state s ¢ T contained in the subsystem
has a successor state which is also contained in the subsystem:

Vse S\T: x4< Z Ty .

s'Esupp(P(s))

The described approach has been generalized to arbitrary w-regular proper-
ties [28, 61].

Heuristic Approaches An alternative approach to determine critical subsys-
tems is to use the classical path search algorithms as presented in Section 4
to search for evidences and use the states or transitions of these evidences to
incrementally build a subsystem until it becomes critical. Here we focus on
building critical subsystems using the states in evidences. Analogously, we could
also use the transitions to build a subsystem with a similar approach.

Assume in the following a DTMC D = (S, Sinit, P, L), a set T C S of target
states and an upper probability bound A € [0,1] N Q of reaching target states
from T'. We assume this probability to be exceeded in D.

The process of computing a critical subsystem is depicted in Figure 8. We
start with the smallest possible subsystem containing just the initial state (see
Definition 11 for the definition of Dg-). As long as the subsystem is not yet critical,
we iteratively determine a new state set and extend the previous subsystem with
these states. Thereby the method that determines the state sets must assure
progress, i.e., that new states are added to the subsystem after a finite number
of iterations. Under this condition, the finiteness of the state space guarantees
termination.

Calling a model checker in every iteration is quite costly. Therefore, all
approaches based on this framework use some heuristics to avoid this. For

instance, one might think of performing model checking only after a certain
number of iterations or only start to check the system after a certain size of the
subsystem is reached.

We will now shortly discuss what approaches have been proposed to determine
the state sets to incrementally extend subsystems.

Extended best-first search The first method to compute critical subsystems using
graph-search algorithms was given in [30] by Aljazzar and Leue. The authors
extend the best-first (BF') search method [63] to what they call eXtended Best-
First (XBF') search, implemented in [36]. Below we describe the XBF search,
without highlighting the differences to the BF search, which are discussed in [30].

For the XBF search, the system does not need to be given explicitly in the
beginning but is explored on the fly, which is a great advantage for very large
systems where a counterexample might be reasonably small. Instead, a symbolic
model representation can be used.

Starting from the initial state, new states are discovered by visiting the
successors of already discovered states. Two state lists open and closed store the
states discovered so far. The ordered list open contains discovered states whose
successors have not been expanded yet. In each step, one (with respect to the
ordering maximal) state s from open is chosen, its not yet discovered successors
are added to open, and s is moved from open to closed. To have all relevant
information about the explored part of the model, for all states in the above two
lists we also store all incoming transitions through which the state was visited.

The list open is ordered with respect to an evaluation function f : S — Q
which estimates for each discovered state s the probability of the most probable
path from the initial state to a target state through s. The estimation

f(s) = g(s) - h(s)

is composed by two factors: Firstly, g(s) estimates the probability of the most
probable path from sj,it to s by the probability of the most probable such path
found so far. Secondly, h(s) uses further knowledge about the system at hand (if
available) to estimate the probability of the most probable path from s to T'. If
the latter function is not constant, the search is called informed search.

Initially, g(sinit) = 1. When expanding the successor s’ of a state s, we define
g(s’) to be g(s) - P(s,s") if s’ is encountered the first time, and the maximum
of g(s) - P(s,s") and the old g(s’) value else. When in the latter case g(s') is
updated to a larger value, if s’ was already in the closed set, it is moved back
to the open set to propagate the improvement.

The algorithm maintains an initially empty subsystem D’ of the already
discovered model part. Each time a state s is visited, such that s is either a
target state or it is included in D', the subsystem D’ gets extended with the
fragment of the currently known model part that is backward reachable from
s. The algorithm terminates if this subsystem becomes critical ([30] calls it a
diagnostic subgraph).

Init: Iteration 1: Iteration 2: Iteration 3:

Iteration 4:

0.125

Fig. 9. Illustration of the XBF search (cf. Example 27)

Ezxample 27. For the DTMC in Figure 2 on page 16 and the reachability property
Pcos ((}{83})7 the computation of the XBF search is illustrated in Figure 9.
Rectangular nodes are stored in the closed list, circles in the open list. For
simplicity we assume h(s) = 1 for all states s € S. Thus the current estimate
values f(s) = g(s) -1 (shown beside the states in gray color) equal the highest
known path probability from sg to s. The boldface fraction of the discovered
model part is the current subsystem, which is critical after the fifth iteration
(with probability 13/24 to reach sz from s). |

Search based on k shortest paths In [29] two different graph search algorithms
are utilized. We distinguish the global search and local search approach.

The global search is an adaption of the k shortest paths search as described
in Section 4. However, paths are collected not until a counterexample as a list of
paths is formed, but until the subsystem Dg: induced by the states S’ on found
paths has enough probability mass, i.e., until it becomes critical.

Ezample 28. For the DTMC D in Figure 2 on page 16 and the violated property
P<oa ((}{53}), three most probable paths are:

Path Probability
1 = 8051853 0.25
o = 50555653 0.125
T3 — S$0S25183 0.0625

0.5 0.5

(a) Subsystem for path (b) Subsystem for paths 71, w2

(c) Subsystem for paths 1, w2, 73

Fig. 10. Illustration of the global search approach (cf. Example 28)

Now, we subsequently add these paths to an initially empty subsystem, until
inside this system the probability to reach the state s3 exceeds 0.4. We highlight
the latest paths by thick edges in the subsystem. Starting with 71, the initial
subsystem consists of the states of this path, see Figure 10(a), with the reachability
probability 0.25 < 0.4. In the next iteration, the subsystem is extended by the
states of path 7o, see Figure 10(b). The probability is now 0.375 which is still
not high enough. Adding path 73 in the next iteration effectively extends the
subsystem by state so as the other states are already part of the subsystem. Note
that we add to the subsystem not only the states and transitions along found
paths, but all transitions connecting them in the full model. The model checking
result is now 13/24 &~ 0.542, so the subsystem depicted in Figure 10(c) is critical
and the search terminates. |

The local search also searches for most probable paths to form a subsystem,
however, not the most probable paths from the initial to target states, but the
most probable paths connecting fragments of already found paths. Intuitively,
every new path to be found has to be the most probable one that both starts
and ends in states that are already contained in the current subsystem while the
states in between are new.

Ezxample 29. Reconsider the DTMC in Figure 2 on page 16 and the violated
property P<g 4(0ss3) as in Example 28. Initially, we search for the most probable
path that connects the initial state and target states, i.e., again path m; = sps1s3
is found and added to the subsystem, depicted in Figure 11(a). The subsystem

0.5

NG

(a) Subsystem for path (b) Subsystem for paths w1, m2

Fig. 11. Illustration of the local search approach (cf. Example 29)

has probability 0.25 of reaching s3. Now, we search for the most probable path
that both starts and ends in one of the states sg, s1, or s3, and find 7 = s15251
with probability 0.25. As adding state s; induces also the transition from sg to
o this already gives enough probability 5/12 = 0.416 for the subsystem depicted
in Figure 11(b) to be critical. |

Symbolic methods In order to enable the generation of counterexamples for
very large input DTMCs, the computation of critical subsystems was adapted for
symbolic graph representations, in particular BDDs and MTBDDs, see Section 2.

The framework for the symbolic method is the same as depicted in Figure 8,
while special attention is required regarding certain properties of BDDs. As
methods to find new states to extend a subsystem, symbolic versions of the
global search and the local search were devised. This was done for both bounded
model checking and symbolic graph search algorithms; for an introduction to the
underlying concepts see Section 4. The adaptions were first proposed in [31] and
improved and extended in [32].

Recall, that a DTMC D = (S, Sinit, P, L) together with a set of target states
T C S is symbolically represented by a BDD I representing the initial state sinit,
a BDD T representing the target states T and an MTBDD P representing the
transition probability matrix P. In the symbolic algorithms, an MTBDD SubSys
is maintained which stands for the current subsystem. The goal of all methods
given in the following is to compute a set of states that is used to extend the
current subsystem, saved in a BDD NewStates. The subsystem is verified by a
symbolic version of the standard DTMC model checking procedure, see [64, 65].
This is also used in PRISM [12].

Bounded Model Checking Using the bounded model checking approach from [19]
for DTMCs in combination with the incremental generation of subsystems, this
directly yields a global search approach for symbolic graph structures. Recall
Formula 1 from Section 4.1, where from the (MT)BDDs I, T and P predicates
init, target and trans are created. In every iteration, the SAT solver computes a
path of the DTMC starting at I and ending in a state of T' using transitions of
P. This is achieved by satisfaction of the corresponding predicates. NewStates is
assigned the states of this path and SubSys is extended accordingly. This goes on
until model checking reports that the subsystem has enough probability mass.

In contrast to adapting the global search, for the local search, also referred
to as fragment search, we need predicates that are changed dynamically. This is
due to the fact that in each iteration a path starting at any state of the current
subsystem and ending in such a state is to be searched for. As SubSys is changed
all throughout the process, we need a predicate K that captures this changing set
of states. This is technically achieved by utilizing the assumption functionality
of the SAT solver in the sense that in every iteration the predicate K is satisfied
if the SAT solver assigns its variables such that a state of the current subsystem
corresponds to these variable values. The goal is now to find paths of arbitrary
but bounded length n by assigning the variable sets vy, ..., v, such that they
correspond to such a path. The formula reads as follows:

n

K(vo) A trans(vg,v1) A-K(vy) A \/K(Uz’)

=2
A /_\ [(=K(v;) = trans(vj,vj41)) A (K(vj) = vj = vj41)]

Intuitively, every path starts in a state of K (K(uvp)). From this state, a
transition (trans(vg, v1)) has to be taken to a state that is not part of K (=K(wv1)).
One of the following states has to be part of K again (\/;_, K(v;)). For all states
it has to hold that as long as a state is not part of K, a transition is taken
to another state (=K(v;) — trans(v;,v;41)). As soon as a state is inside K, all
following variables are assigned the same values creating an implicit self-loop on
this state (K(vj_1) = vj; = v;41). For more technical details such as the handling
of the initial path starting in the initial state s;n;; and ending in a target state or
how to actually form the set K, we refer to the original publications. In addition,
a heuristic was given guiding the SAT solver to assign variables such that more
probable paths are found.

Symbolic Graph Search In Section 4.1 we described how the k shortest path
search was implemented symbolically [21]. The key ingredients were a symbolic
version of Dijkstra’s shortest path, called flooding Dijkstra, and the method
Change(fD7 I,T,5P) which transformed the input system given by P,I and T'
with respect to the current shortest path SP such that SP is not found any more
by the flooding Dijkstra. Instead, the second most probable path in the context
of the original system is returned in this modified system. This process is iterated
until the sufficient number of paths is achieved. For the shortest path algorithm
we write
ShortestPath(P, f, D)

for paths that have transitions out of 13, start in I and end in 7.

Although this is conceptually working, the transition MTBDD Pis basically
doubled in each step by the graph transformation. This causes an exponential
blow-up of the MTBDD-size which renders this approach not applicable for

relevant benchmarks. Therefore, a straightforward adaption to the generation of
critical subsystems is not feasible.

In modification called the adaptive global search, the method for changing the
graph was used in a different way. Instead of incrementally changing the system
according to the current shortest path, in each step the original system (P,1,T)
is transformed such that the new shortest path will have only states that are not
already part of SubSys:

(P,I,T):= Change(P,I,T, SubSys)

Thereby, the size of the system only increases linearly in each step. Additionally,
the flooding Dijkstra computes not only one shortest path but actually the set of
all shortest paths that have the same probability and length. All of these paths
are added to the current subsystem at once. If the probability mass is exceeded
extensively, the adaptive algorithm performs a backtracking.

An adaption of the fragment search to symbolic graph algorithms was also
done. Consider a BDD SubSysStates which represents the states of the current
subsystem. Then, in every iteration the shortest path starting and ending in
states of the subsystem via transitions from the original system without the
subsystem is computed:

ShortestPath (P \ SubSys, SubSysStates, SubSysStates)

These symbolic graph algorithms enabled the generation of counterexamples for
input DTMCs with billions of states in their explicit representation.

Compact representations Based on a hierarchical SCC abstraction presented
in [66], the authors of [29] proposed a method for generating hierarchical coun-
terexamples for DTMCs. The starting point is an abstract model, for which a
critical subsystem is computed (in [29] the local and global search from Section 5.1
are used, but any other approach could be also applied). In order to explore
the system in more detail, important parts of the critical subsystem can be
concretized and, to reduce its size, in this concretized system again a critical
subsystem can be determined. This allows to search for counterexamples on
very large input graphs, as the abstract input systems are both very small and
simply structured. As concretization up to the original system can be done only
in certain parts of interest, no information is lost while only a fraction of the
whole system has to be explored.

We first describe the basic idea of the SCC abstraction from [66], which
can also be used for model checking. The underlying graph of the DTMC gets
hierarchically decomposed first into its SCCs, then the SCCs into sub-SCCs not
containing the input states and so on, until at the inner-most levels no further
non-trivial sub-SCCs exist.

Ezxample 30. The hierarchical SCC decomposition of the DTMC in Figure 2 on
page 16 is illustrated in Figure 12, where the SCCs and sub-SCCs are indicated

Fig. 12. The SCC decomposition of a DTMC D (cf. Example 30)

by rectangles. When neglecting its input states, the SCC S; = {s1, s2, 54}
does not have any sub-SCCs. The SCC Sy = {ss, s¢, $7} contains a sub-SCC
So.1 = {s6,57} C Sa. [|

In a bottom-up traversal starting at the inner-most sub-SCCs, the reachability
probabilities paps(s, s’) from each input state s to each output state s’ inside the
given sub-SCC are computed by utilizing certain properties of DTMCs. This
computation was inspired by the work of Andrés, D’Argenio and van Rossum [24].
All non-input nodes and all transitions inside the sub-SCC are removed and
abstract transitions are added from each input state s to each output state s’
carrying the whole probability mass paps(s, s’). Note that the probability to reach
target states from the initial state in the resulting DTMC equals the probability
in the DTMC before the transformation.

Ezample 31. Consider the hierarchically decomposed DTMC D in Figure 12.
In Figure 13(a), the abstraction of the sub-SCC Ss; is shown. Basically, the
sub-SCC is abstracted by a single abstract state ss. We denote such abstract
states by a rectangular shape, and abstract transitions by thick lines. The abstract
probabilities are:

Pabs(56,53) = 4/7 Dabs(56,55) = /7 Dabs(s6,58) = 2/7.

At the next outer level, now the SCC Sy can be abstracted. After abstracting
also SCC 51, an acyclic graph remains which is depicted in Figure 13(b). Note
that SCC S results in two abstract states as it has two input states, i.e., states
that have an incoming transitions from outside the SCC.

It is easy to compute the abstract probabilities therein, e. g., by solving the
simple linear equation system as explained in Section 2. The resulting abstract
graph is depicted in Figure 13(c). Here, only transitions from the initial state

Sa Sa2.1

(a) Abstraction of SCC Sa.1

1 1

11/12
— S0 83
1/1;
1 12 1
é)

(b) Acyclic graph after abstracting all SCCs (c) Model checking result

Fig. 13. SCC-based model checking (cf. Example 31)

so to all absorbing states including the target state s3 are contained. As this
corresponds to the probability of reaching state s3 in the original DTMC D, we
have the model checking result for the reachability property:

PrP”(0{s3}) = pabs(s1, s3) = 11/12 2 0.9167.
|

The key idea of the hierarchical counterexample generation is now to start
the search on the abstract graph. Following the general procedure as depicted in
Figure 8, states are collected using path search algorithms until the subsystem
has enough probability mass to be critical. If the resulting critical subsystem
gives enough debugging information, the process terminates, otherwise certain
abstract states, i.e., abstracted SCCs or sub-SCCs, inside the abstract critical
subsystem can be concretized with respect to the former SCC abstraction and a
new search can be started on this more detailed system. The choice of one or
more states to be concretized can either be done interactively by user input or
guided by certain heuristics.

0.2

(a) Abstract DTMC D (b) DTMC D after concretization of sg

Fig. 14. Concretizing state s¢ (cf. Example 32)

Ezample 32. To explain the procedure of concretizing states, consider a partially
abstracted version of the DTMC from Figure 12 depicted in Figure 14(a), where
states sg and s5 are concretized, but s1, sy and sg are still abstract. Assume now,
sg is chosen to be concretized. All abstract transitions leaving sg are removed and
the SCC which was abstracted by them is inserted. The result of the concretization
step is depicted in Figure 14(b). |

5.2 Critical Subsystems for PAs

Let M = (S, Sinit, Act, P, L) be a PA and P<»(0T) be a reachability property
which is violated by M. We want to compute a smallest critical subsystem for
PA, which is an NP-hard problem. The approach below [27] is formalized for
reachability properties, but it can be extended to w-regular properties.

The main difference to DTMCs is that the MILP has to be enriched by
the computation of an appropriate scheduler. Please note that a scheduler that
maximizes the reachability probability does not necessarily induce a DTMC
having a critical subsystem which is minimal among all critical subsystems of the
PA. Hence, we cannot compute a scheduler beforehand, but have to integrate
the scheduler computation into the MILP.

Doing so we have to take into account that, for some state s € S, under some
schedulers the target states T' can be unreachable from s, but reachable for other
schedulers. Such states are called problematic. Let

S, = {s € S|30 € Sched s : Pr"(OT) = 0}

be the set of all problematic states and let S;‘ the set of all problematic states
and their successors. If s € S, then s is called unproblematic for T'. A transition

(o,) € P(s) for some s € S is problematic if all its successor states are
problematic:

P, = {(s,a,p) | (o,) € P(s) A supp(u) C Sy}

Problematic states and transitions can be determined in linear time in the size
of the PA using standard graph algorithms [9].

As before, we need variables z; € {0,1} C Z and ps € [0,1] N Q for each
state s € S. Additionally we need variables o5 4, € {0,1} C Z for s € S\ T and
(a, 1) € P(s) to encode the chosen scheduler. We have to add constraints which
ensure that from each selected problematic state s € S, a target state is reachable
within the selected subsystem. For this we need further variables: r5 € [0,1] N Q
for problematic states and their successors s € S;, and t, ¢ € {0,1} C Z for
each pair (s, s') such that there is (s, o,) € P, with s" € supp(y).

With these variables the MILP is given as follows:

minimize — %Ps;nn + Z T (3a)
ses
such that

Dspre > A (3b)
VseT: ps=us (3c)
Vs € S\T: ps<uxg (3d)
Vse S\T: Z Ts,au = Ts (3e)

(@um)eP(s)
Vs e S\ T Y(a,u) € P(s): ps<(1—05a,)+ Z wu(s’) -ps (3f)

s’ esupp(p)
V(s,o,p) € P, Vs € supp(p) : teo < 2 (3g)
V(s,o,p) € P, Vs €supp(p) : s < 7o + (1 —tgy) (3h)
V(s,o,p) € Py (1= 0gau)+ Z tssr > Ty . (3i)
s’ €supp(p)

The objective function (3a) and the constraints (3b), (3c), and (3d) are the
same as for DTMCs. Constraint (3e) takes care that the scheduler selects exactly
one pair (a,) € P(s) for each state s € S that is contained in the subsystem,
and none for states not in the subsystem. Constraint (3f) is the pendant to
constraint (2d) of the MILP for DTMCs. The difference is the term (1 — 05.q,,)-
It ensures that the constraint is trivially satisfied for all transitions that are not
selected by the scheduler. The remaining constraints (3g)—(3i) take care that
from each problematic state a non-problematic (and therefore a target) state
is reachable within the selected subsystem. For details on these reachability
constraints we refer the reader to [61].

Ezample 33. Consider the same MDP in Figure 7 (page 28) and the reachability
property P<o.75(0{s4}) as in Example 23 (page 27). To compute a smallest

critical subsystem, we first remove the irrelevant states s and s5 from the model.
Note that the resulting MDP has no problematic states. Since the considered
model is an MDP, for readability we write o o instead of o4 o, for the scheduler
choices in the following MILP formulation:

minimize — §pg, + (s, + s, + Lo, + T5,) such that
p84 = 'r84
Dso < T
Pso > 0.75 Ds, S T,
Dsy < Ts,
_ pso S (1 080,04) +p51
Zso,a i Zsoﬁ = Zg, Psy < (1 _ 080,5) + ps,
03177' _ xSI ps, < (1 — O'sl,'r) + O,4p30 + 0.5[)34
S2,T S2 Dss S (1 — 05277.) + 0.5]950 -+ 0.4}734

The assignment mapping (i) 1 to Zs,, Ts;s Ts,, Psys Ose,a a0d g+, (i)
5/6 ~ 0.83 to ps, and ps,, and (iii) 0 to all other variables is a solution to the
above constraint system, specifying a scheduler choosing action « in state s,
and determining a smallest critical subsystem of the induced DTMC with state
set {30,51,34}. |

Ezxample 34. To illustrate the need for the special handling of problematic states,
consider again the example MDP in Figure 7 on page 28, but assume that at
state so there would be an additional distribution with action ~, looping on s¢
with probability 1.

Without the constraints (3g)—(3i), the assignment mapping (i) 1 to xs,, ps,
and o, and (ii) 0 to all other variables would satisfy the remaining MILP
constraints, however, it would specify a subsystem containing the single state s,
i.e., having the probability 0 to reach the target state s4.

The MILP with the constraints (3g)—(3i) exclude this possibility. Intuitively,
(3g)—(31) exclude subsystems that have a bottom SCC containing problematic
states only. |

6 Description-Language-Based Counterexamples

Typically, probabilistic models are not explicitly given at the state space level,
but rather in a symbolic format that is able to succinctly capture large and
complex system behavior.

Prism’s guarded command language One example of such a symbolic mod-
eling formalism is the guarded-command language employed by the well-known

probabilistic model checker Prism [12]. It is a stochastic variant of Alur and
Henzinger’s reactive modules [33].

In this language, a probabilistic program consists of a set of modules. Each
module declares a set of module variables and a set of guarded commands. A
module has read and write access to its own variables, but only read access to
the variables of other modules. The guarded commands have the form

[a]g - p15f1 +-~-+pn:fn

where a is a command label being either an action name or 7, the guard g is a
predicate over the variables in the program, f; are the variable update functions
that specify how the values of the module’s variables are changed by the command,
and the p; are the probabilities with which the corresponding updates happen.
A command with action label 7 is executed asynchronously in the sense that
no other command is executed simultaneously. In contrast, commands labeled
with an action name « # 7 synchronize with all other modules that also have a
command with this label, i.e., each of them executes a command with label «
simultaneously.

Ezxample 35. The top of Figure 15 shows an example guarded-command pro-
gram in Prism’s input language. The program involves two modules coin and
processor.

Initially the module coin can (asynchronously) do a coin flip (command ¢y).
The variable f stores the fact whether the coin has been already flipped (f = 1)
or not (f =0). After the coin flip, the variable ¢ stores whether the coin shows
tails (¢ = 0) or heads (¢ =1)

After the coin flip, both modules can process some data by synchronizing on
the proc action (c3 and ¢4). The variable p is used to make a bookkeeping whether
processing has taken place (p = 1) or not (p = 0). However, the processing step
can by mistake set the coin to show heads with probability 0.01 (c3).

Additionally, if the coin is flipped and it shows tails, the coin flip can be
undone by the synchronizing reset action (c2 and ¢g), leading the system back
to its initial state.

Finally, if data has been processed the system may loop forever (cs). |

Several modules can be casted to a single module using parallel composition.
The variable set of the composition is the union of the variable sets of the
composed modules. Each non-synchronizing command is also a command in the
composition. For each combination of synchronizing commands, the composition
contains a single command whose guard is the conjunction of the involved guards,
and whose updates are all possible combinations of joint updates with the product
of the involved probabilities.

Ezxample 36. The parallel composition of the two modules of the example prob-
abilistic program at the top of Figure 15 is given at the bottom of the same
figure. |

module coin
f: bool init 0; c¢: bool init 0;
7] =f = 0.5: (f = 1D&(c' =1)+0.5: (f = 1)&(c = 0);
[reset] fA—c— 1:(f =0);
[procl f—0.99: (f'=1)+0.01: (¢ = 1);
endmodule
module processor
p: bool init 0;
[proc] —=p — 1: (p' = 1);
[rlp—1:("=1)
[reset] true — 1: (p' =0)
endmodule

s
[l

o
w

—~
Q

° N

— — —

—~ e~
Q0
(AR
~— —

Q
=)
~

module coin || processor
f: bool init 0; ¢: bool init 0; p: bool init 0;
7] =f = 0.5: (f' = 1D&(c' =1)+0.5: (f = 1)&(c = 0); (
[reset] fA—c— 1:(f =0)&(p =0); (
[procl fA—p—0.99: (f' =1)&(P =1)+0.01: (¢ =)& = 1); (és
[rflp—1:(p =1); (
endmodule

Fig. 15. Top: The probabilistic program from Example 35, specified in Prism’s guarded-
command language; Bottom: The parallel composition of the two modules

The semantics of a module is given in terms of a probabilistic automaton [47].
The state space of the automaton is the set of all valuations of the variables
that appear in the program. The transitions between states are determined by
the module’s commands. More specifically, for every state and every guarded
command with label a whose guard evaluates to true in the given state, the
transition relation contains a pair («, 1) such that p defines for each update a
transition to the state after the update with the probability of the update.

Ezample 37. The (reachable part of the) probabilistic automaton specifying the
meaning of the probabilistic program in Figure 15 is depicted in Figure 16.
Note that the coin will finally show heads with probability 1 for all schedulers
which choose the reset action with a non-zero probability if it is enabled. This
behavior can be modified by, e.g., defining a scheduler with memory, which
bounds the number of reset executions by some finite bound. |

A probabilistic program satisfies a reachability property iff the PA specifying
its semantics does so. Thus explanations for the violation could be given by path-
and subsystem-based counterexamples at the state-space level. However, such
counterexamples tend to be too large and structureless to be easily interpretable
in the probabilistic program, and therefore they are not well suited to help the
designer to eliminate the unwanted behavior at the command level of modules.

Therefore, [34] proposed to naturally extend the computation of smallest
critical subsystems to probabilistic programs by determining a subset of the

Fig. 16. The PA specifying the semantics of the probabilistic program in Figure 15 (cf.
Example 37)

commands that gives rise to a sub-PA that still violates the property in question.
More precisely, the task is to compute a minimal number of commands such that
the reachability probability in the semantics of the restricted program exceeds
the threshold A. Moreover, we aim at finding a smallest critical command set
which maximizes the reachability probability under all subsets of the commands.
It thus acts as a counterexample by pointing to a set of commands that already
generate erroneous behavior. Additionally, to increase usefulness, the commands
in a smallest critical command set can be further reduced by removing some of
their update branches without which the property is still violated.

Ezample 38. Consider our example probabilistic program from Figure 15 and
a reachability property P< A(O{s4}) (where s4 describes the state in which all
variables evaluate to 1).

If 0 < A < 0.5, at the level of the composed module coin || processor (at the
bottom of Figure 15), the commands ¢; and ¢s would build a smallest critical
command set. At the level of the modules coin and processor, we need to
include ¢1, ¢3 and c4.

For A > 0.5, a smallest critical command set would be {é;,éq,é3} at the
composed level coin || processor. At the level of the modules, we can only
exclude c5. |

Linear programming approach In [34], the authors show the problem of
finding a smallest critical command set to be NP-hard and present a mized
integer linear programming (MILP) approach to solve it. The basic idea is to
describe the PA semantics of a smallest critical command set of a probabilistic
program, together with a maximal scheduler, by an MILP formulation. This
MILP formulation can be disposed to a state-of-the-art MILP solver to get an
optimal solution.

Assume a probabilistic program and let M = (S, sinit,Act,P,L) be the
PA generated by it after removing all irrelevant states, and assume that the

reachability property P<,(QT') is violated by M. For each state s € S and
transition (o,) € P(s) let L(s, a, 1) denote the set of commands that generate
the given transition.® Note that in case of synchronization several commands
together create a certain transition.

The idea to encode the selection of smallest critical command sets as an
MILP problem is similar to the MILP encoding of smallest critical subsystems
for PAs (see Section 5.1). However, now we want to select a minimal number of
commands of a probabilistic program instead of a minimal number of states of a
PA. The selected commands should induce a PA, for which there is a memoryless
deterministic scheduler inducing a critical subsystem of the PA.

Additionally to the variables used for the smallest critical subsystem encoding
for PAs, we encode the selection of a smallest critical command set using a
variable z. € {0,1} for each command ¢, which is 1 iff ¢ is part of the smallest
critical command set. Using these variables, the MILP for a smallest critical
command set is as follows:

. 1
minimize — 3 *Psinie T Zczxc (4a)
such that

Psinic > A (4b)
Vse S \ T: Z Os,a,1 <1 (4C)

(a,n)€P(s)
Vs € SVY(a,p) € P(s) Ve € L(s,a, 1) e > Ogau (4d)
VseT: ps=1 (4e)
Vse S \ T: ps < Z Os,a,p (4f)

(a,p)€P(s)

Vs € S\TY(a,p) € P(s): pa< Y, puls) po+ (1= 0uayu)

s’ €supp(p)
(4g)
V(s,a, 1) € Pp C Osan < Z ts,s (4h)
s’ €supp(p)
Vs € S, V(a,p) € P(s) Vs €supp(p): 75 <71y + (1 —tss) - (4i)

By (4b) we ensure that the the subsystem induced by the selected scheduler
is critical. For reachability properties, we can restrict ourselves to memoryless
deterministic schedulers. So for each state at most one action-distribution pair is
selected by the scheduler (4¢). Note that there may be states where no such pair is
chosen, which we call deadlocking. If the scheduler selects an action-distribution
pair, all commands involved in its generation have to be chosen (4d). For all
target states s € T' the probability p is set to 1 (4e), while the probability is set

5 If several command sets generate the same transition, we make copies of the transition.

to zero for all deadlocking non-target states (4f). Constraint (4g) is responsible for
assigning a valid probability to ps under the selected scheduler. The constraint is
trivially satisfied if 054, = 0. If (o,) is selected, the probability ps is bounded
from above by the probability to go to one of the successor states of (o,) and
to reach the target states from there.

For non-deadlocking problematic states, the reachability of at least one
unproblematic state is ensured by (4h) and (4i). First, for every state s with a
selected (o, 1) that is problematic regarding T', at least one transition variable
must be activated. Second, for a path according to these transition variables, an
increasing order is enforced for the problematic states. Because of this order, no
problematic states can be revisited on an increasing path which enforces the final
reachability of a non-problematic or deadlocking state.

These constraints enforce that each satisfying assignment corresponds to a
critical command set. By minimizing the number of the selected commands we
obtain a size-minimal critical command set. By the additional term —% “Dsinye WE
obtain a smallest critical command set. The coefficient —% is needed to ensure
that the benefit from maximizing the probability is smaller than the loss by
adding an additional command.

Ezample 39. We want to compute a smallest critical command set for the example
probabilistic program in Figure 15 and P§0_4(0{54}). Since the induced PA is
an MDP, for readability we write o o instead of o, o, for the scheduler choices
in the following MILP formulation:

minimize — 3ps.. + (T, + Toy + Tey + e, + Tey + Te) such that
psinit > 0'4

< O-S;nit,T S :1701 USQ,proc S xc;;
Os ..+ <1
init, —

Osy,proc + Osy,reset S 1
032,proc S 1
0-53,reset + USg,T S 1

Oy ,proc S Tey Osyproc S Ly
Osy,proc S Tcy Os3,reset S Te,
Usl,reset S xCQ 0-537reset S xcg
Osy,reset < Lcg Osz, 1 < Ty

Psy =1 Psinie < 0.5ps, + 0.5ps, + (1 - O—Sinitﬂ')
Ps; < 0.99ps, +0.01ps, + (1 — 0, proc)

Psinit S Usimt,‘r Psy S Psinie + (1 - Usl,reset>

Psy < 054 ,proc + Osy,reset Dsy < Psy + (1 - 082,proc)

p32 S 0'32,proc p83 S pSinit + (1 - 0'33,reset)

DPss § Os3,reset + Os3,7 Ps3 < Pss + (1 - 0—5377')

Os3,T < t53,53

T'sg < T'sg + (1 - t83753)

It is easy to check that the assignment mapping 1 to o, ;. 7, Ts, procs Teys Tey, Tey
and p,,, 0.5 to ps,,,, and ps,, and O to all other variables is a satisfying solution,
encoding the smallest critical command set {c1,c3, cq}. |

7 Tools and Implementations

In this section we give a short overview on public tools and prototype implemen-
tations for some of the approaches that were presented in this paper. We report
on the scalability of the different approaches as far as there were comparisons
made in the corresponding papers. We first present the publicly available tools.

7.1 DiPro — A Tool for Probabilistic Counterexample Generation

DIPRrO [36] was the first official tool for the counterexample generation of
probabilistic systems. Basically, most of the implemented approaches are based
on variations of best-first search. An extended best-first search is used to generate
critical subsystems of DTMCs and CTMCs, see Section 5 and the corresponding
paper [30]. Moreover a K* search [67] for finding the k most probable paths
of a DTMC together with some optimizations is implemented, see Section 4.
Finally, DIPRO is able to compute a path-based counterexample together with a
scheduler for MDPs, see Section 5 and [25].

Technically, the best-first search approaches of DIPRO are implemented using
the simulation engine of a previous version of the probabilistic model checker
PrisM [12]. Thereby, the state space is built incrementally and in many cases
not to its full extend. That enables the generation of counterexamples for rather
large graphs for many benchmarks.

In order to help the user understand the process of finding a counterexample,
the tool offers a graphical user interface [60] where the search process is illustrated.

7.2 COMICS — Computing Smallest Counterexamples for DTMCs

COMICS [37] implements the approaches of [29], namely the hierarchical coun-
terexample generation and the two search approaches called global search and
local search, see Section 5. The core functionality is to offer the computation
of counterexamples for reachability properties of DTMCs either automatically
or user-guided. A graphical user-interface offers to depict every stage of the
hierarchical counterexample generation. The user can interactively choose certain
states of interest to be concretized, while there are also several heuristics available
to automate this choice. Furthermore, several heuristics can be used for the search
process, e.g., how many states to concretize in one step or how often model
checking is performed. Moreover, the tool has a mere command-line version
in order to perform benchmarking. It is always possible to compute smallest
critical subsystems without the hierarchical concretization. Finally, the k shortest
path approach, see Section 4 and [17], was implemented in order to provide
comparisons regarding scalability.

7.3 Other Implementations

Basically, we did not have access to the implementations on foreign approaches
as presented in this paper.

We are able to report on the implementations of the several approaches
concerning the computation of smallest critical subsystems, see Sections 5 and 6.
Parts of these implementations are summarized in a tool called LTLSUBSYS.
The high-level approaches are mainly implemented into the framework of a
successor of the probabilistic model checker MRMC [13]. These still prototypical
implementations utilize the SMT-solver Z3 [68] and the MILP solvers SCIP [69],
CPLEX [70] and GUROBI [71].

Moreover, we describe the scalability of the approaches to symbolic coun-
terexample generation, see Section 5 and the publications [31, 32].

7.4 Comparison of the Tools

We will now shortly report on comparisons of DIPRO, COMICS and LTLSUBSYS
that were made in previous publications.

First, COMICS and D1PRrO were directly compared for reachability properties
of DTMCs in [32, 37, 61]. Summarizing the results we observe that for benchmarks
with up to one million states COMICS performs better in terms of running
times and of the size of the generated subsystem. However, for larger benchmarks
D1Pro might be the better choice, as the state space is generated on the fly.
Thus, if the critical subsystem generated by DIPRO is of moderate size, a result
is obtained even for very large graphs. Please keep in mind that each tool has its
own advantages such as the animated search process of DIPRO or the user-guided
hierarchical counterexample search of COMICS.

LTLSUBsYS was compared to both publicly available tools in [61]. In terms of
running times, the creation of a smallest critical subsystem is almost always worse
than the heuristical tools. In terms of the system size, LTLSUBSYS naturally
always generates the smallest possible critical subsystem. For the benchmarks
tested in the paper, the local search approach in some cases generated critical
subsystems that were only around 10% larger than the actual minimal subsystem
while the running time was considerably lower. Note finally, that within an MILP
solver such as GUROBI, an intermediate solution and a lower bound on the value
of the optimal solution is maintained at every time. In many cases, the minimal
solution is obtained within seconds while it is a very hard case to actually prove
minimality. Thereby, if the intermediate result is already sufficiently small, the
search process can be stopped at any time.

The symbolic counterexample generation based on graph algorithms as pre-
sented in [32] and Section 5 was compared to COMICS and DIPRO. As expected,
on smaller benchmarks the other tools perform better in terms of running
times. The size of the subsystems was comparable to the results as obtained by
COMICS as the same approaches were used only on the one hand for explicit
graph representations and on the other hand for symbolic graph representations.
For benchmarks with millions of states, DIPRO and the symbolic algorithms

were the only ones to obtain results while the latter obtained better running
times the larger the benchmarks were. Finally, the symbolic algorithms were able
to generate counterexamples for systems with billions of states while all other
approaches failed.

8 Conclusion

This paper surveyed state-of-the-art methods for counterexample generation for
discrete-time Markov models. Three techniques have been covered: path-based
representations, minimal critical subsystems, and high-level representations of
counterexamples. In addition to techniques using explicit model representations,
we addressed methods that use symbolic BDD-based model representations and
symbolic computations.

It is fair to say, that probabilistic counterexamples are still at their infancy.
Although dedicated tools such as DIPRO and CoMICS support (some of) the
techniques presented in this survey, the integration into mainstream probabilistic
model checkers is still open. This could make the usage of probabilistic counterex-
amples more popular in other application domains like, e. g., robotics or security.
Besides, it is a challenging task to consider counterexamples for continuous-time
or hybrid probabilistic models, in particular for time-constrained reachability
properties.

References

1. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking. Volume
5000 of LNCS, Springer (2008) 1-26
2. Clarke, E.M., Veith, H.: Counterexamples revisited: Principles, algorithms, applica-
tions. In: Verification: Theory and Practice. Volume 2772 of LNCS, Springer (2003)
208-224
3. Fraser, G., Wotawa, F., Ammann, P.: Issues in using model checkers for test case
generation. Journal of Systems and Software 82(9) (2009) 1403-1418
4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Performance Evaluation Review 32(4) (2005)
34-40
5. Ngo, T.M., Stoelinga, M., Huisman, M.: Effective verification of confidentiality for
multi-threaded programs. Journal of Computer Security 22(2) (2014) 269-300
6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5) (2003) 752-794
7. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model
checking. In: Proc. of LICS, IEEE Computer Society Press (2002) 19-29
8. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In: Proc. of DAC.
(1995) 427-432
9. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
10. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9) (2010) 76-85

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kwiatkowska, M.Z.: Model checking for probability and time: From theory to
practice. In: Proc. of LICS, IEEE Computer Society Press (2003) 351-360
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Volume 6806 of LNCS (2011) 585-591
Katoen, J.P., Zapreev, 1.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2) (2011) 90-104
Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: Lecture
notes of SFM. Volume 4486 of LNCS, Springer (2007) 220-270

Katoen, J.P.: Model checking meets probability: A gentle introduction. In: En-
gineering dependable software systems. Volume 34 of NATO Science for Peace
and Security Series - D: Information and Communication Security, IOS Press,
Amsterdam (2013) 177-205

Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In: Proc.
of TACAS. Volume 4424 of LNCS, Springer (2007) 72-86

Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Transactions on Software Engineering 35(2) (2009) 241-257
Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reachability.
In: Proc. of FORMATS. Volume 4202 of LNCS, Springer (2006) 33-51

Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-time
Markov chains using bounded model checking. In: Proc. of VMCAI Number 5403
in LNCS, Springer (2009) 366-380

Braitling, B., Wimmer, R., Becker, B., Jansen, N., Abmha’urn7 E.: Counterexample
generation for Markov chains using SMT-based bounded model checking. In:
Proc. of FMOODS/FORTE. IFIP Advances in Information and Communication
Technology, Springer (2011)

Giinther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths
and related measures with the stochastic process algebra tool CASPA. In: Proc. of
DYADEM-FTS, ACM Press (2010) 13-18

Damman, B., Han, T., Katoen, J.P.: Regular expressions for PCTL counterexamples.
In: Proc. of QEST, IEEE Computer Society Press (2008) 179-188

Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Proc. of ICTAC. Volume 3407 of LNCS, Springer (2005) 280-294

Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant diagnostic counterexamples
in probabilistic model checking. In: Proc. of HVC. Number 5394 in LNCS, Springer
(2008) 129-148

Aljazzar, H., Leue, S.: Generation of counterexamples for model checking of Markov
decision processes. In: Proc. of QEST, IEEE Computer Society Press (2009) 197206
Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Transactions on Computational
Logic 12(1) (2010) 1-45

Wimmer, R., Becker, B., Jansen, N., Abrahém, E., Katoen, J.P.: Minimal critical
subsystems for discrete-time Markov models. In: Proc. of TACAS. Volume 7214 of
LNCS, Springer (2012) 299-314

Wimmer, R., Becker, B., Jansen, N., Ablrahéum7 E., Katoen, J.P.: Minimal critical
subsystems as counterexamples for w-regular DTMC properties. In: Proc. of MBMV,
Verlag Dr. Kova¢ (2012) 169-180

Jansen, N., Abrahém, E., Katelaan, J., Wimmer, R., Katoen, J.P., Becker, B.:
Hierarchical counterexamples for discrete-time Markov chains. In: Proc. of ATVA.
Volume 6996 of LNCS, Springer (2011) 443-452

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Transactions on Software
Engineering 36(1) (2010) 3760

Jansen, N., Abrahém, E., Zajzon, B., Wimmer, R., Schuster, J., Katoen, J.P.,
Becker, B.: Symbolic counterexample generation for discrete-time Markov chains.
In: Proc. of FACS. Volume 7684 of LNCS, Springer (2012) 134-151

Jansen, N., Wimmer, R., Abrahém, E., Zajzon, B., Katoen, J.P., Becker, B.,
Schuster, J.: Symbolic counterexample generation for large discrete-time Markov
chains. Science of Computer Programming (2014) (accepted for publication).
Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design
15(1) (1999) 7-48

Wimmer, R., Jansen, N., Vorpahl, A., Abrahém, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata. In: Proc. of QEST. Volume
8054 of LNCS, Springer (2013) 18-33

Katoen, J.P., van de Pol, J., Stoelinga, M., Timmer, M.: A linear process-algebraic
format with data for probabilistic automata. Theor. Comput. Sci. 413(1) (2012)
36-57

Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro — A tool for
probabilistic counterexample generation. In: Proc. of SPIN. Volume 6823 of LNCS,
Springer (2011) 183-187

Jansen, N., Abrahém, E., Volk, M., Wimmer, R., Katoen, J.P., Becker, B.: The
COMICS tool — Computing minimal counterexamples for DTMCs. In: Proc. of
ATVA. Volume 7561 of LNCS, Springer (2012) 349-353

Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Proc. of CAV.
Volume 5123 of LNCS, Springer (2008) 162-175

Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Assume-guarantee abstraction
refinement for probabilistic systems. In: Proc. of CAV. Volume 7358 of LNCS,
Springer (2012) 310-326

Grunske, L., Winter, K., Yatapanage, N., Zafar, S., Lindsay, P.A.: Experience
with fault injection experiments for FMEA. Softw. Pract. Exper. 41(11) (2011)
1233-1258

Aljazzar, H., Fischer, M., Grunske, L., Kuntz, M., Leitner-Fischer, F., Leue, S.:
Safety analysis of an airbag system using probabilistic FMEA and probabilistic
counterexamples. In: Proc. of QEST, IEEE Computer Society Press (2009) 299-308
Debbi, H., Bourahla, M.: Generating diagnoses for probabilistic model checking
using causality. Journal of Computing and Information Technology 21(1) (2013)
13-23

Debbi, H., Bourahla, M.: Causal analysis of probabilistic counterexamples. In:
Proc. of MEMOCODE, IEEE (2013) 77-86

Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causality
computation. Int’l Journal of Critical Computer-Based Systems 4(2) (2013) 119-
143

Bernardo, M., Hillston, J., eds.: 7th Int’l School on Formal Methods for the Design
of Computer, Communication, and Software Systems (SFM). In Bernardo, M.,
Hillston, J., eds.: Lecture notes of SFM. Volume 4486 of LNCS, Bertinoro, Italy,
Springer (2007)

Kemeney, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Springer
(1976)

Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic
Journal on Computing 2(2) (1995) 250-273

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Eppstein, D.: Finding the k shortest paths. STAM Journal on Computing 28(2)
(1998) 652-673

Jiménez, V.M., Marzal, A.: Computing the k shortest paths: A new algorithm and
an experimental comparison. In: Proc. of WAE. Volume 1668 of LNCS, Springer
(1999) 15-29

Aljazzar, H., Leue, S.: K*: A heuristic search algorithm for finding the k shortest
paths. Artificial Intelligence 175(18) (2011) 2129-2154

Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58 (2003) 118-149

Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic Part 2 (1970) 115-125
Braitling, B., Wimmer, R., Becker, B., Abrahdm, E.: Stochastic bounded model
checking: Bounded rewards and compositionality. In: Proc. of MBMV, Universitét
Rostock, ITMZ (2013) 243-254

Dijkstra, E.-W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959) 269271

Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Proc. of ICTAC. Volume 3407 of LNCS, Springer (2004) 280-294

Han, Y.S., Wood, D.: Obtaining shorter regular expressions from finite-state
automata. Theoretical Computer Science 370(1-3) (2007) 110-120

Halpern, J.Y., Pearl, J.: Causes and explanations: A structural approach. Part I:
Causes. British Journal on the Philosophy of Science 56 (2005) 843-887
Chockler, H., Halpern, J.Y.: Responsibility and blame: A structural-model approach.
Journal of Artificial Intellelligence Research (JAIR) 22 (2004) 93-115
Leitner-Fischer, F., Leue, S.: On the synergy of probabilistic causality computation
and causality checking. In: Proc. of SPIN. Volume 7976 of LNCS. Springer (2013)
246-263

Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visu-
alization of counterexamples. In: Proc. of QEST, IEEE Computer Society Press
(2008) 189-198

Wimmer, R., Jansen, N., Abrahém, E., Katoen, J.P., Becker, B.: Mini-
mal counterexamples for refuting w-regular properties of Markov decision pro-
cesses (extended version). Reports of SFB/TR 14 AVACS 88 (2012) ISSN:
1860-9821, available at http://www.avacs.org/fileadmin/Publikationen/Open/
avacs_technical_report_088.pdf.

Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)

Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)

Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Proc. of ICALP. (1997)
430-440

Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
PhD thesis, University of Birmingham (2002)

Abrahém, E., Jansen, N., Wimmer, R., Katoen, J.P., Becker, B.. DTMC model
checking by SCC reduction. In: Proc. of QEST, IEEE Computer Society Press
(2010) 37-46

Aljazzar, H., Leue, S.: K*: A directed on-the-fly algorithm for finding the k shortest
paths. Technical report, Chair of Software Engineering, University of Konstanz,
Germany (2008)

de Moura, L.M., Bjgrner, N.: Z3: An efficient SMT solver. In: Proc. of TACAS.
Volume 4963 of LNCS, Springer (2008) 337-340

69. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1) (2009) 1-41

70. : IBM CPLEX optimization studio, version 12.4. http://www-01.ibm.com/
software/integration/optimization/cplex-optimization-studio/ (2012)

71. Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.
com (2013)

