
1

DTMC Model Checking by SCC Reduction
Erika Ábrahám∗, Nils Jansen∗, Ralf Wimmer†, Joost-Pieter Katoen∗, and Bernd Becker†

∗RWTH Aachen University, Germany
abraham|nils.jansen|katoen@cs.rwth-aachen.de

†Albert-Ludwigs-University Freiburg, Germany
wimmer|becker@informatik.uni-freiburg.de

Abstract—Discrete-Time Markov Chains (DTMCs) are a
widely-used formalism to model probabilistic systems. On the
one hand, available tools like PRISM or MRMC offer efficient
model checking algorithms and thus support the verification of
DTMCs. However, these algorithms do not provide any diagnostic
information in the form of counterexamples, which are highly
important for the correction of erroneous systems. On the other
hand, there exist several approaches to generate counterexamples
for DTMCs, but all these approaches require the model checking
result for completeness.

In this paper we introduce a model checking algorithm for
DTMCs that also supports the generation of counterexamples.
Our algorithm, based on the detection and abstraction of strongly
connected components, offers abstract counterexamples, which
can be interactively refined by the user.

I. INTRODUCTION

An important advantage of model checking in general is the
supply of diagnostic information. The result contains not only
the information whether a system is correct regarding a certain
property, but in case of incorrectness also a run of the system
which leads to the erroneous behavior. This is crucial for the
correction of a faulty system. For example, if by the usual
approach for LTL model checking (see e. g. [1]) a path is
found that violates a certain property, this path can help the
designer to reproduce and to localize the error when trying
to fix the design. Such kind of diagnostic information is
called a counterexample for the property. Edmund Clarke, who
received the Turing award in 2007 for his pioneer work in
verification, also stresses the importance of counterexamples
for the correction of erroneous systems [2]:

“It is impossible to overestimate the importance of
the counterexample feature. The counterexamples
are invaluable in debugging complex systems. Some
people use model checking just for this feature.”

A further application for counterexamples arises from
abstraction refinement [3], [4]. The idea is to generalize states
of a system (abstraction step) and try to prove the required
property for this abstracted system. If the proof fails, this
can be due to a too coarse abstraction. With the help of a
counterexample those abstract states can be identified which

This work was partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See
www.avacs.org for more information.

have to be concretized for the property to hold (refinement
step).

In this paper we deal with probabilistic model checking, i. e.,
the verification of systems where random choices are made.
The classical approach for PCTL (Probabilistic Computation
Tree Logic) model checking [5] for DTMCs (Discrete Time
Markov Chains) is based on numerical matrix operations. The
probabilities that a PCTL path formula holds when starting in
a certain state are obtained as the solution of a linear equation
system [5]. These algorithms are quite efficient; there exist
several tools implementing them, e. g., MRMC [6] and PRISM
[7], that can verify rather large models very fast. A main
weakness of these numerical algorithms, however, is that they
do not provide any diagnostic information but only the pure
probabilities that a given property holds.

Alternative methods for checking the validity of a PCTL
formula are based on Monte Carlo simulation [8], [9]. But – as
far as we know – these methods do not provide counterexamples
either.

Besides PCTL model checking for DTMCs we also ad-
dress the generation of counterexamples. Recently, several
approaches for the computation of counterexamples in the
probabilistic setting were developed, e. g., [10], [11], [12], [13],
[14]. All but the last of these approaches share the problem,
that in order to guarantee completeness the model checking
result has to be on hand, because, if a property is not refuted,
the algorithm searching for counterexamples may not terminate.
Whereas we focus on PCTL, the last work [14] deals with
counterexamples for probabilistic LTL properties.

Contrary to LTL model checking for non-probabilistic sys-
tems where a counterexample is a single path, in probabilistic
model checking a counterexample is formed by a set of
paths whose probability measure exceeds a given threshold. In
general, the number of paths needed to exceed the threshold can
be prohibitively large [12]. To reduce their size, the detection
of loops [13], the usage of regular expressions [12], and the
abstraction of strongly connected components (SCCs) [11],
thereby extending an approach presented in [15] and [16],
where it is referred to as stochastic complementation, have
been suggested.

Most related to our work is the latter approach [11]. Tarjan’s
SCC algorithm [17] is executed on the underlying digraph of the
DTMC which yields the SCC decomposition of this graph. For
every non-bottom SCC, every input state of the SCC by which
the SCC can be entered, and every output state outside the SCC

2

to which the SCC can be exited, the probabilities of reaching
the output state from the input state are computed. Therefore
standard PCTL model checking for unbounded reachability
properties is applied. Afterward, the non-bottom SCCs are
abstracted by transitions leading from the input states to the
output states having the computed probabilities. The result
is an acyclic DTMC which preserves unbounded reachability
probabilities for absorbing states. This digraph can be used to
determine an abstract counterexample.

In order to achieve PCTL model checking for unbounded
properties supporting stepwise refinable abstract counterex-
amples we use the following approach. First we identify
the SCCs of the DTMC. Inside of each SCC we perform
again an SCC search whereby all input states are ignored.
This is done recursively up to trivial SCCs without loops.
After this top-down SCC detection the probabilities of leaving
the SCCs through the different output states are computed
in a bottom-up manner. Thereby the special restricted form
allows efficient computations. Paths through the non-bottom
SCCs are abstracted by direct transitions from the input to
the output states of the SCCs, carrying the corresponding
computed probabilities. The final result is a DTMC with
transitions leading from the initial state to the target states
whose unbounded reachability probabilities we are interested
in. The transitions carry exactly the probability mass for
unbounded reachability to these target nodes. This induces
the designated model checking result.

During our model checking algorithm all information for all
stages of the recursion is stored. This allows a user who needs
to obtain a counterexample for the given reachability property
to formulate an abstract counterexample. This set of abstract
paths can be arbitrarily refined with respect to the recursion
structure. In the end this yields very tight counterexamples
which are reasonably built according to the structure of the
DTMC.

We implemented our algorithm and show its applicability
using the well-known case studies of the leader election
protocol [18] and the crowds protocol [19]. We did model
checking for several instances of these protocols and received
very promising results.

This paper is structured as follows: In Section II we give
some preliminaries about probabilistic model checking. In
Section III we introduce our novel model checking method,
give a proof of its correctness, and explain it on an example. In
Section IV we describe how to use the stored information
to extract counterexamples. We present results for some
benchmarks in Section V. Conclusion and outlook on future
work is the content of the last Section VI.

II. PRELIMINARIES

In this section we give a brief introduction to discrete-time
Markov chains and to probabilistic temporal logic.

Discrete-time Markov chains are a frequently used modeling
formalism for stochastic systems with a discrete state space
and a discrete model of time.

Definition 1: A discrete-time Markov chain (DTMC) is a
tuple M = (S, sinit, P, L) with S a non-empty finite set of

states, sinit ∈ S the initial state, P : S × S → [0, 1] a function
with

∑
s′∈S P (s, s′) = 1 for all s ∈ S, and L : S → 2AP

a labeling function assigning to each state a set of atomic
propositions from a denumerable proposition set AP .

For simplicity, we restrict ourselves to a unique initial state,
but the concepts introduced in this paper are also applicable to
initial distributions. The function P , known as the transition
probability matrix, gives the probabilities P (s, s′) for taking
a transition from a state s to another state s′, forming a
discrete probability distribution for each state. A state s is
called absorbing iff P (s, s) = 1.

A path of a DTMC M is a finite or infinite sequence π =
s0s1 . . . of states si ∈ S such that P (si, si+1) > 0 for all i.
Let Paths(M, s) denote the set of all paths of M starting in
state s and let Pathsfin(M, s) denote the set of all finite paths
of M starting in s. We also use Paths(M) and Pathsfin(M)
to denote all paths resp. all finite paths of M starting in an
arbitrary state. We say that a state s′ is reachable from another
state s iff there is a finite path from s to s′. The length |π|
of a path π is ∞ if the path is infinite and for finite paths
π = s0s1 . . . sn it is defined as n.

The cylinder set of a finite path π of M is defined as
Cyl(π) = {π′ ∈ Paths(M) |π′ is infinite and π is a prefix of
π′}. As usual, we associate to each DTMC M the smallest
σ-algebra that contains all cylinder sets of all finite paths of
M . This gives us a unique probability measure PrM (or short
Pr) on the σ-algebra where the probabilities of the cylinder
sets are given by

Pr(Cyl(s0 . . . sn)) =
n−1∏
i=0

P (si, si+1).

For finite paths π ∈ Pathsfin(M, s0) we set Prfin(π) =
Pr(Cyl(π)). For sets of paths R ⊆ Pathsfin(M, s) we define
Prfin(R) =

∑
π∈R′ Prfin(π) with R′ = {π ∈ R|∀π′ ∈

R. π′ is not a prefix of π}. Note that for an infinite path set
the definition may involve an infinite sum, but it always defines
a probability mass between 0 and 1. Note furthermore that
Prfin(π1sπ2) = Prfin(π1s) ·Prfin(sπ2). Similarly for sets R1

and R2 of paths, if R′1 ⊆ R1 and R′2 ⊆ R2 are the sets of
those paths in R1 resp. R2 that have no prefixes in R1 resp.
R2, then if all paths in R′1 end in the same state s and all
paths in R′2 start in s, then Prfin({π1sπ2|π1s ∈ R′1 ∧ sπ2 ∈
R′2}) = Prfin(R1) · Prfin(R2).

The Probabilistic Computation Tree Logic (PCTL) [5] is an
adaptation of CTL to probabilistic systems with the abstract
syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | P∼λ(ϕ U ϕ)

with p ∈ AP an atomic proposition, λ ∈ [0, 1] ⊆ R a
probability threshold, and ∼ ∈ {<,≤,≥, >} is a comparison
operator. The U is the classical “until” operator. Syntactic
sugar like ♦ϕ := true U ϕ can be defined as usual. The
“always” operator is derived by P≤p(�ϕ) = P≥1−p(♦¬ϕ). The
probability operator P allows to express probability thresholds
on the probability mass of paths satisfying a formula. In PCTL
one can formulate properties like “an erroneous state will be
reached with a probability less than 0.01”.

3

Given a DTMC M and a property P≤λ (ϕ1 U ϕ2), a coun-
terexample consists in a set C of finite paths such that all paths
from their associated cylinder sets satisfy ϕ1 U ϕ2. The finite
paths are not prefixes of each other, i. e., they have disjoint
cylinder sets. The total probability mass of C has to be larger
than λ. For formulae of the form P<λ (ϕ1 U ϕ2) the case is
similar but the probability mass has to be at least λ.

Counterexamples for P≥λ(♦ϕ) can be reduced to the former
cases. Here, a counterexample consists of a set of paths
violating ♦ϕ and having a probability measure larger than
1− λ. This corresponds to a counterexample for P≤λ(�¬ϕ).
The case of > instead of ≥ can be handled analogously.

The remaining cases – a lower bound on the probability for
ϕ1 U ϕ2 or an upper bound on the probability for ♦ϕ – have
to be handled differently. Their violation cannot be explained
by the cylinder sets of a finite set of finite paths, but by the
complement thereof. Han et al. [12] point out a way how these
properties can nevertheless be reduced to the former cases by
a simple transformation of the Markov chain and its labeling.

Therefore we restrict ourselves in the following to formulae
P∼λ (ϕ1 U ϕ2) with ∼ ∈ {≤, <}.

The usual approach to check properties of the form
P∼λ(ϕ1 U ϕ2) is to (1) generate a labeling for the subformulae
ϕ1 and ϕ2, possibly by recursively invoking probabilistic model
checking for subformulae, (2) reduce the DTMC such that
all states satisfying ¬ϕ1 ∧ ¬ϕ2 or ϕ2 get absorbing, and (3)
compute the probability of reaching a ϕ2 state from an initial
state in the reduced DTMC. We also follow this approach, and
concentrate in the following on the algorithm for point (3),
i. e., to check the validity of formulae of the form P∼λ (♦ p)
with p ∈ AP and ∼ ∈ {≤, <} for DTMCs with all p-states
being absorbing.

III. SCC-BASED ABSTRACTION

Assume in the following a DTMC M and a formula P∼λ (♦ p)
with p ∈ AP and ∼ ∈ {≤, <}, such that all p-states of M
are absorbing. In this section we introduce our approach to
compute the probability of reaching a p-state from the initial
state of M (and thus decide whether the formula holds for
M). Instead of using the standard model checking algorithm,
which is based on the solution of a linear equation system, we
use a technique which can be intuitively described as follows.

We detect the strongly connected components (SCCs) of M
and for each SCC we abstract the set of all path fragments
through the SCC by some abstract “meta”-transitions.

This abstraction is computed in a recursive manner: to do
the abstraction for an SCC we consider the SCC without the
states by which we can enter it, determine the SCCs within
this restricted system, and apply the algorithm recursively to
them. For the example DTMC in Figure 1, to abstract the SCC
S1 we would first abstract the SCCs S1.1 and S1.2, whereby
for the latter we would first compute the abstraction for S1.2.1.

For the inner-most SCCs (in the example S1.1 and S1.2.1)
we observe that paths entering them will also exit them with
probability 1. Furthermore, each path fragment moving through
an SCC and finally exiting it consists of a (possibly empty)
prefix of cycles leading back to the first state and a postfix

s1

s2 s3

s4

s5

s6 s7

s8

s9

0.05

0.05

0.9

0.4

0.4

0.2

0.5

0.5

1

1

0.2

0.8

0.3

0.70.1 0.5

0.4

1

S1

S1.1

S1.2

S1.2.1

Fig. 1. Recursion for an example DTMC

(a) (b)

Fig. 2. Abstraction of an SCC

not containing the first state. For the inner-most SCCs those
postfixes are cycle-free, and thus it is easy to compute their
probability mass for each starting state and exit state pair.
Having that information, in a first abstraction level we abstract
paths through the SCC by (1) an abstract “meta”-self-loop on
the starting state of the SCC and (2) abstract “meta”-transitions
leading from the starting state to the exit states, where the
probability for the self-loop (1) is 1 minus the total probabilities
of (2). In a second abstraction level we eliminate the self-loop,
yielding a completely cycle-free sub-system (see Figure 2).
After completing this procedure for, e. g., S1.2.1, the SCC S1.2

becomes an inner-most SCC for which we repeat the above
procedure. After the algorithm has terminated, the resulting
DTMC has only “meta”-transitions from the initial state to the
absorbing states, labeled with the corresponding reachability
probabilities. This procedure is closely related to the state
elimination approach for obtaining regular expressions from
finite automata [20], [21]. This method was applied to Markov
chains in [22], [23], [24]. Note that these approaches eliminate
states randomly or according to some heuristics [25].

4

To formalize our algorithm, we first introduce some more
concepts. Let M = (S, sinit, P, L) be a DTMC. Similarly to the
notation in [11], for a set K ⊆ S we define the set InpM (K) ⊆
K (or short Inp(K)) of input states of K in M to be the set
of all states s′ ∈ K such that either s′ = sinit or there is
a state s ∈ S\K with P (s, s′) > 0. Analogously, the set
OutM (K) ⊆ S\K (or short Out(K)) of output states consists
of all states s′ ∈ S\K such that there is a state s ∈ K with
P (s, s′) > 0. That means, input states are states in K that are
reachable from outside within one step, and output states are
states outside of K that are reachable from K in one step.

We define a connected subgraph K ⊆ S of a DTMC M =
(S, sinit, P, L) to be a set of states such that for each s, s′ ∈ K
there is a path s0 . . . sm in M with s0 = s, sm = s′, and
si ∈ K for all 0 ≤ i ≤ m. A bottom connected subgraph K
is a connected subgraph with no transitions leading out of it,
i. e., Out(K) = ∅. We call a connected subgraph consisting of
a single state without a self-loop trivial. A DTMC is acyclic
iff it has trivial connected subgraphs only. A maximal (with
respect to ⊆) connected subgraph is called a strongly connected
component (SCC). An SCC is called a bottom1 resp. trivial
SCC if it is a bottom resp. trivial connected subgraph.

Now we formalize the abstraction of all paths leading through
a connected subgraph by “meta”-transitions from the input to
the output states. We keep the statements general and formalize
them for arbitrary sets of states instead of connected subgraphs,
though the main application will be for connected subgraphs.

Definition 2: Let M = (S, sinit, P, L) be a DTMC and
K ⊆ S. Let for all sin ∈ Inp(K) and sout ∈ Out(K)
be pMK (sin, sout) = PrMfin({s0 . . . sm ∈ Pathsfin(M)|s0 =
sin ∧ sm = sout ∧ ∀0 ≤ i < m. si ∈ K}). We define the
path abstraction MK = (SK , sinit, PK , LK) of M for K by

SK = (S\K) ∪ Inp(K),

PK(s, s′) =

 pMK (s, s′) if s∈Inp(K) ∧ s′∈Out(K)
0 if s∈Inp(K) ∧ s′ /∈Out(K)
P (s, s′) otherwise,

LK(s) = L(s) for all s ∈ SK .

For a finite path π = s0 . . . sm of M we denote by π|MK
the

state sequence resulting from π when replacing each maximal
subsequence sisi+1 . . . sj of states from K in π by si. Note
that π|MK

is a finite path of MK .
Since the computation of the probabilities is clearly easier

for cycle-free state sets, we use the notation Reduce(M,K)
for the path abstraction MK if K is cycle-free.

The following lemma states that the abstraction of M to
MK preserves reachability probabilities outside K.

Lemma 1: Let M = (S, sinit, P, L) be a DTMC, K ⊆ S,
and MK = (SK , sinit, PK , LK) the path abstraction of M for
K. For all s ∈ SK and all πK ∈ Pathsfin(MK , s) we have

PrMK

fin (πK) = PrMfin({π ∈ Pathsfin(M, s) | π|MK
= πK}).

Proof: By induction on the number n of transitions from
an input state of K to an output state of K in πK = s0 . . . sm,
i. e., on n = |{i ∈ N|0 ≤ i < m ∧ si ∈ InpM (K) ∧ si+1 ∈
OutM (K)}|.

1Note that all bottom connected subgraphs are bottom SCCs.

For n = 0, let πK = s0 . . . sm ∈ Pathsfin(MK , s) for
an s ∈ SK such that si 6∈ Inp(K) or si+1 /∈ Out(K) for all
i = 0, . . . ,m−1. Note that in πK only sm may be contained in
Inp(K). The set {π ∈ Pathsfin(M, s) | π|MK

= πK} consists
of just πK if sm 6∈ Inp(K) and otherwise of all paths of the
form πKπ

′ with π′, being possibly the empty sequence, having
states from K only. In both cases, πK is a prefix of all paths
in the set, and thus PrMfin({π ∈ Pathsfin(M, s) | π|MK

=
πK}) = PrMfin(πK) = PrMK

fin (πK) by the definitions of Prfin

and MK .
Assume now that the lemma holds for all s ∈ SK and

all paths from Pathsfin(MK , s) with k transitions from an
input state of K to an output state of K. Let s ∈ SK and
πK = s0 . . . sm ∈ Pathsfin(MK , s) a path with k + 1 such
transitions, and let i be the smallest index with si ∈ InpM (K)
and si+1 ∈ OutM (K).

Let RK = {s′0 . . . s′m′ ∈ Pathsfin(M) | s′0 = si ∧ s′m′ =
si+1 ∧ ∀0 ≤ j < m′.s′j ∈ K} be the set of those paths whose
probability mass defines the probability of the transition from
si to si+1 in MK . Note that none of the paths in RK has a
prefix in RK , since all states but the last are in K, and the
last states s′m′ = si+1 6∈ K.

Let furthermore R = {π ∈ Pathsfin(M, si+1) | π|MK
=

si+1 . . . sm} be the set of finite paths of M that behave outside
K as πK after the first transition from an input to an output
state of K. Let R′ ⊆ R be the subset of those paths in R
that does not have a prefix in R. Note that a path in R can
have a prefix in R only if sm ∈ Inp(K), and in this case
the extension consists of states from K only. Thus R′ =
{s′0 . . . s′m′ ∈ R|sm 6∈ Inp(K) ∨m′ = 0 ∨ s′m′−1 6∈ K)}.

We have

PrMK

fin (πK) = PrMK

fin (s0 . . . sm) =
(1)
= Πm−1

j=0 PK(sj , sj+1)
=

(
Πi−1
j=0PK(sj , sj+1)

)
· PK(si, si+1)·(

Πm−1
j=i+1PK(sj , sj+1)

)
(2)
= PrMfin(s0 . . . si) · PrMfin(RK) · PrMfin(R)
(3)
= PrMfin(s0 . . . si) ·

(∑
π∈RK

PrMfin(π)
)
·(∑

π∈R′ PrMfin(π)
)
·

(4)
=

∑
siπ1si+1∈RK ,si+1π2∈R′

PrMfin(s0 . . . si) · PrMfin(siπ1si+1) · PrMfin(si+1π2)
(5)
=

∑
siπ1si+1∈RK ,si+1π2∈R′ PrMfin(s0 . . . siπ1si+1π2)

(6)
= PrMfin({π ∈ Pathsfin(M, s0) | π|MK

= πK})

Equation (1) is by definition of Prfin . Equation (2) uses
Πi−1
j=0PK(sj , sj+1) = PrMK

fin (s0 . . . si) by definition, and
from the minimality of i we conclude that M and MK

have the same probability distributions for s0, . . . , si−1 and
thus PrMK

fin (s0 . . . si) = PrMfin(s0 . . . si). Furthermore, since
si ∈ Inp(K) and si+1 ∈ Out(K), PK(si, si+1) equals
PrMfin(RK) by the definition of PK . For the third term,
Πm−1
j=i+1PK(sj , sj+1) = PrMK

fin (si+1 . . . sm) which equals
PrMfin(R′) by induction. Equation (3) is due to the definition
of Prfin . For Equation (4) note that all paths in RK start in si
and end in si+1, and all paths in R′ start in si+1. For Equation

5

(5) we use the definition of Prfin , and for Equation (6) the
definitions of RK and R′.

Thus given a DTMC M = (S, sinit, P, L), we can define a
general model checking algorithm shown in Algorithm 1 (which
we refine in the following). The algorithm uses path abstraction
to construct from M a cycle-free DTMC M ′. For the latter it
is easy to compute the path abstraction Reduce(M ′,K) with
K the set of all non-absorbing states of M ′. The result is a
DTMC that has transitions from the initial state of M to the
absorbing states of M only. The probability distribution of
the initial state sinit gives for each absorbing state s the total
probability of reaching s from sinit in M .

Algorithm 1

Model check(DTMC M)
begin

Determine the set C of all non-trivial SCCs of M ; (1)

while C 6= ∅ do (2)

Choose K ∈ C; C := C\{K}; (3)

M := Path abstraction(M,K); (4)

end while (5)

Let K be the set of all non-absorbing states of M ; (6)

M := Reduce(M,K); (7)

Return M ; (8)

end

Path abstraction(DTMC M , connected subgraph K)
begin

M := MK ; (1)

Return M ; (2)

end

Though the computation of the path abstraction
Path abstraction(M,K) is straightforward if K is cycle-free,
the question arises how to compute MK if K is not cycle-free,
e. g., an SCC or a connected subgraph. One possibility would
be to use the standard algorithm based on the solution of
a linear equation system. However, this method would not
directly support the generation of intuitive counterexamples.
We use a recursive approach instead, as depicted by the refined
Algorithm 2.

Algorithm 2

Path abstraction(DTMC M , connected subgraph K)
begin

C := set of all non-trivial maximal connected subgraphs(1)

K ′ of M with K ′ ⊆ K\Inp(K); (2)

while C 6= ∅ do (3)

Choose K ′ ∈ C; C := C\{K ′}; (4)

M := Path abstraction(M,K ′); (5)

end while (6)

M := MK ; (7)

Return M ; (8)

end

Algorithm 2 defines a refined Path abstraction method: it

computes the path abstraction for a connected subgraph K
by recursively computing the path abstraction for all maximal
connected subgraphs of K\Inp(K) (see again Figure 1). After
this recursive abstraction, K is in general not yet cycle-free:
it may still contain cycles on the input states of K. However,
since all connected subgraphs of K\Inp(K) are abstracted, K
has much less transitions in the resulting system than before
the recursive abstraction.

Let M = (S, sinit, P, L) be the DTMC after the abstraction of
all maximal connected subgraphs of K\Inp(K). To finalize the
abstraction, we need to compute the probabilities of reaching
an output state of K from an input state of K by paths through
K. We distinguish between the following cases:

a) |Out(K)| = 1, i. e., there is a single output state of K,
or

b) |Out(K)| > 1 ∧ |Inp(K)| = 1, or
c) |Out(K)| > 1 ∧ |Inp(K)| > 1.

a) Single output: In the first case, as K is not a bottom
connected subgraph, all paths entering K will leave it with
probability 1. That means, the probability of reaching the output
state of K from any of the input states of K is 1.

b) Single input/multiple output: For the second case, let
Inp(K) = {sin} and Out(K) = {s0out, . . . , s

n
out}. Note that all

finite paths starting in sin, moving in K, and ending in one of
the output states siout consist of a prefix of cycles on sin and a
postfix not containing sin. We define
Rin = {s0 . . . sm ∈ Pathsfin(M)|s0 = sm = sin ∧

∀0 ≤ j ≤ m. sj ∈ K}
for the set of possible prefixes and for all i = 0, . . . , n
Riout = {s0 . . . sm ∈ Pathsfin(M)|s0 = sin ∧ sm = siout ∧

(∀1 ≤ j < m.sj ∈ K ∧ sj 6= sin)}
for the set of possible postfixes ending in siout. As M is the
result of the path abstraction for all connected subgraphs in
K\Inp(K), Riout consists of a finite number of cycle-free
postfixes for each i; we can efficiently compute the probabilities
piout = Prfin(Riout) for them. Note also that no path in Riout
has a prefix in Riout. The following holds for the probabilities
of the abstraction:

pMK (sin, s
i
out) =

Prfin({π1sinπ2|π1sin ∈ Rin ∧ sinπ2 ∈ Riout}) =∑
π1sin∈Rin

∑
sinπ2∈Ri

out
Prfin(π1sinπ2) =∑

π1sin∈Rin

∑
sinπ2∈Ri

out
Prfin(π1sin) · Prfin(sinπ2) =

(
∑

π1sin∈Rin

Prfin(π1sin)︸ ︷︷ ︸
=:pin

) · piout.

Since K is non-bottom, paths entering K will leave K with
probability 1:

1 =
m∑
i=0

pMK =
m∑
i=0

pin · piout = pin ·
m∑
i=0

piout.

Thus if we know the probabilities piout, then pin can be
determined by 1/(

∑m
i=0 p

i
out). We make use of this to build

the path abstraction for M as follows:
• Compute piout for all i = 0, . . . ,m;
• Compute pin = 1/(

∑m
i=0 p

i
out);

• Define pMK (sin, s
i
out) = pin · piout.

6

c) Multiple input/multiple output: For the last case when
K has several input states Inp(K) = {s0in, . . . , snin} and
several output states Out(K) = {s0out, . . . , s

m
out}, we could

also apply the above approach for each input state. However,
the computation costs would be polynomial in the number of
input and output states. Instead, we use a parametrized version
of the standard model checking approach based on solving a
linear equation system: We define for each state s ∈ K an
equation

ps =
∑

P (s,s′)>0

P (s, s′) · ps′

with a variable ps for each s ∈ K ∪ Out(K). We eliminate
the variables ps for all s ∈ K\(Inp(K) ∪Out(K)) from the
equation system. The result is a set of equations, one for each
input state siin, of the form

psi
in

=
∑

sj∈Inp(K)∪Out(K)

(
csi

in,sj
· psj

)
.

Each of these equations gets reformulated to

psi
in

=
∑

sj∈(Inp(K)∪Out(K))\{si
in}

(
csi

in,sj
· psj

)
and we eliminate psi

in
from the right-hand sides of all other

equations. This gives us a set of equations, one for each input
node, of the form

psi
in

=
m∑
j=0

(
c′
si

in,s
j
out
· psj

out

)
where c′

si
in,s

j
out

has the value of pMK (siin, s
j
out), defining the needed

probabilities for each input-output state-pair.
The final algorithm for the computation of the path abstrac-

tion is given in Algorithm 3.

Algorithm 3

Path abstraction(DTMC M , connected subgraph K)
begin

C := set of all non-trivial maximal connected subgraphs(1)

K ′ of M with K ′ ⊆ K\Inp(K); (2)

while C 6= ∅ do (3)

Choose K ′ ∈ C; C := C\K ′; (4)

M := Path abstraction(M,K ′); (5)

end while (6)

if |Out(K)| = 1 then (7)

M := MK applying method a); (8)

else if |Inp(K)| = 1 then (9)

M := MK applying method b); (10)

else (11)

M := MK applying method c); (12)

end if (13)

Return M ; (14)

end

The soundness of this algorithm is given by Lemma 1 and
the subsequent argumentation, as K is built by the union
of all SCCs of the input DTMC. Completeness is given by

the fact, that the number of connected subgraphs is bounded
by the number of nodes and therefore termination is always
guaranteed.

Example 1: We apply our approach to the DTMC M
depicted in Figure 1. The Model check(M) method performs
an SCC search on the whole DTMC which contains a single
SCC S1 = {s1, s2, s3, s4, s6, s7, s8}. Path abstraction(M,S1)
will be invoked. The search for maximal non-trivial connected
subgraphs in S1\Inp(S1) = S1\{s1} = {s2, s3, s4, s6, s7, s8}
yields S1.1 = {s2, s3, s4} and S1.2 = {s6, s7, s8}.

Assume that first the abstraction Path abstraction(M,S1.2) is
invoked. The method detects S1.2.1 = {s7, s8} as the only max-
imal non-trivial connected subgraph of S1.2\{s6} = {s7, s8}.
Again, Path abstraction is recursively called for S1.2.1.

There is no non-trivial connected subgraph in
S1.2.1\Inp(S1.2.1) = {s8}. Since |Inp(S1.2.1)| = |{s7}| = 1
and |Out(S1.2.1)| = |{s5, s6, s9}| = 3, method b) applies (see
Figure 3(a) and 3(b)):

ps5out = 0.3, ps6out = 0.7 ·0.1 = 0.07, ps9out = 0.7 ·0.4 = 0.28,

and with pin = 1/(ps5out +p
s6
out +p

s9
out) = 1/(0.3+0.07+0.28) =

1/0.65 we get (see Figure 3(c)):

pMS1.2.1
(s7, s5) = 0.3/0.65 ≈ 0.46153846,

pMS1.2.1
(s7, s6) = 0.07/0.65 ≈ 0.10769231,

pMS1.2.1
(s7, s9) = 0.28/0.65 ≈ 0.43076923,

and the control returns to the path abstraction of S1.2.
As |Inp(S1.2)| = |{s6}| = 1 and |Out(S1.2)| =

|{s5, s6, s9}| = 3, again method b) applies:

ps1out = 0.2 = 0.13/0.65,
ps5out = 0.8 · (0.3/0.65) = 0.24/0.65,
ps9out = 0.8 · (0.28/0.65) = 0.224/0.65,

and with pin = 1/(ps1out + ps5out + ps9out) = 0.65/0.594 we get

pMS1.2
(s6, s1) = (0.13/0.65) · (0.65/0.594) =

0.13/0.594 ≈ 0.21885522,
pMS1.2

(s6, s5) = (0.24/0.65) · (0.65/0.594) =
0.24/0.594 ≈ 0.4040404,

pMS1.2
(s6, s9) = (0.224/0.65) · (0.65/0.594) =

0.224/0.594 ≈ 0.37710438.

The recursive invocation Path abstraction for S1.1 for the
other connected subgraph of S1 can not detect any fur-
ther non-trivial connected subgraphs in S1.1\Inp(S1.1) =
S1.1\{s2, s3} = {s4}. Since |Inp(S1.1)| = |{s2, s3}| = 2
and |Out(S1.1)| = |{s1, s5, s6}| = 3, method c) is used to
compute MS1.1 . From the equation system

p2 = 0.4p1 +0.4p3 +0.2p6, p3 = 0.5p4 +0.5p5, p4 = 1p2

we eliminate p4 overall yielding

p2 = 0.4p1 + 0.4p3 + 0.2p6, p3 = 0.5p2 + 0.5p5.

7

s6 s7

s8

s9

s5

0.3

0.70.1
0.4

S1.2.1

(a) Subgraph of S1.2.1 consid-
ered for the computation of
Pathsfin (Ri

out)

s6 1.2.1

s8

s9

s5

0.1
0.4

0.3

0.28

0.07
0.35

S1.2.1

(b) Probabilities pi
out

s6 1.2.1 s9

s5

0.46

0.43

0.11

S1.2.1

(c) Final scaled probabilities
pM

S1.2.1

1

s9

s5
0.54

0.46

1

1

(d) The result of the model check-
ing algorithm

Fig. 3. The application of the model checking algorithm to the example
DTMC of Figure 1

Finally we eliminate p2 and p3 on the right-hand sides, resulting
in

p2 = 0.5p1 + 0.25p5 + 0.25p6,

p3 = 0.25p1 + 0.625p5 + 0.125p6.

I. e., the needed probabilities for the abstraction are

pMS1.1
(s2, s1) = 0.5, pMS1.1

(s3, s1) = 0.25,
pMS1.1

(s2, s5) = 0.25, pMS1.1
(s3, s5) = 0.625,

pMS1.1
(s2, s6) = 0.25, pMS1.1

(s3, s6) = 0.125.

After the abstraction of S1.1 is completed, the control returns
to the path abstraction of S1.

Since |Inp(S1)| = |{s1}| = 1 and |Out(S1)| = |{s5, s9}| =
2, we again apply method b) yielding

ps5out = 0.2464875/0.594, ps9out = 0.2058/0.594

and finally after scaling

pMS1
(s1, s5) ≈ 0.54497969, pMS1

(s1, s9) ≈ 0.45502031

and the control returns to the Model check method. For this
example the DTMC is already reduced after the abstraction
of the SCC, and the reduction does not cause any change.
Figure 3(d) illustrates the result.

S

(a) s1

sn

...

p′1

p′n

S

(b) s1

sn

...

p1

pnpr

Fig. 4. Two stages of abstraction

IV. INTERACTIVE COUNTEREXAMPLE REFINEMENT

In this section we give an overview of how our model checking
approach can be used for the generation of counterexamples. In
general, the size of a counterexample, i. e., the number of finite
paths contributing to the violation of a property for a given
DTMC, may be very large and therefore the counterexample
not useful in praxis. To cope with this problem, in [26] the
definition of smallest counterexamples was given: The number
of paths needed to reach a certain probability is minimal,
and amongst counterexamples with this minimal number of
paths the probability mass is maximal. Even when using this
definition, the number of paths may be too large, such that it is
hard to use them for the correction of erroneous systems. We
therefore use another criterion based on the structure of the
system. The background is the following observation: Many of
the paths of a counterexample may be similar with respect to
the visited connected subgraphs and differ only in the number
of walks through them. As in [13] it therefore seems useful
to see a path as a composition of an acyclic path with some
loops attached to its states. This way the probability mass of
all paths consisting of the acyclic path and an arbitrary number
of walks through the loops can be computed easily.

In order to extend our abstraction-based model checking
approach to obtain counterexamples, we save all concrete and
abstract information we see during the abstraction algorithm.
We use the abstract, acyclic structure of DTMCs resulting from
our abstraction algorithm to define abstract counterexamples.
The basic idea is to choose one or more abstract paths which
carry enough probability mass to suffice as a counterexample,
i. e., to violate a certain property. These abstract paths induce a
(possibly infinite) set of concrete paths, which is a counterex-
ample for the given property. The user can choose the level
of abstraction of a counterexample, as he or she can stepwise
refine it by choosing abstract nodes and replacing them by the
concrete input nodes of the underlying SCC and its contained
abstract and concrete nodes. This enables the user to choose a
more “tight” counterexample and furthermore to have a very
clear look on the contribution of certain states and labels to
the violation of a property.

In detail we have two stages of abstraction for every abstract
node S as depicted in Figure 4. Coming from the abstraction,
firstly one can see the abstract node S itself and its outgoing
probabilities p′1, . . . , p

′
n. As these probabilities are scaled, this

corresponds to the probability mass of all paths which walk
an arbitrary number of times through the SCC. Secondly, one
can see the probability of coming back to the input node of
the SCC, represented by a self-loop with the previously saved

8

probability pr. The outgoing probabilities p1, . . . , pn are now
the unscaled versions which can be obtained by

pi = (1− pr) · p′i,

where 1 ≤ i ≤ n. These two abstraction stages are helpful to
decide if returning to the input node, i. e., loops in the SCC,
are necessary to reach a certain probability threshold.

Example 2: We use the example DTMC on Figure 1 and
the result of the path abstraction applied to it as visualized on
Figure 3(d) to illustrate this procedure. Consider the property
“The probability of reaching s5 is at most 0.3”, which can be
expressed in PCTL as P≤0.3 (♦s5) if we introduce state names
as atomic propositions. The counterexample refinement process
is depicted in Figure 5. The abstract path 1 → s5 in (1) is
an abstract counterexample for this property and induces an
infinite number of paths including those which return arbitrarily
often to the input state of SCC 1. By considering (2) one can
see that no returning to the input state is necessary, as the
outgoing probability itself is higher than 0.3. Expanding SCC 1
(3) leads to three abstract nodes, namely 1.1s3 , 1.1s2 and 1.2.
The indices s2 and s3 indicate the corresponding input state of
SCC 1.1. As the path s1 → 1.2→ s5 has sufficient probability,
one can decide that no visit of nodes 1.1s3 and 1.1s2 and their
underlying SCC 1.1 is needed to exceed the probability bound.
This path is depicted in (4). Note that for readability reasons
some transitions and nodes of the DTMC are omitted. (5)
shows, that even returning to 1.2 is not needed. Expanding 1.2
(6) leads to the abstract counterexample s1 → s6 → 1.2.1→
s5 which carries probability mass 0.33. If the user is interested
in a concrete counterexample, he firstly sees, that returning to
the input state of 1.2.1 is needed (7). Expansion of 1.2.1 leads
to the concrete system (Figure 1), and the user can choose paths
that form a counterexample using the following information:
No paths leading to the input state of SCC 1.1 are needed,
all paths have the prefix s1 → s6 → s7, at least for one path
state s7 is to be revisited and for no path returning to states s1
and s6 is necessary. A counterexample built from these facts
is, e. g., C = {s1 → s6 → s7 → s5, s1 → s6 → s7 → s8 →
s7 → s5, s1 → s6 → s7 → s8 → s8 → s7 → s7 → s5}
which has probability mass 0.31806.

V. CASE STUDIES

We will demonstrate the practical use of our previously
described theoretical concepts and ideas by some common
case studies. Therefore we follow the way of [12] and choose
the synchronous leader election protocol [18] and the crowds
protocol [19] to show the applicability of the model checking
approach by SCC-reduction and compare it with other tools
for probabilistic model checking. To test the method, we
developed a prototype implementation in C++, which is based
on the algorithms given in Section III and which stores
all information of all abstraction levels to permit the later
generation of counterexamples. We chose MRMC [27] for
comparison, because both MRMC and our tool work on explicit
model representations and the input format is the same. In
order to generate benchmarks, we used the PRISM [7] models
of the two protocols, which are provided on the PRISM web

1

(1)
s5

s9

1

1

0.54

0.46

1

(2)
s5

s9

1

1

0.23
0.42

0.35

s1

(3)

1.1s2

1.1s3

1.2

s5

s9

1

1

0.05

0.9

0.05

0.25

0.25
0.5

0.25 0.63
0.12

0.4

0.38

0.22

s1

(4)

1.2 s5

1

0.9

0.4

0.22

s1

(5)

1.2 s5

1

0.9 0.09

0.36

0.2

s1 s6 1.2.1 s5

(6) 1

0.9

0.2

0.8 0.46

0.11

s1 s6 1.2.1 s5

(7)

0.9

1

0.2

0.8

0.35

0.29

0.07

Fig. 5. Counterexample Refinement

page [28]. All experiments were done on a 2.4 GHz Intel Core2
Duo CPU with 4 GB RAM.

In the synchronous leader election protocol, N processes are
connected in a one-way ring and they want to elect a unique
leader. They therefore randomly choose a natural number,
their id , out of the range 1, . . . ,K, which leads to a uniform
probability distribution. These numbers are synchronously
passed along the whole ring such that every process can see
all other ids. The leader is the process with the highest unique
id . If there is no unique highest id , a new selection round is
started. This goes on until a leader is elected, which will happen
with probability 1 at some point in time. Hence, modeled as a
DTMC, the model checking result of reaching a state “leader
elected” from the initial state has to be 1. In our tests, we
considered models containing processes with the parameters
K and N . Some results are depicted in Table I. The running

9

init

s1

si

si+1

skn

next

leader

...

...

1
kn

1
kn

1
kn

1
kn

1

1

1

1

1

1

Fig. 6. Simplified DTMC modeling the leader election

TABLE I
RESULTS FOR THE LEADER ELECTION BENCHMARK

K 6 10 14 8 9
N 4 4 4 5 5
states 3902 30014 115262 131101 236225
transitions 5197 40013 153677 163868 295273
MRMC 0.002 0.01 0.035 0.04 0.054
SCC-MC 0 0 0 0 0

times MRMC and our tool – called SCC-MC – needed for
model checking, is given in seconds.

The SCC based abstraction took no measurable amount of
time. That is due to the special structure of the leader election
protocol. As one can see in Figure 6 there is only one big
SCC, given by the edge from the next-node to the initial node,
representing the case that no leader is elected. This SCC is
immediately eliminated, all remaining paths lead to the target
state and therefore the expected and correct result, a transition
with probability 1 leading from the initial state to the target
state, is computed very fast.

The crowds protocol was designed to provide anonymous
communication between users in networks. The idea is to
take a “crowd” of users and route messages randomly through
this group. If a group member wants to send a message, it
picks a random member from the whole group and sends the
message. The receiver then chooses randomly whether to send
the message to the destination directly or to act as a “router”,
i. e., to forward it to another random member. By this procedure,
no so-called “bad member” can be sure if a message and its
sender belong together. In the models we use there are n crowd
members among which are g · n “good members”. A normal
user delivers a message to its destination with probability 1−pf
and therefore forwards it with probability pf . One delivery
of a message (to the destination) is called a session of the
protocol and the number of sessions is denoted by r. If a
user has been identified twice by a bad member, it is marked
as positively identified, and thus anonymous sending is no
longer preserved for this user. In the DTMC that represents the
protocol w. r. t. all parameters, such states are labeled with Pos.

TABLE II
RESULTS FOR THE CROWDS BENCHMARK

r 4 6 8 10 12
states 3515 18817 68740 198199 485941
transitions 6035 32677 120220 348349 857221
MRMC s 0.001 0.014 0.085 0.344 0.877
SCC-MC s 0.01 0.01 0.06 0.19 0.44
MRMC MB 0.81 4.29 15.67 45.19 110.82
SCC-MC MB 0.64 3.50 13.16 37.29 88.68

TABLE III
SCC SEARCH TIME AND ELIMINATION TIME FOR THE CROWDS BENCHMARK

r 4 6 8 10 12
states 3515 18817 68740 198199 485941
transitions 6035 32677 120220 348349 857221
scc search 0 0.01 0.04 0.12 0.28
abstraction 0.01 0.02 0.07 0.2 0.51

The property we want the tools to check is the probability of
reaching a state labeled with Pos, i. e., P≤p(true U Pos). We
chose fixed values for most of the variables: n = 5, g = 0.833,
pf = 0.8. The models are therefore only parametrized by r.
A part of the results for the crowds protocol are shown in
Table II. Additionally to the time amount also the memory
consumption is depicted.

The standard method based on the solution of an equation
system was slightly slower than our method for nearly all
models. We observe that if a large number of target states,
i. e., states labeled with Pos is to be considered, our method
could compete in matters of time while additionally diagnostic
information that leads toward counterexamples is provided.
The memory consumption is comparatively low.

The two main fragments of our implementation are the
detection of SCCs and the abstraction itself. In Table III one
can find the time both fragments took in detail.

VI. CONCLUSION

In this work, we investigated the problem of a PCTL model
checking algorithm with simultaneous counterexample genera-
tion. We introduced a method that computes the model checking
result for a DTMC and an unbounded reachability property
by recursive abstraction of SCCs. During this computation,
sufficient information is stored to create counterexamples on
different levels of abstraction with concrete counterexamples at
the bottom, whose size is reasonable due to the structure of the
input DTMC. We proved both correctness and completeness
of this procedure and described, how to interactively refine an
abstract counterexample until a set of concrete paths is obtained
which serves as a counterexample. Our approach was shown to
be efficient and competitive with the standard model checking
algorithms (which do not provide diagnostic information) by
applying our prototype implementation to some widely-used
benchmarks.

In future we are going to optimize our implementation and
in particular to construct a graphical user interface especially
for interactive counterexample refinement. Furthermore, we are
going to use the stored information to automatically extract
reasonable counterexamples. Reasonable can, e. g., mean that

10

they involve only a small part of the system. A formal definition
of “reasonable counterexamples” has to be found.

The experimental results show that the detection of the SCCs
take a relatively large percentage of the running times of our
tool. It would be very helpful to develop an adaptation of
Tarjan’s algorithm to find not only SCCs but to detect also
connected subgraphs in the SCCs.

Another direction of research is the handling of parametric
Markov chains, in which some of the transition probabilities
are unspecified parameters. In [24] a state elimination approach
for model checking such parametric Markov models was given.
Using our approach instead, following the way of using rational
functions, seems promising.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[2] E. M. Clarke, “The birth of model checking,” in 25 Years of Model
Checking – History, Achievements, Perspectives, ser. Lecture Notes in
Computer Science. Springer, 2008, vol. 5000, pp. 1–26.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in 12th Int’l Conf. on Computer Aided
Verification (CAV), ser. Lecture Notes in Computer Science, vol. 1855.
Springer, 2000, pp. 154–169.

[4] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic CEGAR,” in
Int’l Conf. on Computer Aided Verification (CAV), ser. Lecture Notes in
Computer Science, vol. 5123. Springer, 2008, pp. 162–175.

[5] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[6] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen,
“The ins and outs of the probabilistic model checker MRMC,” in 6th Int’l
Conf. on Quantitative Evaluation of Systems (QEST). IEEE Computer
Society, 2009, pp. 167–176.

[7] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: A tool
for automatic verification of probabilistic systems,” in 12th Int’l Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), ser. Lecture Notes in Computer Science, vol. 3920. Springer,
2006, pp. 441–444.

[8] H. L. S. Younes and R. G. Simmons, “Statistical probabilistic model
checking with a focus on time-bounded properties,” Information and
Computation, vol. 204, no. 9, pp. 1368–1409, 2006.

[9] D. E. Rabih and N. Pekergin, “Statistical model checking using perfect
simulation,” in 7th Int’l Symp. on Automated Technology for Verification
and Analysis (ATVA), ser. Lecture Notes in Computer Science, no. 5799.
Springer, Oct. 2009, pp. 120–134.

[10] H. Aljazzar and S. Leue, “Directed explicit state-space search in the
generation of counterexamples for stochastic model checking,” IEEE
Transactions on Software Engineering, vol. 36, no. 1, pp. 37–60, 2010.

[11] M. E. Andrés, P. D’Argenio, and P. van Rossum, “Significant diagnostic
counterexamples in probabilistic model checking,” in Haifa Verification
Conference, ser. Lecture Notes in Computer Science, vol. 5394. Springer,
Oct. 2008, pp. 129–148.

[12] T. Han, J.-P. Katoen, and B. Damman, “Counterexample generation
in probabilistic model checking,” IEEE Transactions on Software
Engineering, vol. 35, no. 2, pp. 241–257, Mar. 2009.

[13] R. Wimmer, B. Braitling, and B. Becker, “Counterexample generation
for discrete-time Markov chains using bounded model checking,” in 10th

Int’l Conf. on Verification, Model Checking, and Abstract Interpretation
(VMCAI), ser. Lecture Notes in Computer Science, vol. 5403. Springer,
Jan. 2009, pp. 366–380.

[14] M. Schmalz, D. Varacca, and H. Völzer, “Counterexamples in proba-
bilistic LTL model checking for Markov chains,” in 20th Int’l Conf. on
Concurrency Theory, ser. Lecture Notes in Computer Science, vol. 5710.
Springer, Sep. 2009, pp. 587–602.

[15] H. le Guen and R. A. Marie, “Visiting probabilities in non-irreducible
Markov chains with strongly connected components,” Int’l Journal of
Simulation – Systems, Science & Technology, vol. 3, no. 3–4, pp. 38–46,
Dec. 2002.

[16] C. D. Meyer, “Stochastic complementation, uncoupling markov chains,
and the theory of nearly reducible systems,” SIAM Rev, pp. 240–272,
1989.

[17] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal
on Computing, vol. 1, no. 2, pp. 146–160, 1970.

[18] A. Itai and M. Rodeh, “Symmetry breaking in distributed networks,”
Information and Computation, vol. 88, no. 1, pp. 60–87, 1990.

[19] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”
ACM Transactions on Information and System Security, vol. 1, no. 1, pp.
66–92, 1998.

[20] D.-S. Du and K. I. Kho, Problem Solving in Automata, Languages, and
Complexity. John Wiley and Sons, 2001.

[21] P. Linz, An Introduction to Formal Languages and Automata. Jones
and Bartless, 2001.

[22] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” in 1st Int’l Colloquium on Theoretical Aspects of
Computing (ICTAC), ser. Lecture Notes in Computer Science, vol. 3407.
Springer, Sep. 2004, pp. 280–294.

[23] B. Damman, T. Han, and J.-P. Katoen, “Regular expressions for PCTL
counterexamples,” in 5th Int’l Conf. on Quantitative Evaluation of Systems
(QEST). IEEE Computer Society, Sep. 2008, pp. 179–188.

[24] E. M. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability
for parametric Markov models,” in 16th Int’l SPIN Workshop on Model
Checking Software (SPIN), ser. Lecture Notes in Computer Science, vol.
5578. Springer, 2009, pp. 88–106.

[25] Y.-S. Han and D. Wood, “Obtaining shorter regular expressions from
finite-state automata,” Theor. Comput. Sci., vol. 370, no. 1-3, pp. 110–120,
2007.

[26] T. Han and J.-P. Katoen, “Counterexamples in probabilistic model check-
ing,” in 13th Int’l Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), ser. Lecture Notes in Computer Science,
vol. 4424. Springer, 2007, pp. 72–86.

[27] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model
checker,” in Int’l Conf. on Quantitative Evaluation of Systems (QEST).
IEEE Computer Society, 2005, pp. 243–244.

[28] PRISM Website, 2010, http://prismmodelchecker.org.

