Zwischenkapitel Datentypen und Operationen

Realisierung der Basiselemente in Hardware

ZK.1 Bitvektoren, natürliche Zahlen, ganze Zahlen

Bitvektoren

- kleinste Informationseinheit ist das BIT
- komplexere Informationseinheiten sind durch Bitvektoren darstellbar:
 - 4Bit = Nibble, 8Bit = Byte, 16Bit = Word 32Bit = Doubleword, 64Bit = Quadword
- Operationen
 - Schiebeoperationen
 - Test Bit i, Set Bit i
 - I logische Verknüpfungen (AND, OR, ...)

JR - RA - SS02

Zwischenkapitel

3

Schiebeoperationen

- Verschieben eines Operanden um *n*Bitstellen
- Man unterscheidet (gemäß Behandlung der Datenformatgrenzen)
 - I logisches Schieben
 - arithmetisches Schieben

JR - RA - SS02

Zwischenkapitel

- sll/srl (shift left/right logical)
 - Verschieben um *n* Stellen
 - Nachziehen von Nullen
 - herausfallende Bits in Übertragsbit (carry bit)
- sla/sra (shift left/right arithmetic)
 - Verschieben um n Stellen
 - I zieht von links das Bit mit höchster Wertigkeit nach
 - I sla=Mult mit 2ⁿ, sra=Div durch 2ⁿ

JR - RA - SS02

Zwischenkapitel

5

Schieben um 1 Bit

$$\blacksquare$$
 $srl_1(a_{n-1},...,a_0) = (0,a_{n-1},...,a_1)$

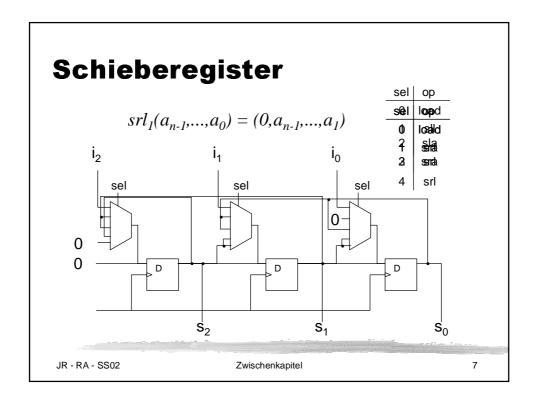
$$\blacksquare \ sll_1(a_{n-1},...,a_0) = (a_{n-2},...,a_0,0)$$

$$\blacksquare$$
 $sra_1(a_{n-1},...,a_0) = (a_{n-1},a_{n-1},...,a_1)$

$$\blacksquare \ sla_1(a_{n-1},...,a_0) = (a_{n-1},a_{n-3},...,a_1,0)$$

JR - RA - SS02

Zwischenkapitel



Natürliche Zahlen

■ Interpretation des Bitvektors als Dualzahl

sei
$$a=(a_{n\text{-}1},\,a_{n\text{-}2},...,\,a_1,\,a_0)$$

$$nat(a)=2^{n\text{-}1}\cdot\,a_{n\text{-}1}+2^{n\text{-}2}\cdot\,a_{n\text{-}2}+...+2\cdot\,a_1+a_0$$

- Es gibt auch andere Kodierungen
 - **■** BCD
 - **I** Gray
 - I ...

JR - RA - SS02

Zwischenkapitel

Ganze Zahlen

■ Darstellung im Zweierkomplement

Sei
$$a=(a_{n-1},...,a_0)$$

$$int(a)=-2^{n-1}\cdot a_{n-1}+2^{n-2}\cdot a_{n-2}+...+2\cdot a_1+a_0$$

■ Zweierkomplement von a $a' = \overline{a} + 1$

JR - RA - SS02

Zwischenkapitel

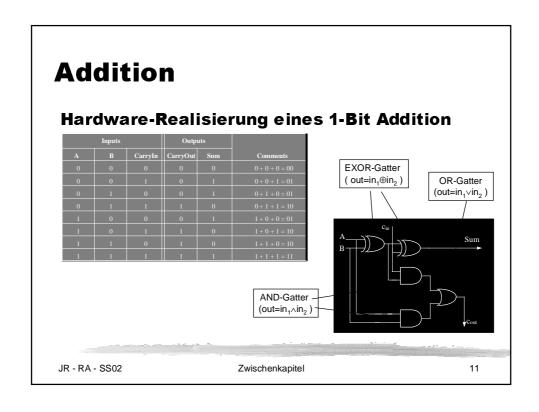
9

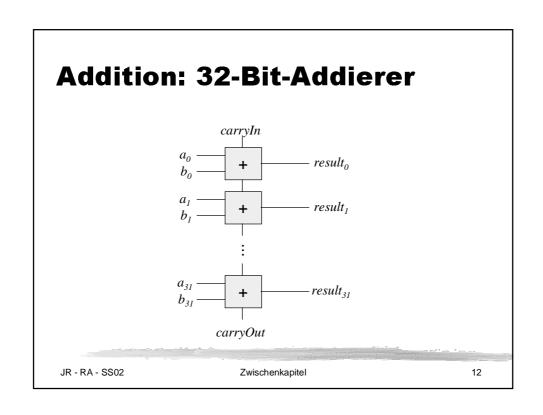
Im Vergleich zu anderen Darstellungen

Darstellung		symmetrischer Zahlenbereich	geeignet zum Rechnen
Betrag und Vorzeichen	redundant	ja	bedingt
Einer- Komplement	redundant	ja	gut
Zweier- komplement	irredundant	nein	sehr gut

JR - RA - SS02

Zwischenkapitel



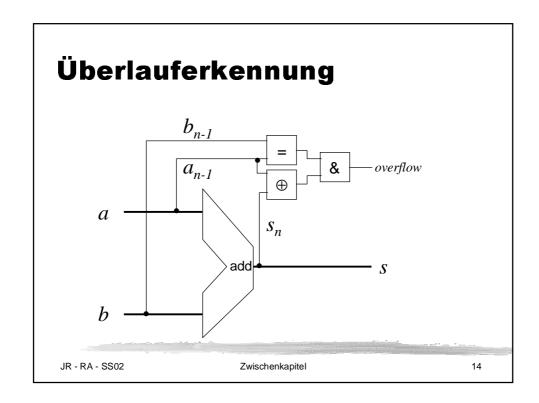


Überlauferkennung

- Bei natürlichen Zahlen: $c_{out} = I$
- Bei ganzen Zahlen im Zweierkomplement sei s = a + b mit $a = (a_{n-1}, a_{n-2}, ..., a_1, a_0)$ etc.
 - **I** $a \ge 0$ und b < 0 oder a < 0 und $b \ge 0$
 - → kein Überlauf
 - $\mathbf{I} \ a \ge 0 \text{ und } b \ge 0$
 - → Überlauf bei s<0
 - \mathbf{I} a < 0 und b < 0
 - → Überlauf bei $s \ge 0$

JR - RA - SS02

Zwischenkapitel



Subtraktion

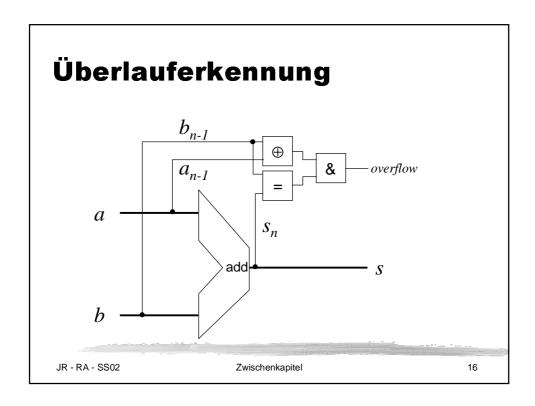
- Addition mit Zweierkomplement
- Überlauferkennung

sei
$$s = a - b$$
 mit $a = (a_{n-1}, a_{n-2}, ..., a_1, a_0)$ etc.

- **I** $a \ge 0$ und $b \ge 0$ oder a < 0 und b < 0
 - → kein Überlauf
- **I** a ≥ 0 und b < 0
 - → Überlauf bei s<0
- I a < 0 und $b \ge 0$
 - \rightarrow Überlauf bei $s \ge 0$

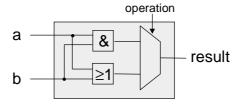
JR - RA - SS02

Zwischenkapitel



Aufbau einer einfachen ALU

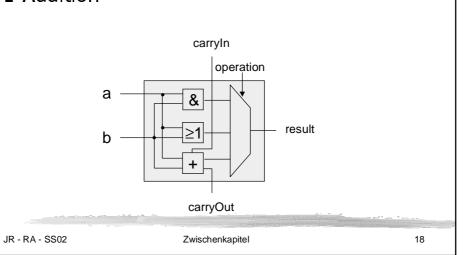
■ Logische Grundoperationen auf einem Bit



JR - RA - SS02 Zwischenkapitel 17

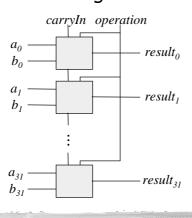
Aufbau einer einfachen ALU

■ Addition



Aufbau einer einfachen ALU

■ Zusammenschaltung



JR - RA - SS02

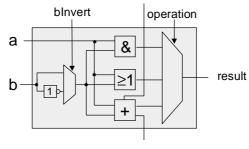
Zwischenkapitel

19

Aufbau einer einfachen ALU

■ Subtraktion:

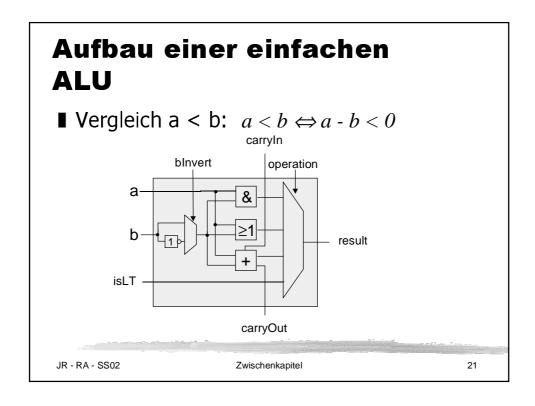
$$a - b = a + (-b) = a + (\overline{b} + 1) = a + \overline{b} + 1$$

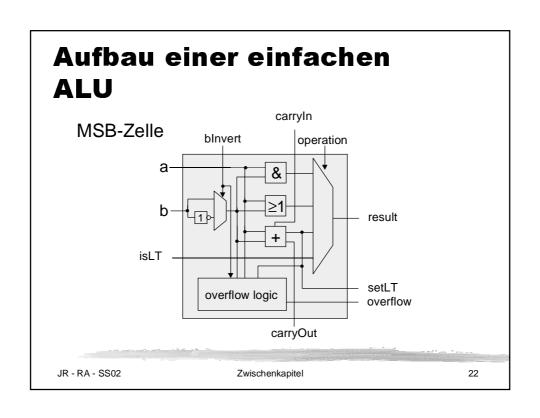


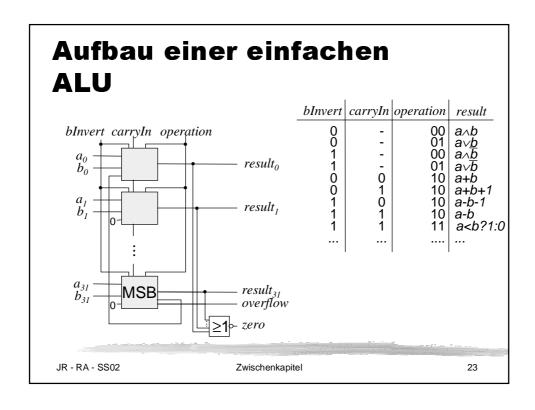
carryOut

JR - RA - SS02

Zwischenkapitel







Multiplikation im Zweierkomplement Multiplikation nach der **Schulmethode** ■ Bei negativen Zahlen muss zuerst der Betrag gebildet 0101 * 0011 werden, erst dann kann 0011 multipliziert werden. 0000 ■ Verfahren ist ziemlich 0011 langsam, da insgesamt nAdditionen ausgeführt werden, 0000 insbesondere Addition mit 0001111 Null. JR - RA - SS02 Zwischenkapitel 24

Verfahren von Booth

A. Booth. A Signed Binary Multiplication Scheme. Q.J.Mech.Appl.Math. 4:236:240 (1951)

Beobachtung

- Enthält der Multiplikator y einen Nullblock der Länge k, so kann die Multiplikation durch ein Shift der Zwischensumme um k Stellen beschleunigt werden.
- Enthält der Multiplikator y einen Einsblock von Stelle u bis Stelle v, z B ·

so können die zum Einsblock gehörigen ($\nu u+1$) Additionen der Multiplikation nach Schulmethode wegen int(0...01...10...0)= $2^{\nu+1}-2^{u}$ durch eine Addition an der Stelle $\nu+1$ und eine Substraktion an der Stelle u ersetzt werden

JR - RA - SS02

Zwischenkapitel

25

Verfahren von Booth

$$X * Y mit Y = 0...01...10...0$$
add/shift

$$X^*Y = X2^u + X2^{u+1} + ... + X2^v = X (2^u + 2^{u+1} + ... + 2^v)$$

$$= X (2^{v+1}-2^u) = X2^{v+1} - X2^u$$

$$Y = 0...01...10...0$$

$$\downarrow \text{shift} \downarrow \text{shift}$$
add/shift sub/shift

JR - RA - SS02

Zwischenkapitel

Verfahren von Booth

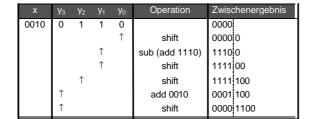
- Arithmetische Operationen sind nur an den $0\rightarrow 1$ und $1\rightarrow 0$ Wechsel im Multiplikator erforderlich.
- Man erhält die Rechenvorschrift

Уi	Уi-1	Operation
0	0	shift
0	1	add; shift
1	0	sub; shift
1	1	shift

mit $y_{-1}=0$

JR - RA - SS02 Zwischenkapitel 27

Verfahren von Booth: Beispiel



Korrektheit des Verfahrens von Booth

Satz

Das Verfahren von Booth multipliziert sowohl positive als auch negative Zahlen

Beweis

Wir betrachten im Verfahren von Booth an jeder Stelle die Differenz $(y_{i-1}-y_i)$ und berechnen das Multiplikationsergebnisses durch die Summe

$$\begin{split} S &= (y_{-1} \text{-} y_0) \cdot 2^{0} \cdot \text{int}(x) + \\ &\quad (y_0 \text{-} y_1) \cdot 2^{1} \cdot \text{int}(x) + \\ &\quad \dots \\ &\quad (y_{n-3} \text{-} y_{n-2}) \cdot 2^{n-2} \cdot \text{int}(x) + \\ &\quad (y_{n-2} \text{-} y_{n-1}) \cdot 2^{n-1} \cdot \text{int}(x) \\ &= \text{int}(x) \cdot (\text{-} y_{n-1} \cdot 2^{n-1} + y_{n-2} \cdot 2^{n-2} + \dots + y_1 \cdot 2^1 + y_0 \cdot 2^0) \\ &= \text{int}(x) \cdot \text{int}(y) \end{split}$$

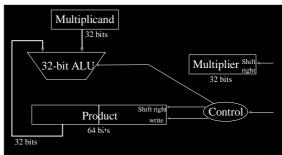
JR - RA - SS02

Zwischenkapitel

29

Hardwarerealisierung der Methode von Booth

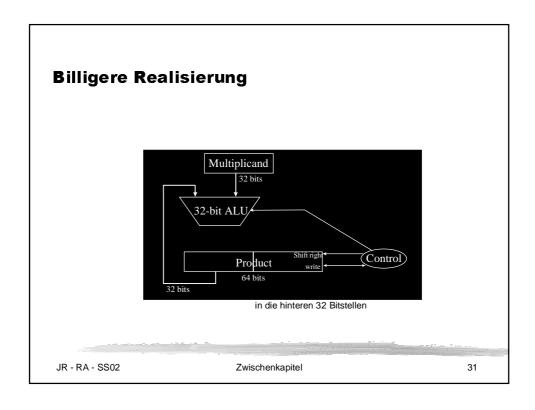
■ Multiplikation wird unter der Verwendung der Additionshardware implementiert:



der j ersten Bitstellen von Bedeutung

JR - RA - SS02

Zwischenkapitel



Nachteil dieser Realisierung

- Vorgestellte Realisierung für die *n*-Bit Multiplikation benötigt ≥ *n*-log *n* Gatterlaufzeiten unter Benutzung eines schnellen Addierers
- Es gibt effizientere Realisierungen für die *n*-Bit Multiplikation, die mit ungefähr *log n* Gatterlaufzeiten auskommen

■ Division

- restoring, non restoring
- SRT-Division
- I iterative Verfahren: Newton-Verfahren, Goldschmidt-Verfahren

JR - RA - SS02 Zwischenkapitel 33

Division

■ Schulmethode

Division

■ Abgewandelte Schulmethode

JR - RA - SS02 Zwischenkapitel

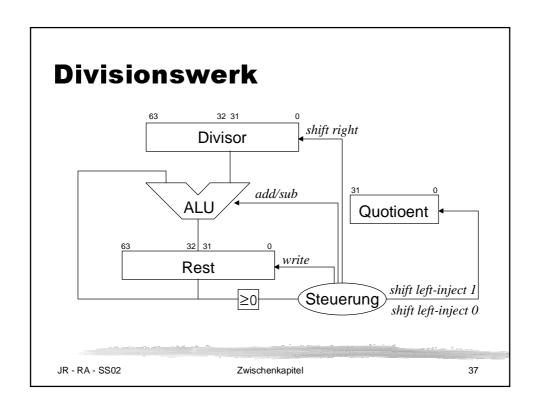
35

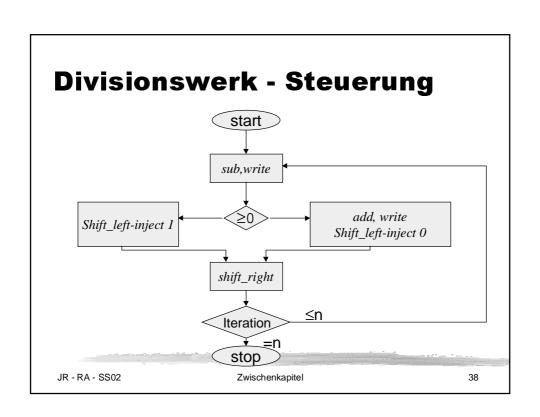
36

Division

■ Abgewandelte Schulmethode

```
Divisor Dividend
                                Rest
10011010-1110000000000 = -110101100110 \Rightarrow
10011010 - 111000000000 = -011001100110 \Rightarrow 0
10011010-
              11100000000 = -001011100110 \Rightarrow 0
               1110000000 = -000100100110 \Rightarrow 0
10011010-
10011010-
                11100000 = -000001000110 \Rightarrow 0
10011010-
                  1110000 =
                                000000101010 \Rightarrow 1
                   111000 = -00000001110 \Rightarrow 0
00101010-
                                00000001110 \Rightarrow 1
00101010-
                    11100 =
00001110-
                      1110 =
                                0000000000000 \Rightarrow 1
```





- wrap-around Arithmetik: Überträge werden weggelassen
- bei Audio-, Videoanwendungen: Ausgabe des größten darstellbaren Wertes besser
 - ---> Sättigungsarithmetik

auf sie kann bei vielen Prozessoren für die digitale Signalverarbeitung umgeschaltet werden

	Wrap-around	Sättigungs-	
	Arithmetik	Arithmetik	
a	"1000"	"1000"	
b "1000"		"1000"	
a+b	"0000"	"1111"	

41

Probleme mit Festkommazahlen

Bei Zweierkomplement-Darstellung mit n Stellen vor und k hinter dem Komma

- keine ganz grossen bzw. kleinen Zahlen darstellbar! Zahlen mit grösstem Absolutbetrag: $(2^{n+k-1}-1)/2^k$ und -2^{n-1} z.B. $0111.1111_b = 7.9375$ und $1000.0000_b = -8$ Zahlen mit kleinstem Absolutbetrag: -2^{-k} und 2^{-k} z.B. $0000.0001_b = 0.0625$ und $1111.1111_b = -0.0625$
- Operationen sind nicht abgeschlossen! 2ⁿ⁻¹+2ⁿ⁻¹ ist nicht darstellbar, obwohl die Operanden darstellbar sind.
- Assoziativgesetz und Distributivgesetz gelten nicht ! $(2^{n-1}+2^{n-1})-2^{n-1} \neq 2^{n-1}+(2^{n-1}-2^{n-1})$

JR - RA - SS02 Zwischenkapitel

ZK.2 Gleitkommazahlen

Gleitkommadarstellung

Idee: Repräsentiere Zahl durch Vorzeichen, Exponent und Mantisse, Position des Kommas liegt also nicht fest! Abdeckung eines größeren Zahlenbereichs bei gegebener Stellenanzahl

■ Gleitkommadarstellung einfacher Genauigkeit: (-1)^S·M·2^E

1	31	30 29 28 27 26 25 24 23	22 21		3210
	S	Exponent E	Mantisse M		

■ Gleitkommadarstellung doppelter Genauigkeit: (-1) M·2^E

63	62 61	53 52	51 50		3210
S				Mantisse M	

Es bleibt noch festzulegen, wie die Mantissenbits bzw. Exponentenbits als Zahlen M bzw. E interpretiert werden sollen.

JR - RA - SS02 Zwischenkapitel 43

Normalisierte Gleitkommadarstellungen

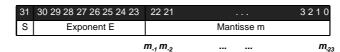
Beobachtung

Gleitkommadarstellung einer Zahl ist nicht eindeutig ! $0.111\cdot 2^3 = 0.0111\cdot 2^4$

Definition

Eine Gleitkommazahl (S,M,E) heisst **normalisiert**, wenn $1 \le M < 2$ d.h. wenn M von der Form $\frac{1}{2}$. m_{-1} ... m_{-k} ist.

Die 1 vor dem Komma braucht nicht abgespeichert zu werden (\rightarrow "hidden bit")



Für eine normalisierte Gleitkommazahl ergibt sich der Mantissenwert M als M = 1 + $\Sigma_{i=-1,\dots,k} m_i 2^i$.

⇒ Die Zahl 0 muß als Spezialfall behandelt werden!

Gleitkommadarstellung - IEEE 754 Standard

- Gemäß IEEE 754-Standard werden die Exponentenbits als vorzeichenlose Zahl interpretiert.
- Um auch negative Exponenten darstellen zu können, wird von der Interpretation als vorzeichenlose Zahl eine Konstante, der sogenannte Bias, subtrahiert.
- Bei *n* Exponentenbits wird der Bias gewählt als **BIAS** = **2**ⁿ⁻¹**-1**, also bei einfacher Genauigkeit BIAS = 127, bei doppelter Genauigkeit BIAS = 1023.
- Bei *n* Exponentenbits ergibt sich also für E:

$$\mathsf{E} = \Sigma_{i=0,\dots,n-1} \, \boldsymbol{e}_i \, \boldsymbol{2}^i - \boldsymbol{BIAS}$$

JR - RA - SS02 Zwischenkapitel 45

Sonderfälle IEEE 754 Standard

Der Exponent 0 spielt beim IEEE 754-Standard eine Sonderrolle: Sind alle Exponentenbits 0, so wirdausnahmsweise das "hidden bit" der Mantissendarstellung weggelassen, so daß die Zahl

$$(\Sigma_{i=-1,...,-k} m_i 2^i) 2^{-126}$$

dargestellt wird.

- Auf diese Weise können "denormalisierte Zahlen" dargestellt werden, die kleiner als die kleinste darstellbare normalisierte Zahl sind.
- Die **Null** wird folgendermaßen dargestellt: Sämtliche Mantissenbits und Exponentenbits sind 0.
- Der Exponent 2ⁿ-1 spielt ebenfalls eine Sonderrolle: Sind alle Exponentenbits 1 und alle Mantissenbits 0, so wird der Wert ∞ dargestellt.

IEEE 754 Standard - Spezialfälle

Normalisierte Zahl	±	0 255 (4005)	m haliahia
Normansierte Zam	-	0 < e < 255 (4095)	m beliebig
Denormalisierte Zahl	±	0	m≠0 beliebig
Null	±	0	0
Unendlich	±	255 (4095)	0
Not a Number	±	255 (4095)	m ≠ 0 beliebig

JR - RA - SS02 Zwischenkapitel 47

Darstellbare normalisierte Gleitkommazahlen

	single precision	double precision
Vorzeichenstellen	1	1
Exponentenstellen	8	11
Mantissenstellen (ohne hidden Bit)	23	52
Bitstellen insgesamt	32	64
Bias	127	1023
Exponentenbereich	-126 bis 127	-1022 bis 1023
Darstellbare normalisierte Zahl mit kleinstem Absolutbetrag	2 ⁻¹²⁶	2 ⁻¹⁰²²
Darstellbare normalisierte Zahl mit größtem Absolutbetrag	(1-2-24) 2128	(1-2-53) 21024
Darstellbare denormalisierte Zahl mit kleinstem Absolutbetrag	2 ⁻¹⁴⁹	2 ⁻¹⁰⁷⁴
Darstellbare denormalisierte Zahl	(1-2 ⁻²³) 2 ⁻¹²⁶	(1-2-52) 2-1022

IEEE 754 Standard - Eigenschaften

- Eindeutige Zahlendarstellung, falls auf normalisierte Darstellungen beschränkt
- Nicht alle Zahlen zwischen der kleinsten und grössten darstellbaren Zahl sind darstellbar.
- Je näher bei der Null, desto dichter liegen die darstellbaren Zahlen.
- Arithmetische Operationen sind nicht abgeschlossen!
- Assoziativgesetz und Distributivgesetz gelten nicht, da bei Anwendung der Gesetze evtl. der darstellbare Zahlenbereich verlassen wird!

JR - RA - SS02

Zwischenkapitel

49

Addition von Gleitkommazahlen

Rechenvorschrift

- Angleichung des kleineren an den grösseren Exponenten
- Addition der Mantissen
- Normalisierung (falls erforderlich)

Beispiel

$$+(1.000)_{2} \cdot 2^{-1} + -(1.110)_{2} \cdot 2^{-2} = +(1.000)_{2} \cdot 2^{-1} + -(0.111)_{2} \cdot 2^{-1}$$

$$= +(0.001)_{2} \cdot 2^{-1}$$

$$= +(1.000)_{2} \cdot 2^{-4}$$

JR - RA - SS02

Zwischenkapitel

Multiplikation von Gleitkommazahlen

Rechenvorschrift

- Multipliziere die Vorzeichen
- Multipliziere die beiden Mantissen
- Addiere die beiden Exponenten und substrahiere (einmal) den Bias-Wert
- Normalisierung (falls erforderlich)

Beispiel

 $+(1.000)_2 \cdot 2^{-1+BIAS} \times -(1.110)_2 \cdot 2^{-2+BIAS}$

Multiplikation der Vorzeichen: 0⊕1=1

Multiplikation der Mantissen: $(1.000)_2 \times (1.110)_2 = (1.110)_2$

Addition der Exponenten: (-1+BIAS)+(-2+BIAS)-BIAS = (-3+BIAS)

Resultat: $-(1.110)_2 \cdot 2^{-3+BIAS}$

