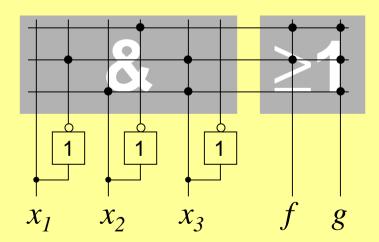

1 Hardwareentwurf

- **1.1** Überblick, Hardwareentwurfsschritte
- **1.2** Hardwarebeschreibungssprachen
- **1.3** Hardwaresimulation-/Verifikation
- **1.4** Hardwaresynthese
- 1.5 Plazierung und Verdrahtung

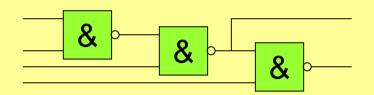
Realisierungsformen

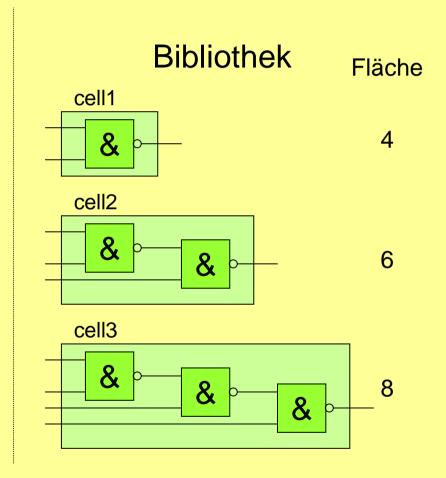

Makrozellen

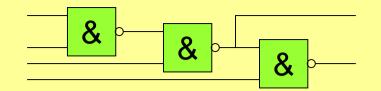
- Standardisierte Funktionale Einheiten
 - Arithmetische Funktionsblöcke
 - I/O-Interfaces, ...
- PLA
 - programmable logic arrays
 - 2-stufige Logik
- RAM, ROM

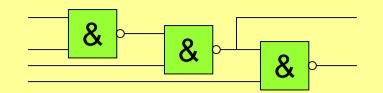
Realisierung als PLA

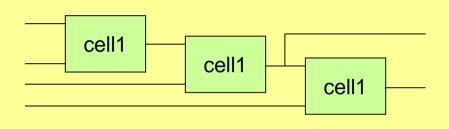
2-Stufige Logik läßt sich auf einem ASIC als programmable logic array realisieren

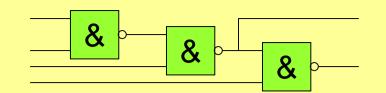

$$f = \overline{x_2} \vee \overline{x_1} x_3 \qquad g = \overline{x_2} \vee \overline{x_1} x_3 \vee x_2 x_3$$

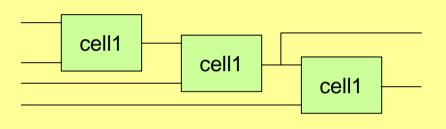


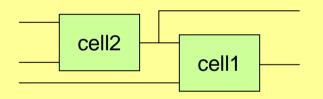

Standardzellen


- Der ASIC-Hersteller kann nicht beliebige Logische Gatter produzieren, deshalb wird vom Hersteller eine Zellbibliothek zur Verfügung gestellt, die alle möglichen Gatter enthält.
- → Abbildung der synthetisierten Gatternetzliste auf die Zellbibliothek
 - → Transformation der Schaltung und der Bibliothek in eine einheitliche Darstellung (z.B. NAND-Gatter)
 - → Finden einer Überdeckung (NP-vollständig)

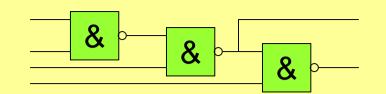

Schaltung (NAND)

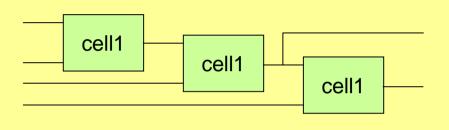




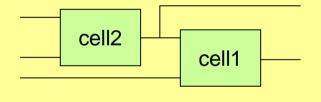


Realisierung 1 Fläche = 12

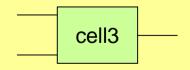


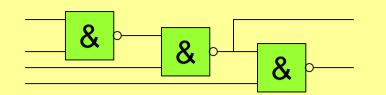


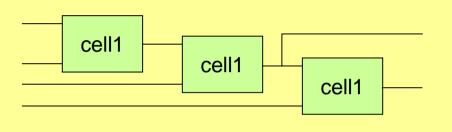
Realisierung 1 Fläche = 12



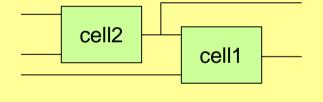
Realisierung 2 Fläche = 10



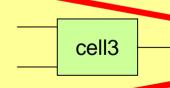

Realisierung 1 Fläche = 12



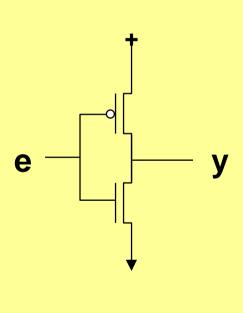
Realisierung 2 Fläche = 10

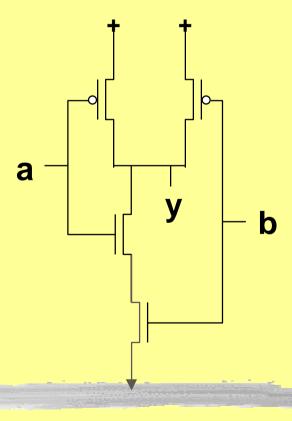


Realisierung 3 Fläche = 8



Realisierung 1 Fläche = 12

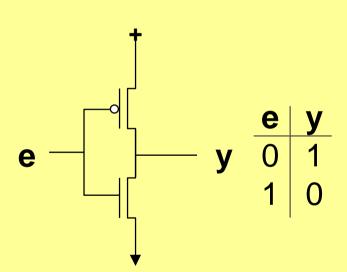

Realisierung 2 Fläche = 10



Realisierung 3 Fläche – 8

Abbildung auf Technologie

CMOS



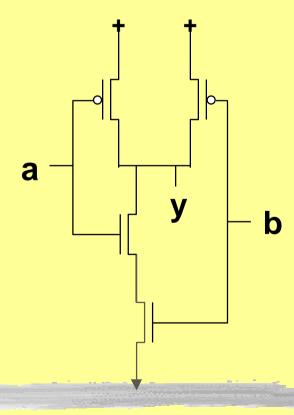
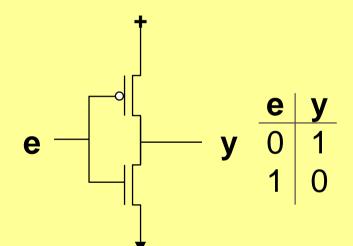
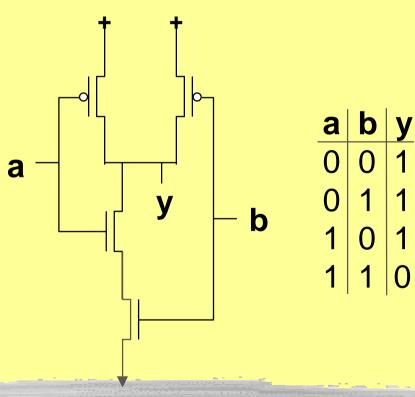


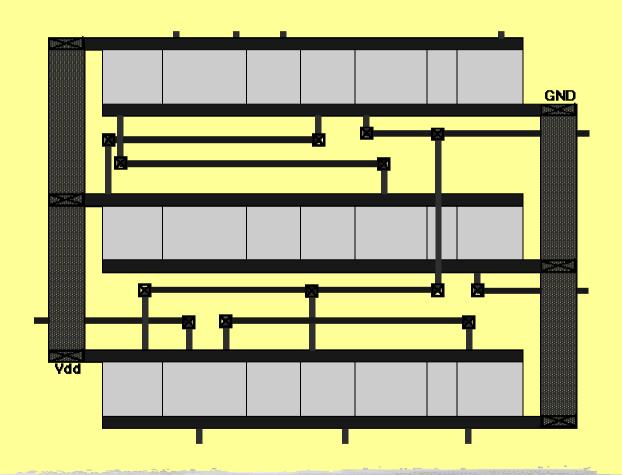
Abbildung auf Technologie

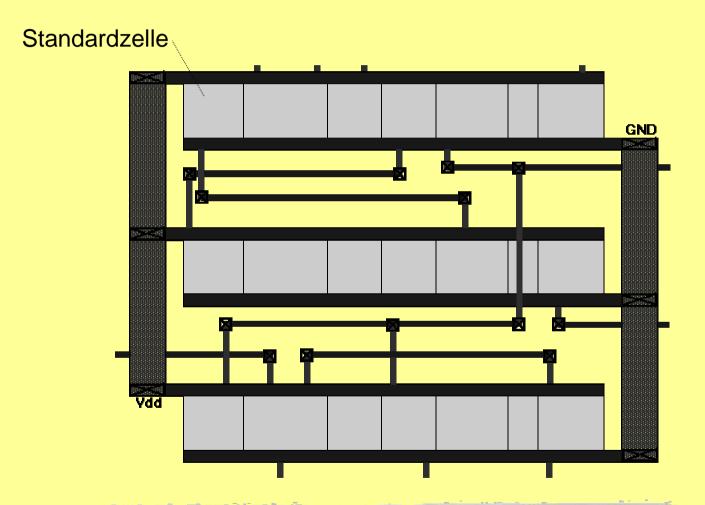
CMOS

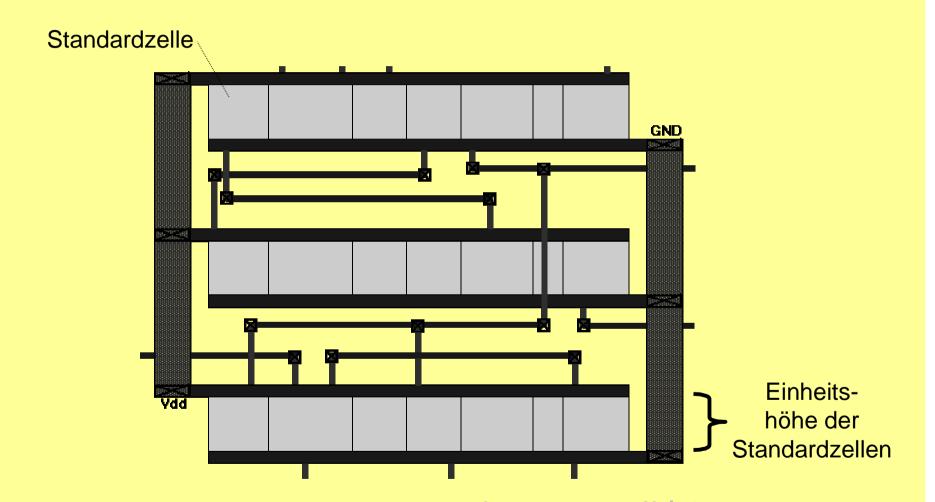
Inverter

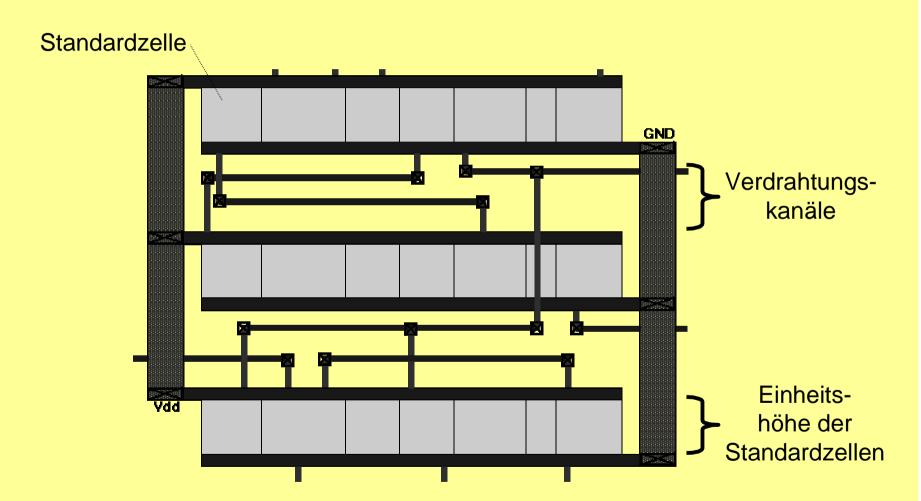


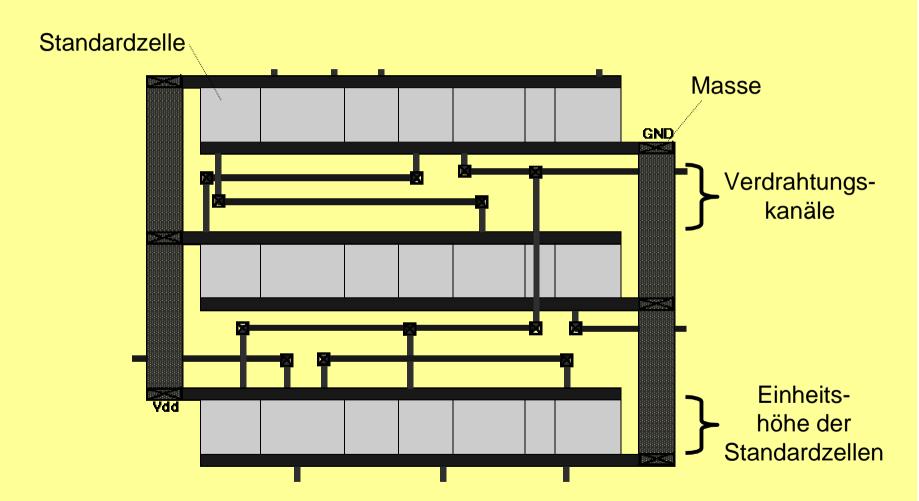

Abbildung auf Technologie

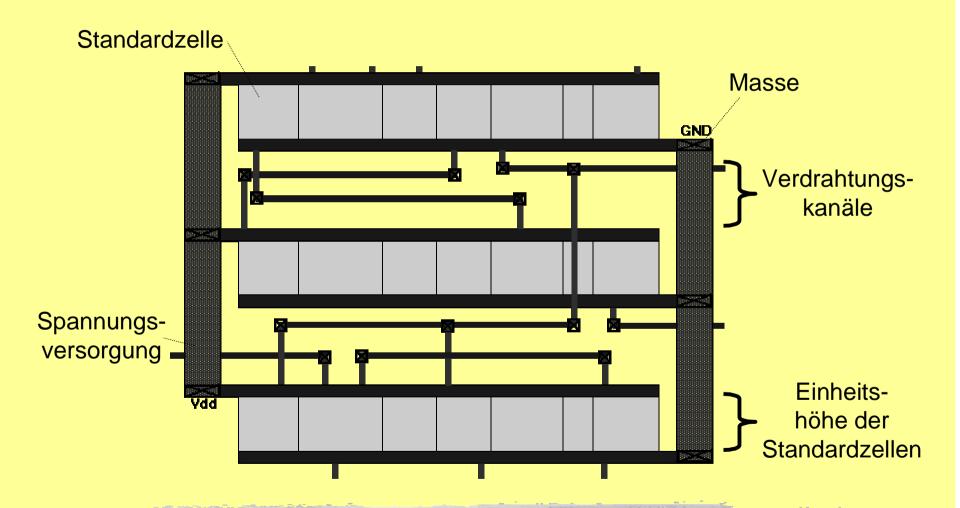

CMOS

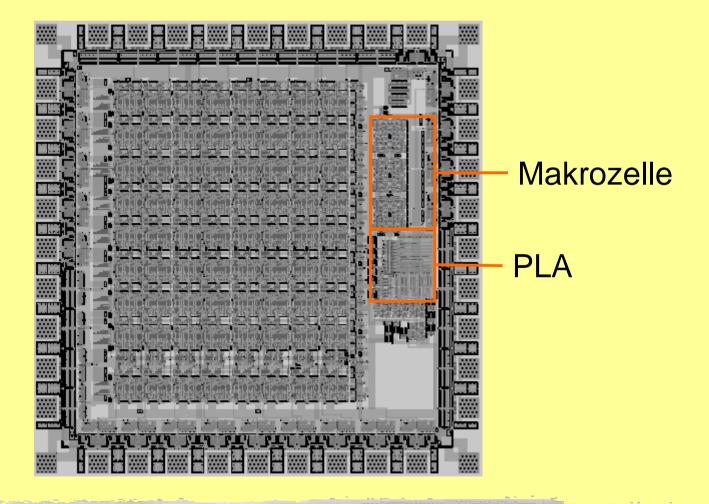


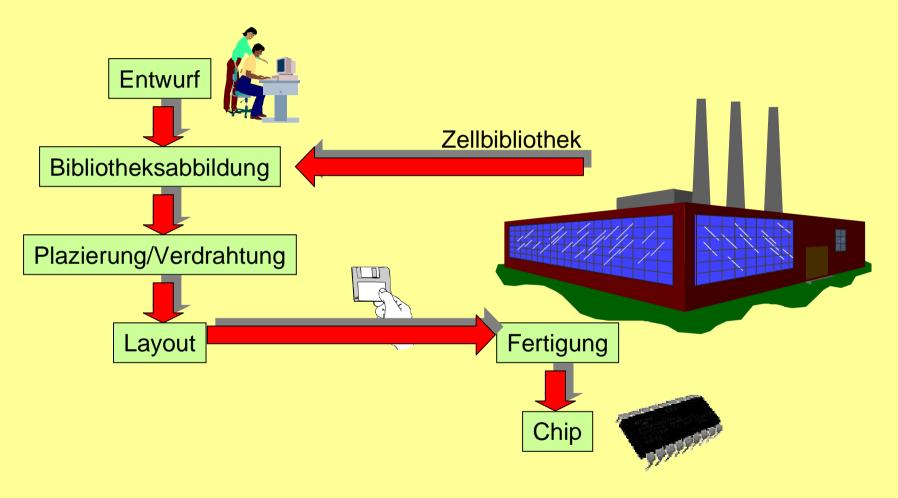


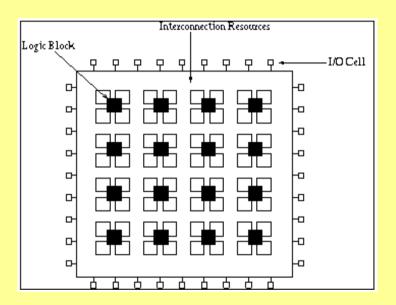

NAND







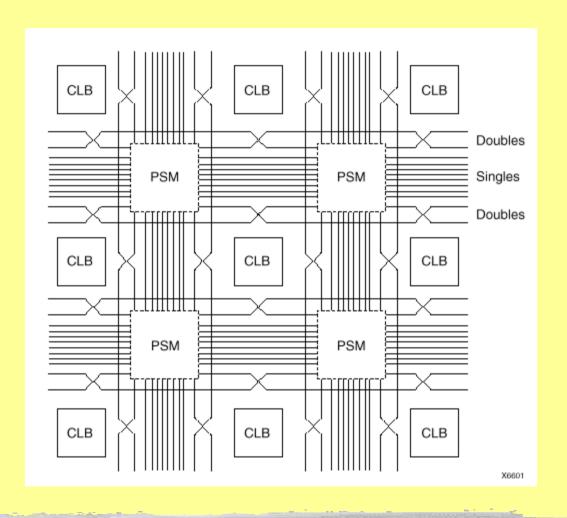




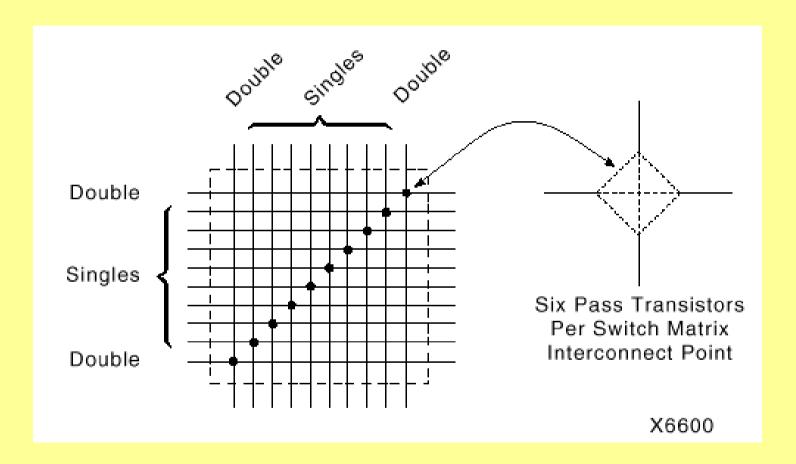
Standardzellen Flow

Realisierung als FPGA

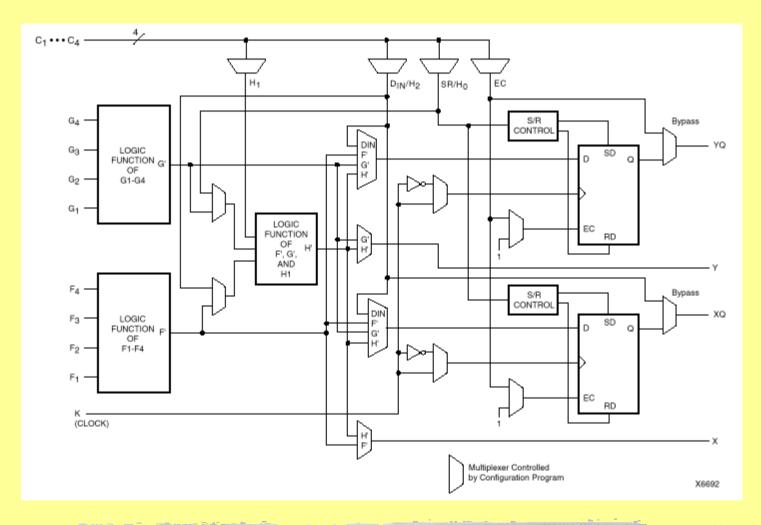
FPGA (field programmable gate arrays)

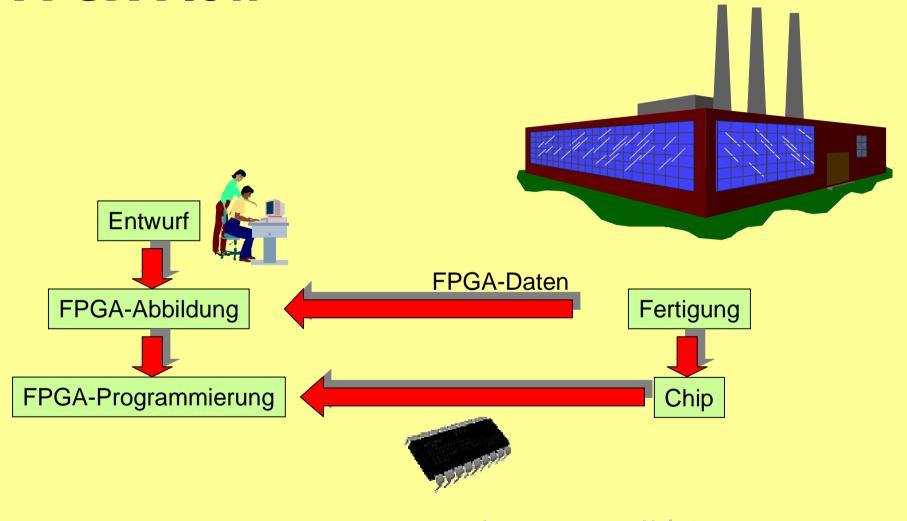


Verbindungen und Logikblöcke sind programmierbar


Beispiel: Xilinx 4000E

- CLB = Configurable Logic Block
 - zwei 4-input LUTs (LookUp Tables) und eine 3-input LUT
 - zwei SR D-FlipFlops
 - Bypass-Pfade und carry/cascade-Logic
- PSM = Programmable Switch Matrix
 - 10 Verbindungspunkte pro Matrix
 - I Jeder Verbindungspunkt enthält 6 Passtransistoren
 - jede Verbindung zwischen vier Richtungen möglich


Xilinx 4000E Architektur


Xilinx 4000E Verbindungsmatrix

Xilinx 4000E CLB

FPGA-Flow

Partitionierung

- umfangreiche Schaltungen sind zu komplex um als "Ganzes" plaziert werden zu können
- → Partitionierung des Problems
 - Zuordnung von n Objekten $O = \{o_1, ..., o_n\}$ zu m Partitionen $P = \{p_1, ..., p_m\}$, so daß

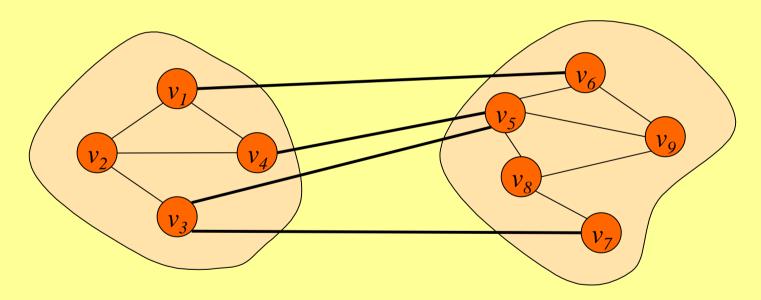
$$p_1 \cup ... \cup p_m = O$$

 $p_1 \cap ... \cap p_m = \emptyset$
die Kosten $c(P)$ minimal sind

das allgemeine Partitionierungsproblem ist NP vollständig

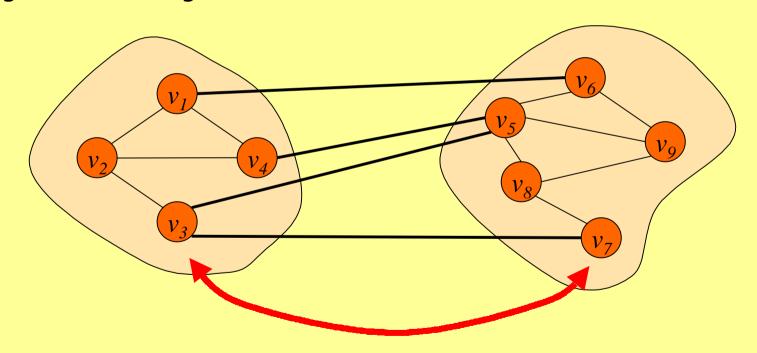
Allgemeine Partitionierungsverfahren

exakte Lösungsverfahren


- Enumeration der Lösungen
- Integer Linear Programs (ILP)

heuristische Lösungsverfahren

- konstruktive Verfahren
 - random mapping
 - hierarchical clustering
- iterative Verfahren
 - Kernighan-Lin Algorithmus
 - Simulated Annealing
 - evolutionäre Algorithmen


Kernighan-Lin

Erzeugung von Bipartitionen: vertausche diejenigen Objekt in die jeweils andere Gruppe, die den größten Kostengewinn verursachen

Kernighan-Lin

Erzeugung von Bipartitionen: vertausche diejenigen Objekt in die jeweils andere Gruppe, die den größten Kostengewinn verursachen

Kernighan-Lin - Erweiterung

- Vertausche diejenigen Objekt, die den größten Kostengewinn oder den kleinsten Kostenzuwachs verursachen
- solange eine bessere Partition gefunden wird:
 - vertausche versuchsweise jede Paarung
 - I nimm von diesen (Versuchs-)Partitionen diejenige mit dem besten Kostenverhältnis und führe die entsprechenden Umgruppierungen durch
 - einmal vertauschte Objekte werden im weiteren Verlauf nicht wieder vertauscht

Kernighan-Lin

- entkommt aus lokalen Minima
- Zeitkomplexität $O(n^3)$
- Partitionierung in m Blöcke: $O(m \cdot n^3)$

Simulated Anealing

- simuliertes Ausglühen
 - Metalle und Glas nehmen beim Abkühlen unter bestimmten Bedingungen einen Zustand minimaler Energie ein:
 - bei jeder Temperatur wird ein thermodynamisches Gleichgewicht erreicht
 - die Temperatur wird beliebig langsam erniedrigt
 - Wahrscheinlichkeit, dass ein Teilchen in einen Zustand höherer Energie springt

$$P(e_i, e_j, T) = e^{\frac{e_i - e_j}{kT}}$$

Simulated Anealing

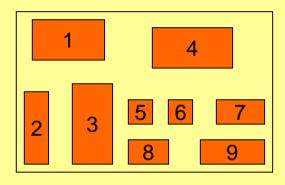
Anwendung auf kombinatorische Optimierung

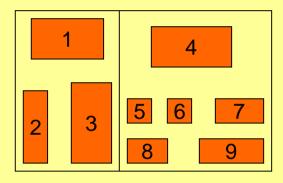
- Energie = Kosten der Lösung
- Verringerung der Kosten mit simulierter Temperatur, aber manchmal auch akzeptieren von Kostenerhöhungen

Simulated Anealing

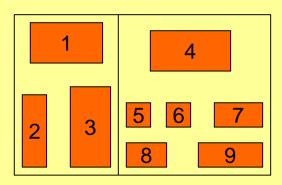
```
temp = temp start
cost = c(P)
WHILE (Frozen() == FALSE) {
  WHILE (Equilibrium() == FALSE) {
      P' = RandomMove(P)
      cost' = c(P')
      deltacost = cost' - cost
      IF (Accept(deltacost,temp) > random[0,1)) {
                                         deltacost
            cost = cost'
                                 min(1, e^{k*temp})
  temp = DecreaseTemp(temp)
```

Simulated Anealing

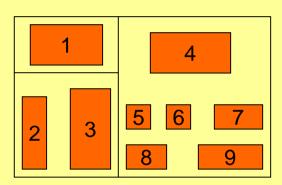

- Abkühlung: DecreaseTemp(), Frozen()
 - temp_start = 1.0
 - Lemp = α ◆ temp (typisch: 0.8 = α =0.99)
 - Abbruch bei temp < temp_min oder wenn sich keine Verbesserung mehr ergibt
- Gleichgewicht: Equilibrium()
 - nach bestimmter Anzahl von Iterationen
 - oder wenn sich keine Verbesserung mehr ergibt

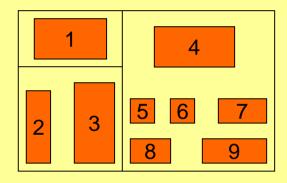

Simulated Anealing

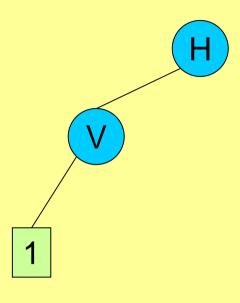
- Zeitkomplexität
 - von exponentiell bis konstant, je nach Implementierung der Funktionen Equilibrium, DecreaseTemp, Frozen
 - I je länger die Laufzeit, desto besser die Ergebnisse
 - iblich: Funktionen so konstruiert, dass polynomielle Laufzeit erreicht wird

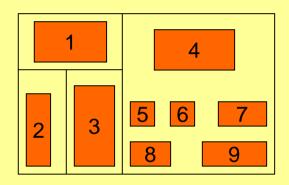

Plazierung durch Slicing

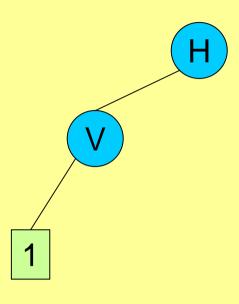
- Unterteile die Chipfläche in zwei Hälften
- Partitioniere die Objekte so in zwei Partitionen, dass
 - beide Partitionen etwa die gleiche Fläche benötigen
 - I die Zahl der Verbindungen zwischen beiden Partitionen minimal ist
- wiederhole diese Schritte, bis Partitionen klein genug sind, um sie zu platzieren

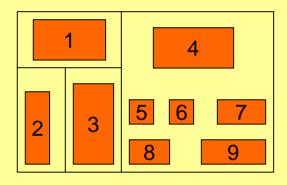


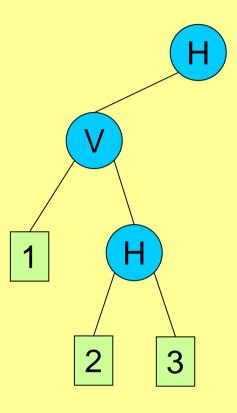


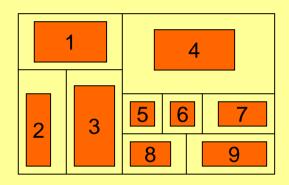


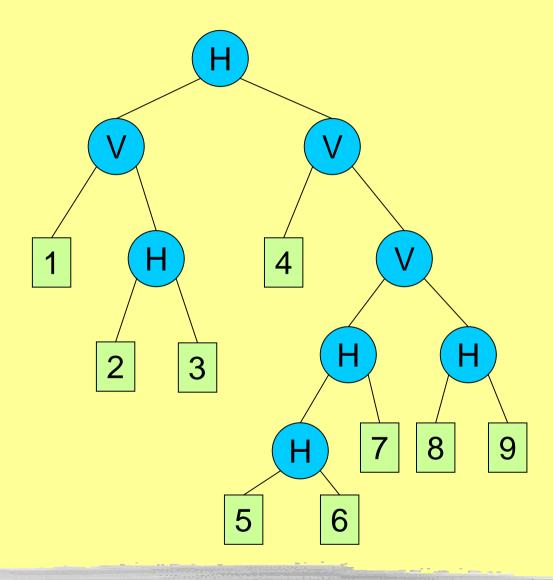


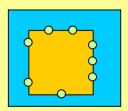


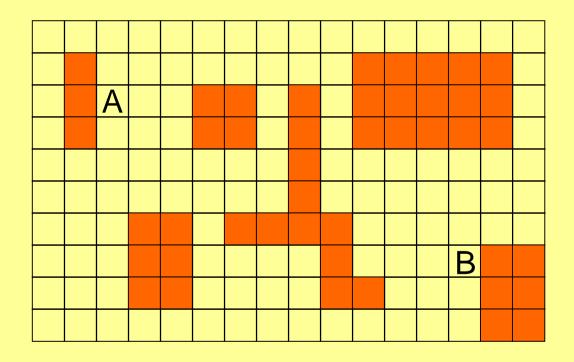


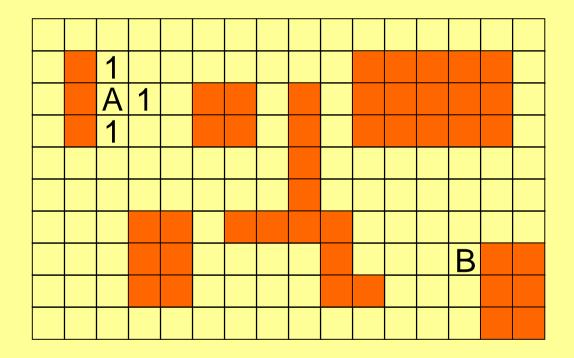


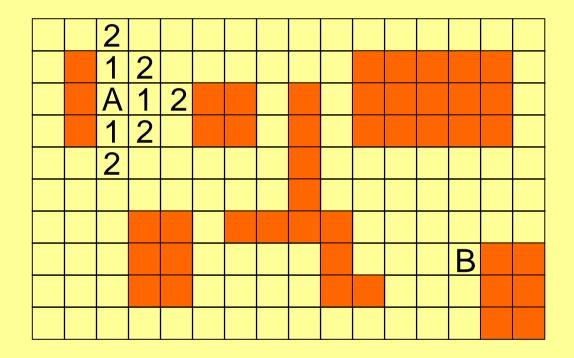


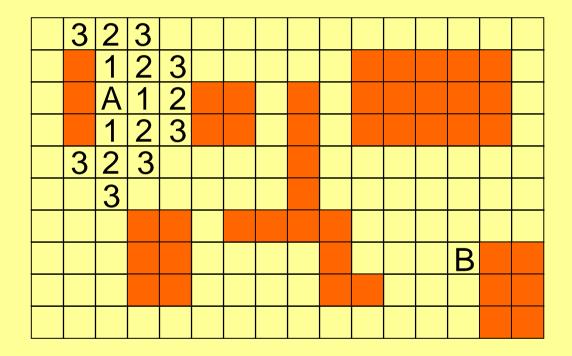





- Abschließend werden
 - genaue Position
 - Orientierung
 - Seitenverhältnis festgelegt
- Beim Positionieren muß auch Platz für die Verdrahtung eingerechnte werden, z.B. "halo"




- Abschließend werden
 - genaue Position
 - Orientierung
 - Seitenverhältnis festgelegt
- Beim Positionieren muß auch Platz für die Verdrahtung eingerechnte werden, z.B. "halo"



4	3	2	3	4						
4		1	2	3	4					
		Α	1	2						
		1	2	3						
4	3	2	3	4						
	4	3	4							
		4								
									В	

4	3	2	3	4	5						
5		1	3	3	4	5					
		Α	1	2							
5		1	2	3							
4	3	2	3	4	5						
5	4	3	4	5							
	5	4									
		5								В	

4	3	2	3 2 1	4	5	6					
5		1	2	3	4	5	6				
6		A	~	2							
5		1	2	3							
4		2	3	4	5	6					
56	4	3 4	4	5	56						
6	4 5 6	4									
	6	5								В	
		6									

4	3	2	3	4	5	6	7					
5		1	2	3	4	5	6	7				
6		Α	1	2			7					
5		1	2	3								
4	3	2	3	4	5	6	7					
5		3	4	5	6	7						
<u>5</u>	4 5 6	4			7							
7	6	5									В	
	7	6										
		7										

4	3	2	3	4	5	6	7	8				
5		1	2	3	4	5	6	7	8			
6		A	1	2			7					
5		Υ_	2	3			8					
4		2	3	4	5	6	7					
5	4	3	4	5	6	7	8					
5 6 7	4 5 6	4			7							
7	6	5			8						В	
8	7	6										
	8	7	8									

4	3	2	3	4	5	6	7	8	9			
5		1	2	3	4	5	6	7	8			
6		A	~	2			7		9			
5		Υ_	2	3			8					
4		2	က	4	5	6	7					
5	4	3	4	5	6	7	8					
5 6 7	4 5 6				7							
7	6	4 5 6			8	9					В	
8	7	6			တ							
9	8	7	8	9								

4	3	2	3	4	5	6	7	8	9	0			
5		1	2	3	4	5	6	7	8				
6		A	1	2			7		9				
5		Υ_	2	3			8		0				
4		2	3	4	5	6	7						
5	4		4	5	6	7	8						
<u>5</u>	4 5 6	4			7								
7	6	5			8	တ	0					В	
8	7	6			9	0							
9	8	7	8	9	0								

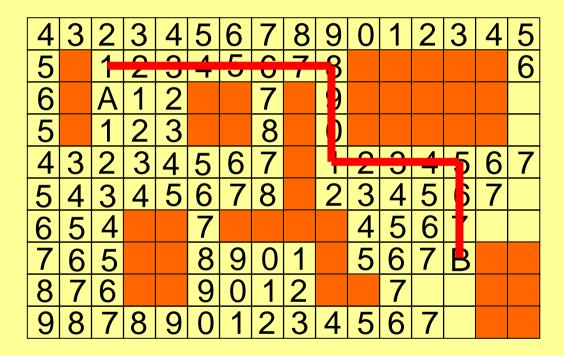
4	3	2	3	4	5	6	7	8	9	0	1		
5		1	2	3	4	5	6	7	8				
6		A	~	2			7		9				
5		Υ_	2	3			8		0				
4		2	3	4	5	6	7		1				
5	4		4	5	6	7	8						
5 6	56	4			7								
7	6	5			8	တ	0	1				В	
8	7	6			9	0	1						
9	8	7	8	9	0	1							

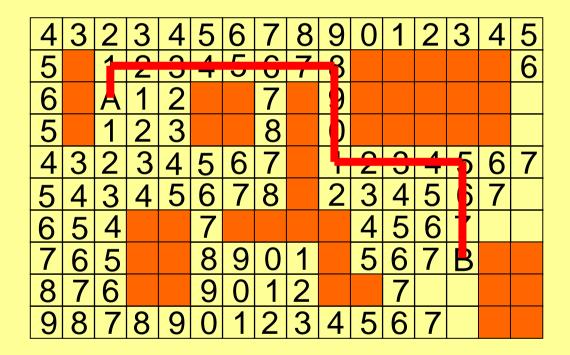
4	3	2	3	4	5	6	7	8	9	0	1	2		
5		1	2	3	4	5	6	7	8					
6		A	1	2			7		9					
5		Υ_	2	3			8		0					
4		2	3	4	5	6	7		1	2				
5	4		4	5	6	7	8		2					
<u>5</u>	56	4			7									
7	6	5			8	တ	0	~					В	
8	7	6			9	0	1	2						
9	8	7	8	9	0	1	2							

4	3	2	3	4		6	7	8	9	0	1	2	3	
5		1	2	3	4	5	6	7	8					
6 5		Α	1	2			7		9					
5		—	2	3			8		0					
4	3	2	3	4	5	6	7		1	2	3			
5	4	თ	4	5	6	7	8		2	3				
5 6	56	4			7									
7	6	5			8	တ	0	~					В	
8	7	6			9	0	1	2						
9	8	7	8	9	0	1	2	3						

4	3	2	3	4		6	7	8	9	0	1	2	3	4	
5		1	2	3	4	5	6	7	8						
6		Α	1	2			7		9						
5		Υ_	2	3			8		0						
4	3	2	3	4	5	6	7		1	2	3	4			
5	4	3	4	5	6	7	8		2	3	4				
5 6	5	4			7					4					
7	6	5			8	9	0	1					В		
8	7	6			တ	0	~	2							
9	8	7	8	9	0	1	2	3	4						

4	3	2	3	4	5	6	7	8	9	0	1	2	3	4	5
5		1	2	3	4	5	6	7	8						
6		A	1	2			7		9						
5		Υ_	2	3			8		0						
4		2	3	4	5	6	7		1	2	3	4	5		
5	4		4	5	6	7	8		2	3	4	5			
6	5	4			7					4	5				
7	6	5			8	9	0	1		5			В		
8	7	6			9	0	1	2							
9	8	7	8	9	0	1	2	3	4	5					

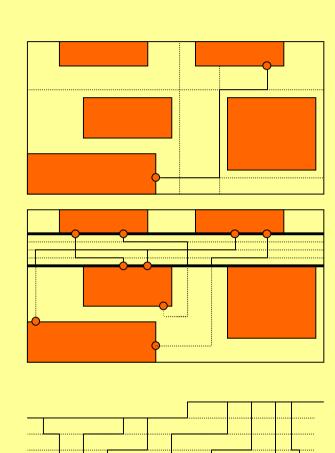

4	3	2	3	4		6	7	8	9	0	1	2	3	4	5
5		1	2	3	4	5	6	7	8						6
6		A	1	2			7		9						
5		Υ_	2	3			8		0						
4		2	3	4	5	6	7		1	2	3	4	5	6	
5	4		4	5	6	7	8		2	3	4	5	6		
6	5	4			7					4	5	6			
7	6	5			8	တ	0	~		5	6		В		
8	7	6			9	0	1	2							
9	8	7	8	9	0	1	2	3	4	5	6				


4	3	2	3	4	5	6	7	8	9	0	1	2	3	4	5
5		1	2	3	4		6	7	8						6
6		Α	1	2			7		9						
5		1	2	3			8		0						
4	3	2	3	4	5	6	7		1	2	3	4	5	6	7
5	4	3	4	5	6	7	8		2	3	4	5	6	7	
6	5	4			7					4	5	6	7		
7	6	5			8	9	0	~		5	6	7	В		
8	7	6			တ	0	~	2			7				
9	8	7	8	9	0	1	2	3	4	5	6	7			

4	3	2	3	4	5	6	7	8	9	0	1	2	3	4	5
5		1	2	3	4	5	6	7	8						6
6		A	1	2			7		9						
5		Υ_	2	3			8		0						
4		2	3	4	5	6	7		1	2	3	4	5	6	7
5	4		4	5	6	7	8		2	3	4	5	6	7	
6	5	4			7					4	5	6	•		
7	6	5			8	9	0	1		5	6	7	B		
8	7	6			တ	0	1	2			7				
9	8	7	8	9	0	1	2	3	4	5	6	7			

4	3	2	3	4	5	6	7	8	9	0	1	2	3	4	5
5		1	2	3	4		6	7	8						6
6		A	~	2			7		9						
5		~	2	3			8		0						
4	ന	2	<u></u>	4	5	6	7		4	۷Þ	c p	4	4	6	7
5	4	റ	4	5	6	7	8		2	3	4	5	6	7	
6	5	4			7					4	5	6	•		
7	6	5			8	9	0	1		5	6	7	B		
8	7	6			တ	0	1	2			7				
9	8	7	8	9	0	1	2	3	4	5	6	7			

4	3	2	3	4	5	6	7	8	9	0	1	2	3	4	5
5		1	2	3	4		6	7	8						6
6		A	1	2			7		•						
5		Υ_	2	3			8								
4	თ	2	3	4	5	6	7		4	N	G D	4	4	6	7
5	4		4	5	6	7	8		2	3	4	5	6	7	
6	5	4			7					4	5	6	•		
7	6	5			8	9	0	1		5	6	7	B		
8	7	6			တ	0	1	2			7				
9	8	7	8	9	0	1	2	3	4	5	6	7			



High-Tower-Algorithmus

Channel-Routing zweilagig

River-Routing einlagig

